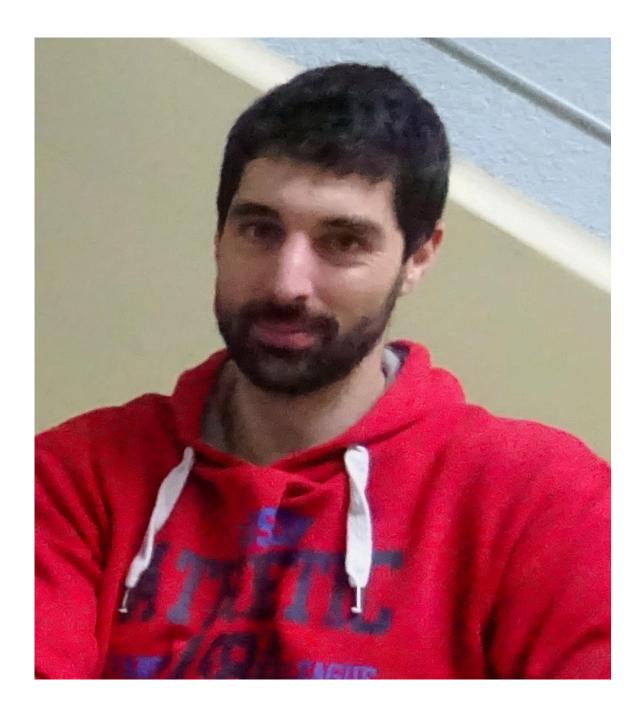
Computational Photonics

Solving inverse problems

Mostly based on material from

Yannick Augenstein

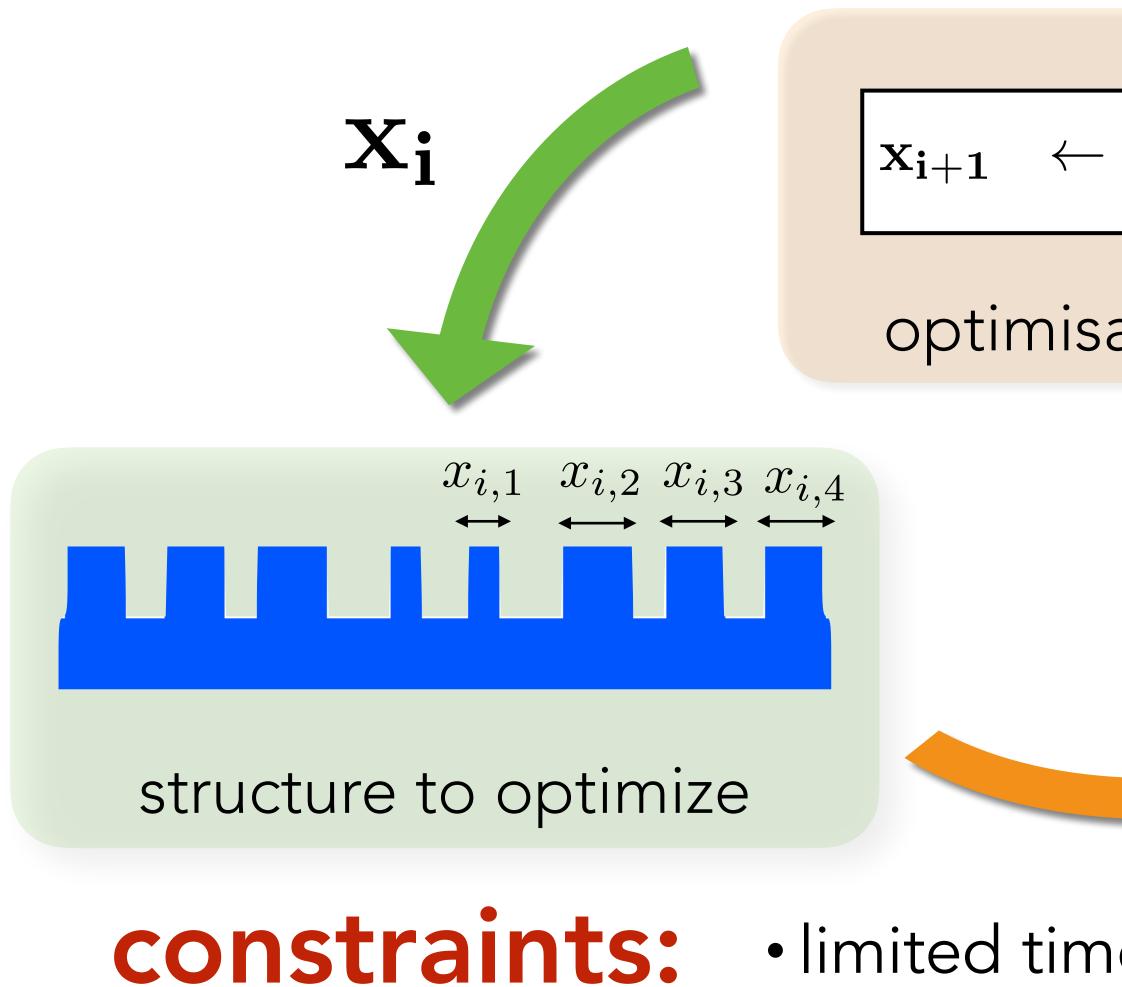
Topology optimisation



Xavi Garcia-Santiago

Bayesian optimisation

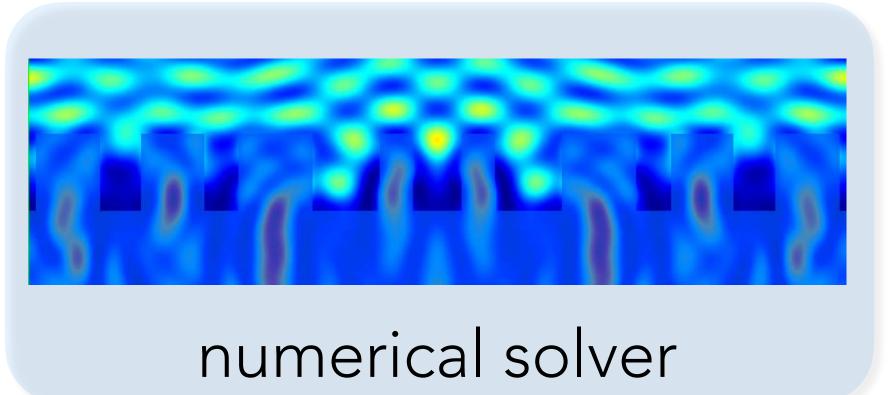
Solving inverse problems



- adapted to fabrication methodologies
- ideally automatic without human intervention

$$[\mathbf{x_1},...,\mathbf{x_{i-1}},\mathbf{x_i}]$$

optimisation algorithm

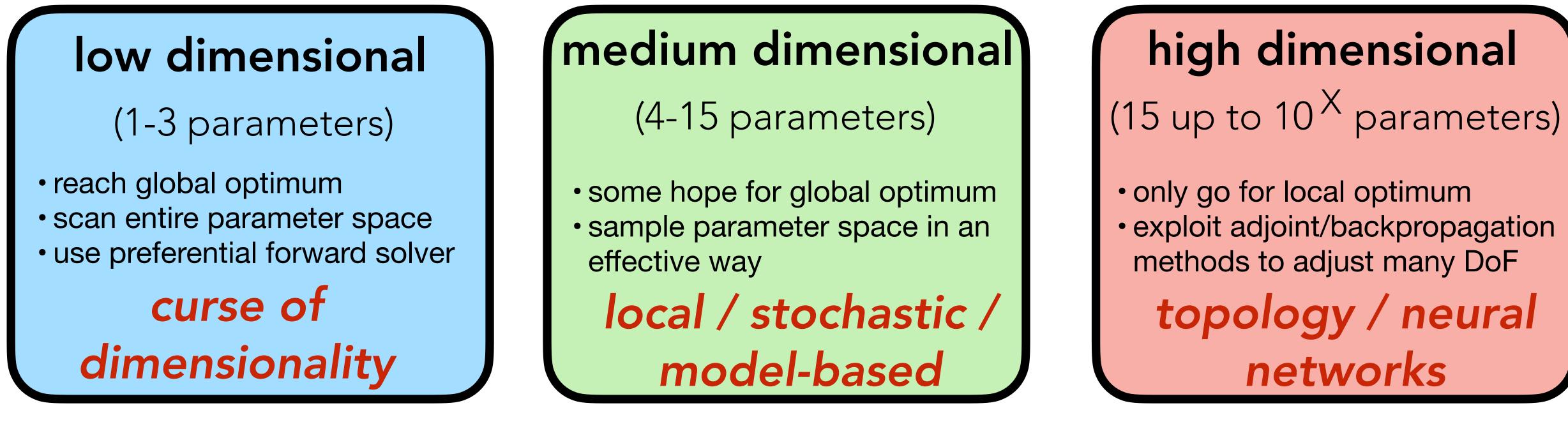


objective

function

limited time available to find an optimal design

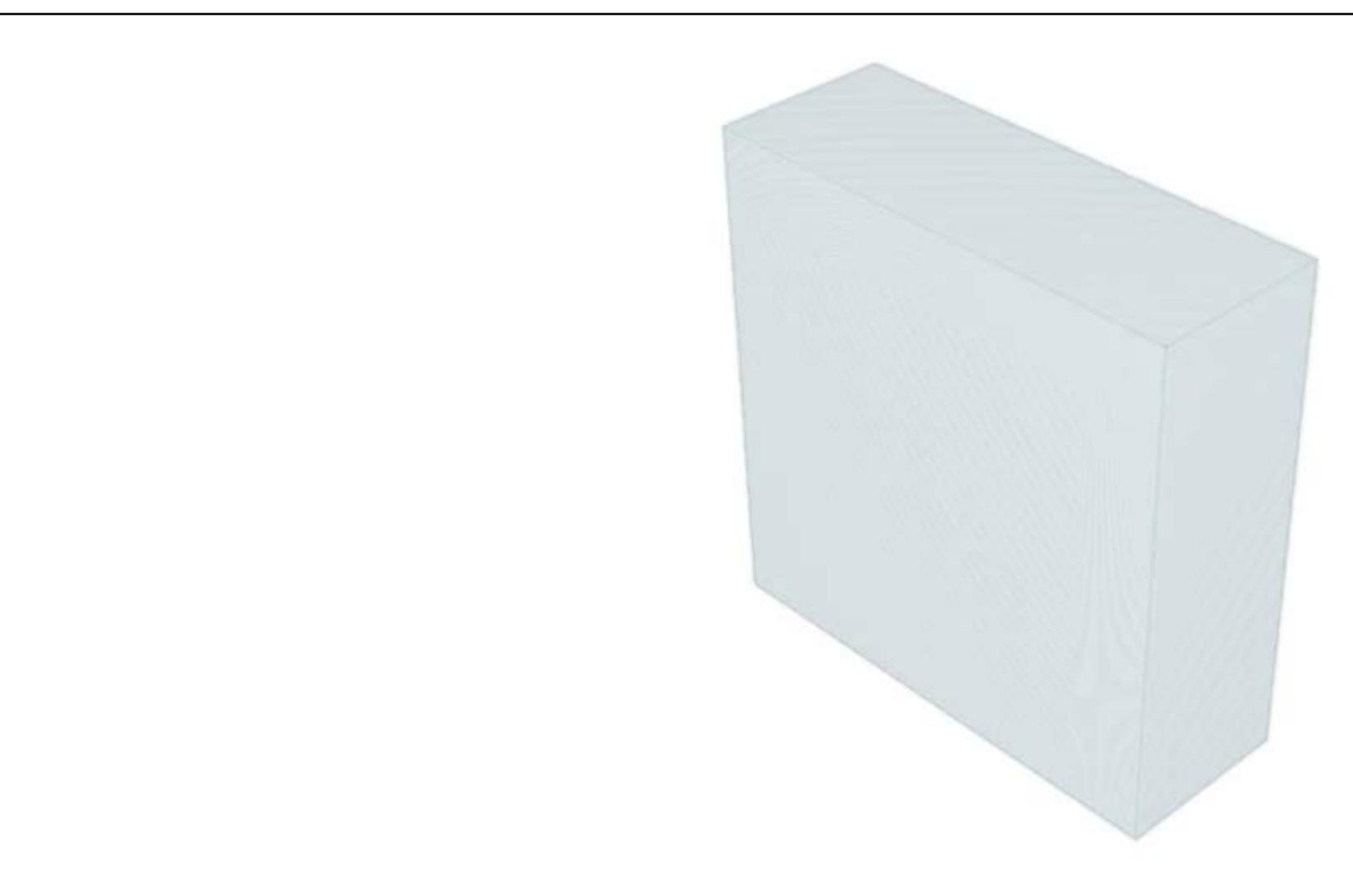
number of degrees of freedoms in your system

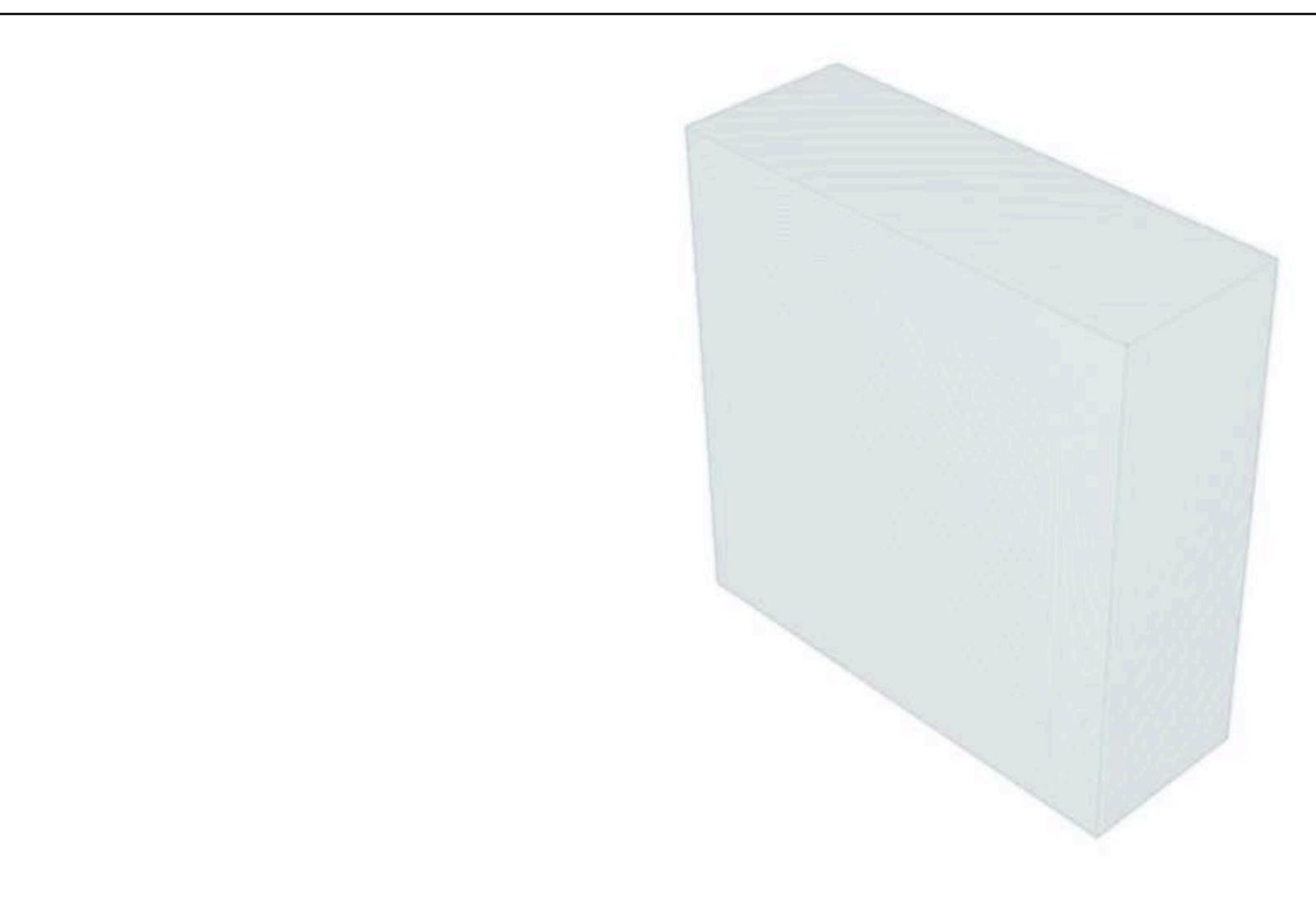


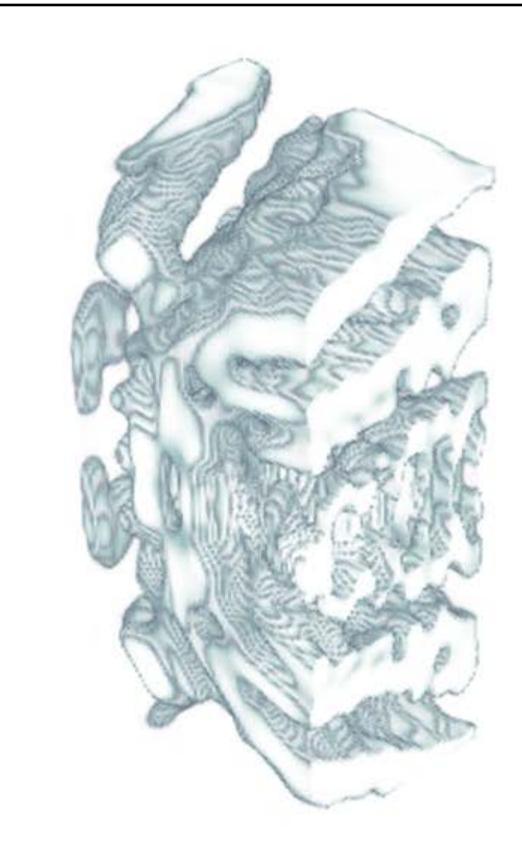
Classification of approaches

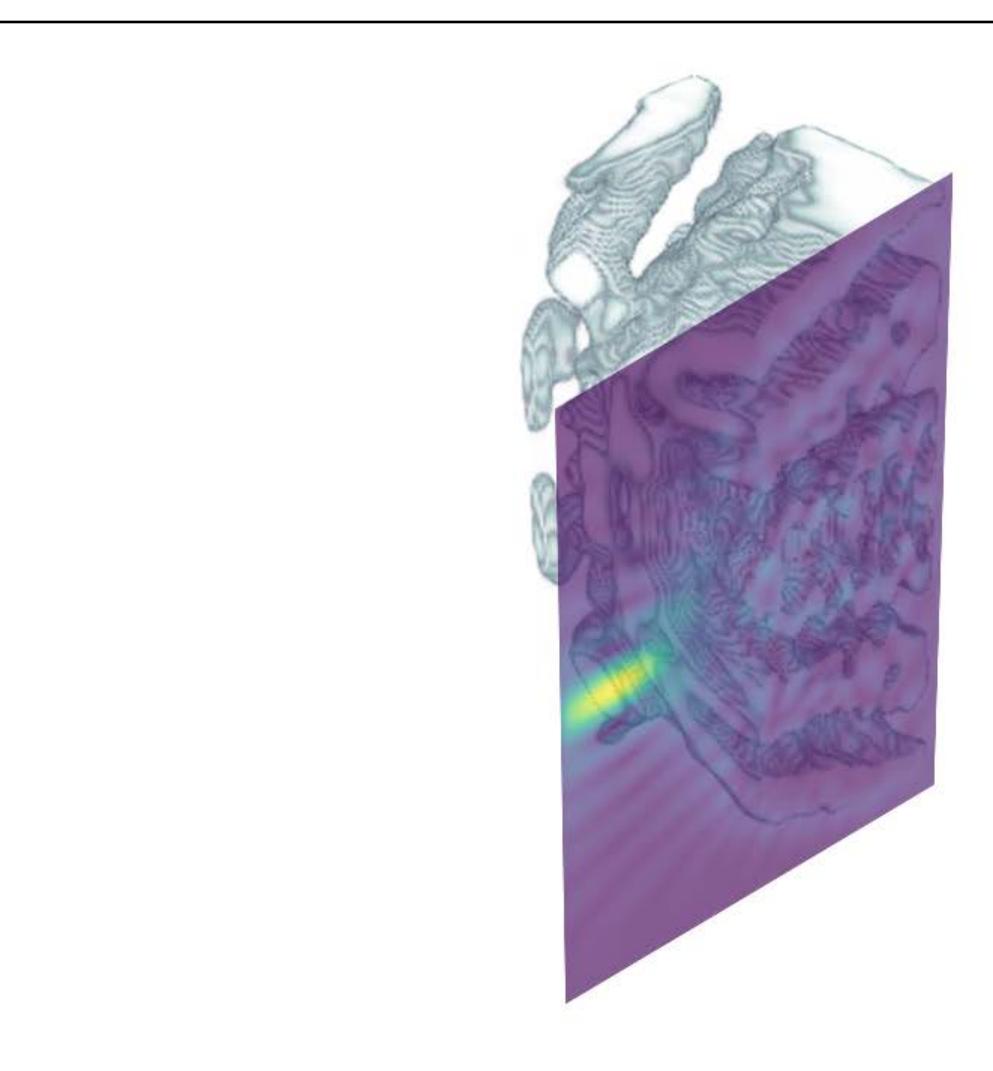
overarching concerns: • exploit derivative informations efficiently consider time for an individual evaluation accurate data is a precious value

4









1) Adjoint formulation

2) Parametrisation

3) Imposing constraints

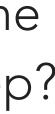
Running an optimisation 4)

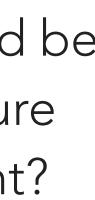
How to determine with two full wave simulations the gradients of an objective function with respect to all degrees of freedom?

How to parametrise the spatial distribution of the permittivity that will be optimised in the next step?

How to express the fact that the permittivity should be a binary function, it should respect minimal feature size, a predefined volume or any other constraint?

How to perform an actual gradient descent?

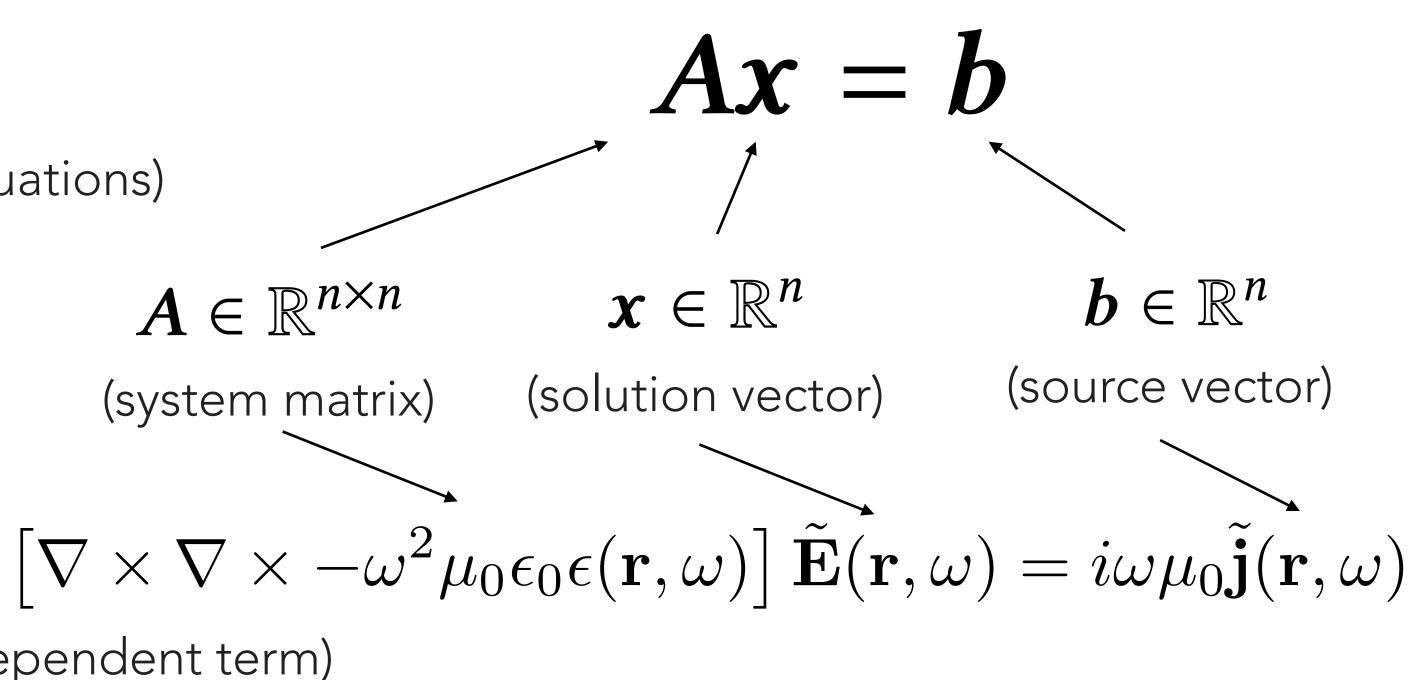




• generic forward problem (PDE discretized in coupled linear equations)

- Maxwell's equations: (material properties appear in an independent term)
- $\boldsymbol{g} \in \mathbb{R}^m$ • all quantities depend on the design parameters
- solution of the forward problem $\boldsymbol{x}(\boldsymbol{g}) = \boldsymbol{A}^{-1}(\boldsymbol{g}) \boldsymbol{b}(\boldsymbol{g})$ [direct (e.g., LU or Cholesky decomposition) or iterative (e.g., Richardson or Jacobi methods)] expensive

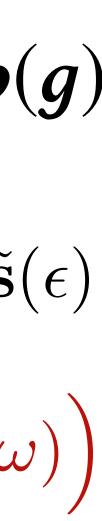
Basics of adjoint formalism



- design goodness quantified by objective function $F({m x})$
- $\min_{\boldsymbol{g}} F(\boldsymbol{x}(\boldsymbol{g}))$ • optimisation problem: subject to A(g) x(g) = b(g)
- Maxwell's equations: min $F_{\mathrm{EM}}\left(\tilde{\mathbf{E}}\left(\mathbf{r},\omega
 ight)
 ight)$ subject to $\mathbf{M}(\epsilon)\tilde{\mathbf{E}}(\epsilon) = \tilde{\mathbf{s}}(\epsilon)$ $\epsilon(\mathbf{r},\omega)$
 - material in each pixel is a d.o.f. with respect to figure of merit $F_{ ext{EM}}\left(ilde{\mathbf{E}}(\mathbf{r},\omega)
 ight)$
- gradient based optimisation requires us to know
 - 1. first term easy: objective function is a scalar function of \boldsymbol{X}
 - 2. second term hard: Jacobian is a dense matrix of size $n \times m$

Basics of adjoint formalism

$$\frac{\mathrm{d}F}{\mathrm{d}g} = \frac{\mathrm{d}F\,\mathrm{d}x}{\mathrm{d}x}\frac{\mathrm{d}F}{\mathrm{d}g}$$



11

• derivative with respect to a single design variable:

$$\frac{\partial \mathbf{x}}{\partial g_i} = \frac{\partial A^{-1}}{\partial g_i} \mathbf{b} + A^{-1} \frac{\partial \mathbf{b}}{\partial g_i} = -A^{-1} \frac{\partial A}{\partial g_i} A^{-1} \mathbf{b} + A^{-1} \frac{\partial \mathbf{b}}{\partial g_i} = A^{-1} \left(\frac{\partial \mathbf{b}}{\partial g_i} - \frac{\partial A}{\partial g_i} \right)$$

• derivative with respect to all design variables:

$$\frac{\mathrm{d}F}{\mathrm{d}g} = \frac{\mathrm{d}F}{\mathrm{d}x} A^{-1} \left(\left[\frac{\partial b}{\partial g_1}, \frac{\partial b}{\partial g_2}, \cdots, \frac{\partial b}{\partial g_m} \right] - \left[\frac{\partial A}{\partial g_1} x, \frac{\partial A}{\partial g_2} x, \cdots, \frac{\partial A}{\partial g_m} x \right] \right)$$

Basics of adjoint formalism

extremely expensive calculation and not necessary KEY DETAIL

not interested in $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{g}}$ **but only in** $\frac{\mathrm{d}F}{\mathrm{d}\mathbf{g}}$

starting from the left of the previous expression:

$$\frac{\mathrm{d}F}{\mathrm{d}\mathbf{x}}A^{-1} = \left(A^{-\intercal}\left(\frac{\mathrm{d}F}{\mathrm{d}\mathbf{x}}\right)^{\intercal}\right)^{\intercal} \qquad \text{adjoint solut}$$

• final gradients
$$\frac{\mathbf{d}F}{\mathrm{d}\mathbf{g}} = \mathbf{x}_{\mathrm{aj}}^{\intercal}\left(\left[\frac{\partial \mathbf{b}}{\partial g_{1}}, \frac{\partial \mathbf{b}}{\partial g_{2}}, \cdots\right]\right)^{\intercal}\right)$$

u dg

requires two full solutions:

Basics of adjoint formalism

tion
$$A^{\mathsf{T}} \mathbf{x}_{aj} = \frac{\mathrm{d}F}{\mathrm{d}\mathbf{x}^{\mathsf{T}}}$$

$$\frac{\mathbf{b}}{\mathbf{b}_{2}}, \cdots, \frac{\partial \mathbf{b}}{\partial g_{m}} \right] - \left[\frac{\partial A}{\partial g_{1}} \mathbf{x}, \frac{\partial A}{\partial g_{2}} \mathbf{x}, \cdots, \frac{\partial A}{\partial g_{m}} \mathbf{x} \right] \right)$$
$$= \mathbf{x}_{aj}^{\mathsf{T}} \left(\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}\mathbf{g}} - \frac{\mathrm{d}A}{\mathrm{d}\mathbf{g}} \mathbf{x} \right)$$
$$\underbrace{\mathbf{A}\mathbf{x} = \mathbf{b}}_{\mathrm{direct}} \qquad \underbrace{\mathbf{A}^{\mathsf{T}} \mathbf{x}_{\mathrm{aj}} = \frac{\mathrm{d}F}{\mathrm{d}\mathbf{x}^{\mathsf{T}}}}_{\mathrm{adjoint}}$$

 $\frac{d}{d}$

d

for complex quantities (no special derivation here)

requires two full solutions

Maxwell's equations: (source does not depend on d.o.f.)

 $\mathbf{M}^{\mathrm{T}}\tilde{\mathbf{E}}_{\mathrm{adj}} = \frac{\mathrm{d}F_{\mathrm{EM}}}{\mathrm{d}\tilde{\mathbf{E}}^{\mathrm{T}}}$

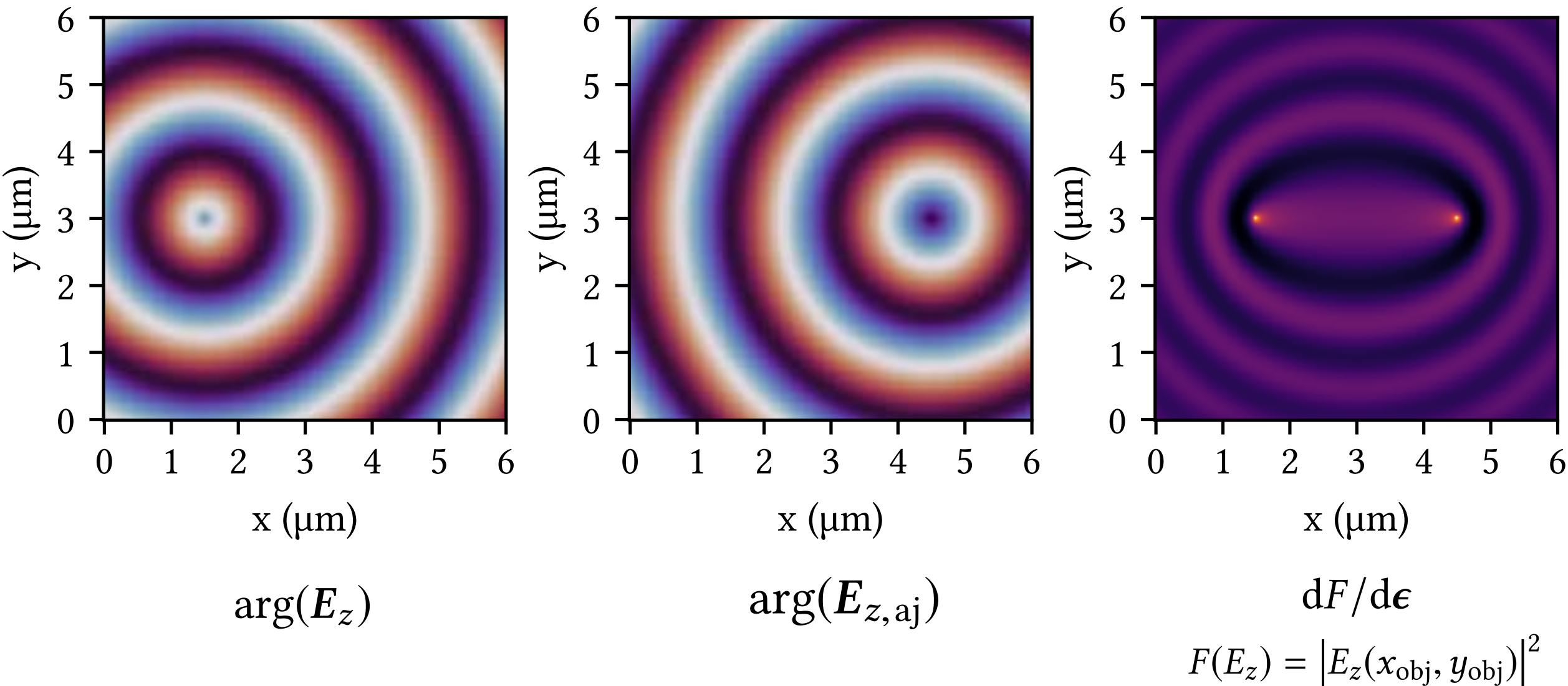
Basics of adjoint formalism

$$\frac{\mathrm{d}F}{\mathrm{d}g} = 2 \operatorname{Re} \left\{ z_{\mathrm{aj}}^{\dagger} \left(\frac{\mathrm{d}b}{\mathrm{d}g} - \frac{\mathrm{d}A}{\mathrm{d}g} z \right) \right\}$$
$$\underbrace{Az = b}_{\mathrm{direct}} \qquad A^{\dagger} z_{\mathrm{aj}} = \frac{\mathrm{d}F}{\mathrm{d}z^{\dagger}}$$
adjoint

$$\frac{\mathrm{d}A}{\mathrm{d}g} z = -\omega^2 \mu_0 \epsilon_0 \operatorname{diag}(z)$$

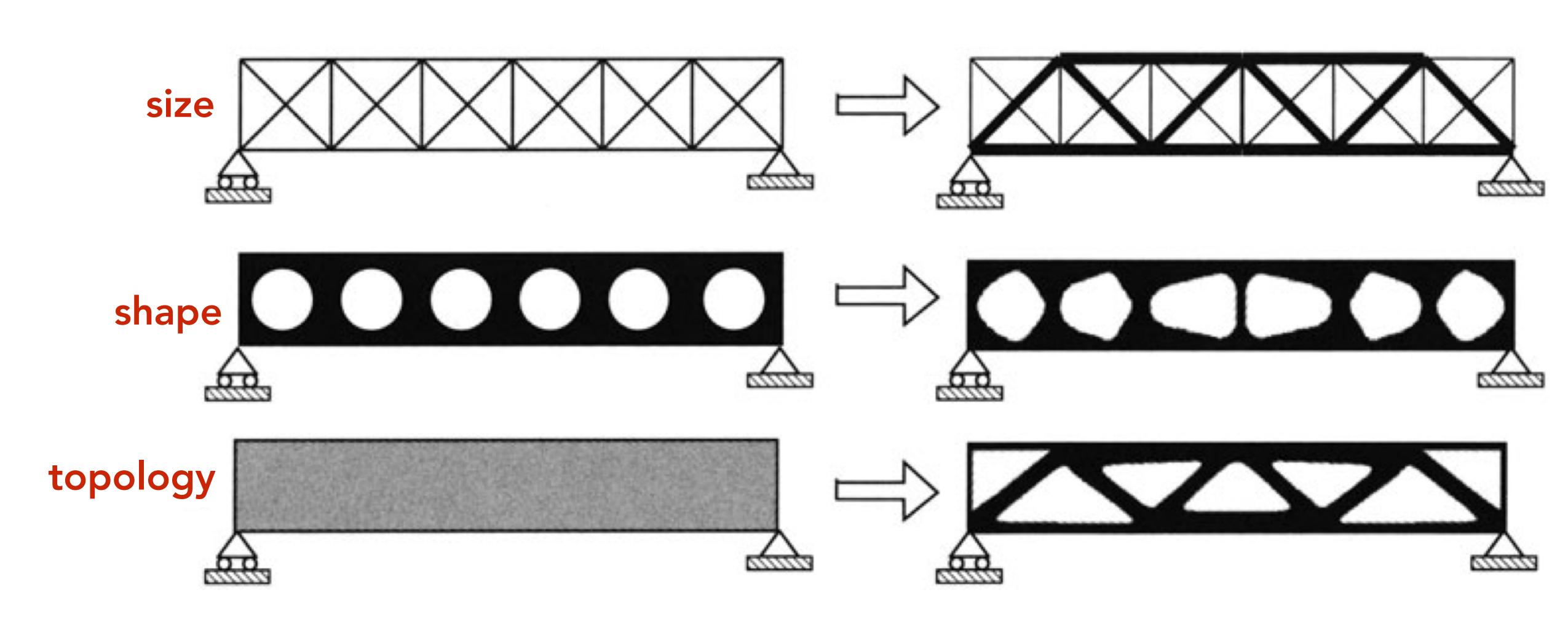
$$\frac{\tilde{\mathbf{F}}_{\mathrm{EM}}}{\mathrm{d}\epsilon} = 2\omega^2 \epsilon_0 \mu_0 \Re \left(\tilde{\mathbf{E}}_{\mathrm{adj}} \odot \tilde{\mathbf{E}} \right)^{\mathrm{T}}$$

imaging a point source (1.55 µm) to another point



Example

Basics of topology optimisation



Martin P. Bendsøe and Ole Sigmund. Topology optimization: theory, methods, and applications. 2nd ed. Engineering online library. Berlin: Springer, 2004.

parametrisation through density representation

- design space $g_i = 1_{\Omega^{\text{mat}}} g_i^0$ permittivity value in each pixel
- discrete values represented by continuous variable

density: $0 \le \rho \le 1$

permits gradient based optimisati

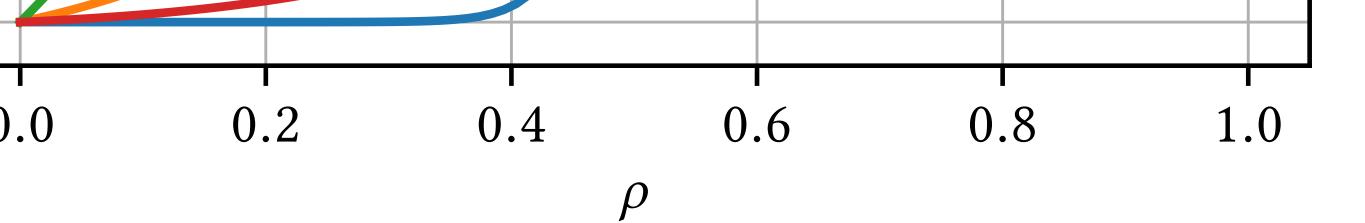
binarisation necessary **matrix** implicit constraints

$$1_{\Omega^{\text{mat}}} = \begin{cases} 1 & \text{if } x \in \Omega^{\text{mat}} \\ 0 & \text{if } x \in \Omega \setminus \Omega^{\text{mat}} \end{cases}$$

nanophotonics:
$$\epsilon_r = \epsilon_1 + \rho (\epsilon_2 - \epsilon_1)$$

ion
$$\rho^{n+1} = \rho^n - \eta^n \frac{\mathrm{d}F}{\mathrm{d}\rho^n}$$

17	
	17



power law

$$\epsilon_r = \epsilon_1 + \hat{\rho} (\epsilon_2 - \epsilon_1)$$

 projection scheme (smoothened Heaviside)

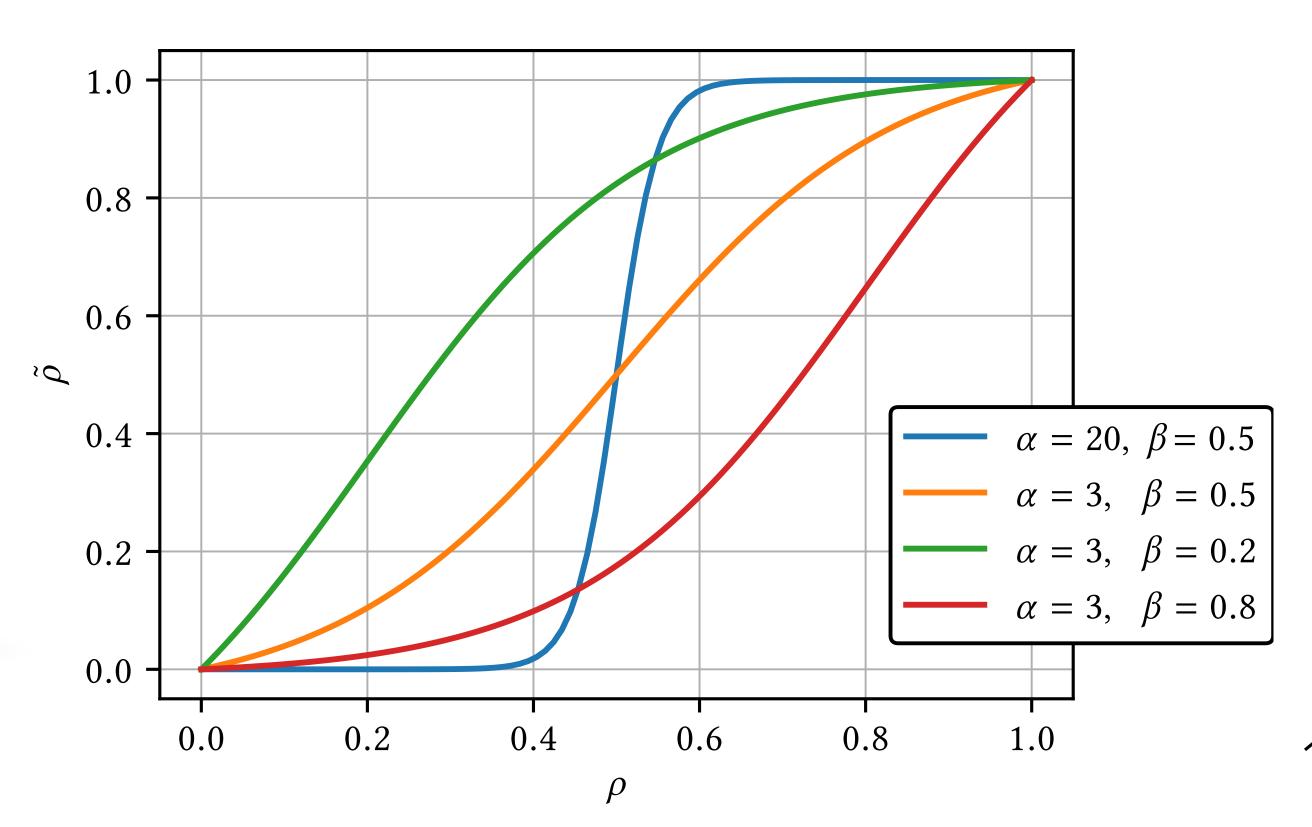
$$\hat{\rho} = \frac{\tanh(\alpha\beta) + \tanh(\alpha(\rho - \beta))}{\tanh(\alpha\beta) + \tanh(\alpha(1 - \beta))}$$

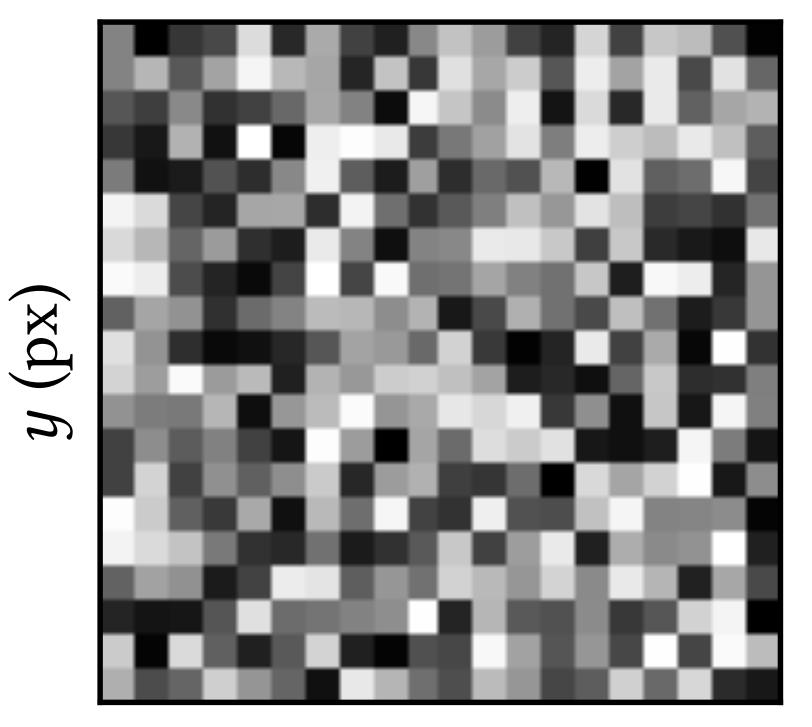
ptimisation

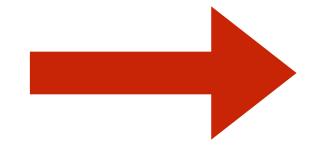
Simplified Isotropic Material with Penalization (SIMP) scheme

with
$$\hat{\rho} = \rho^p$$

heuristically: p = 3

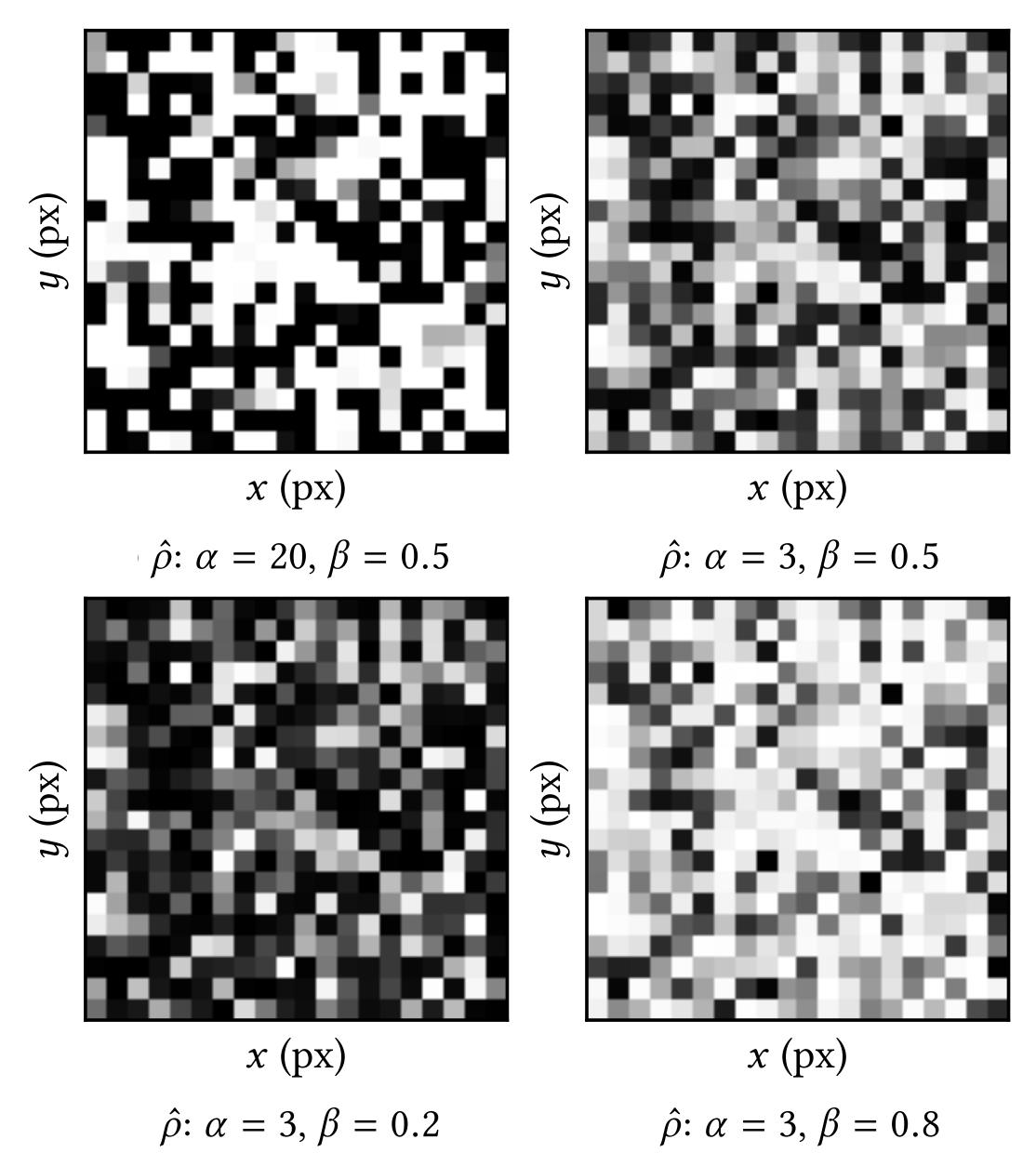






x (px)

Basics of topology optimisation



 $\tilde{\rho}_{i} = \frac{\sum_{j \in \mathcal{D}_{i}} w_{ij} \rho_{j}}{\sum_{i \in \mathcal{D}_{i}} w_{ij}}$

accommodating minimal feature sizes

linear filtering (suffers from banding artefacts)

• Gaussian filtering $\tilde{\rho}_i = \frac{\sum_{j \in \mathcal{D}_i} w_{ij} \rho_j}{\sum_{i \in \mathcal{D}_i} w_{ij}}$

implemented as convolution

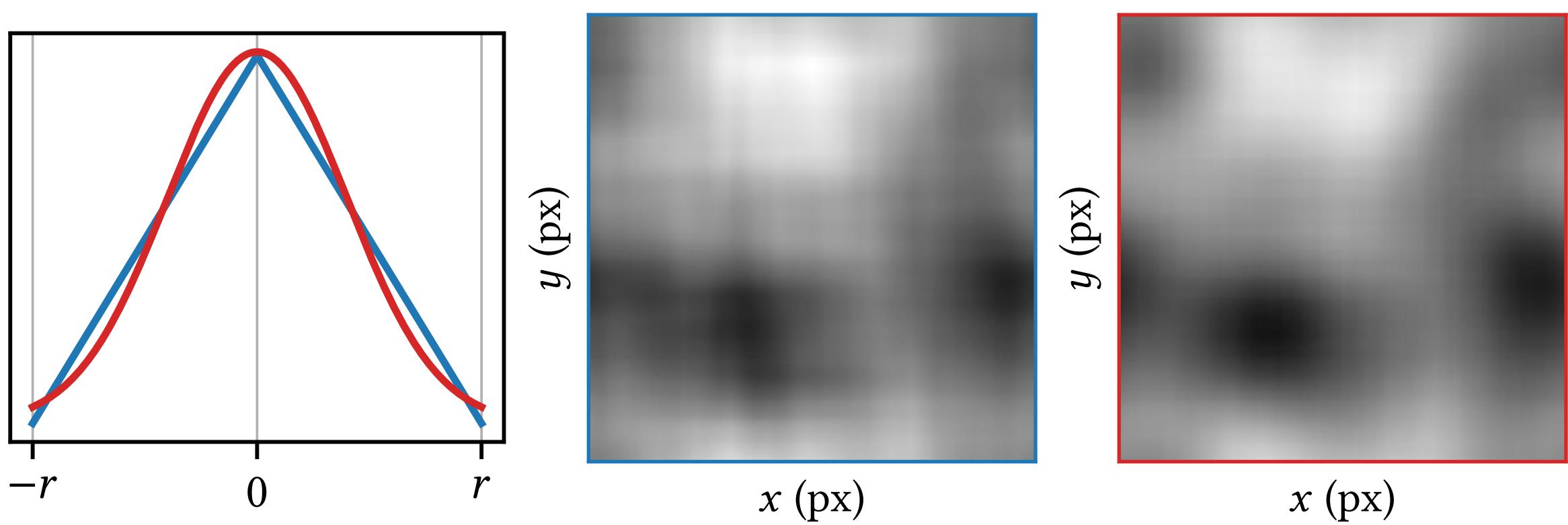
Basics of topology optimisation

with
$$w_{ij} = \begin{cases} r_{\min} - |\mathbf{r}_i - \mathbf{r}_j| & \forall \mathbf{r}_j \in \mathcal{D}_i \\ 0 & \text{otherwise} \end{cases}$$

with
$$w_{ij} = \begin{cases} r_{\min} \exp\left(-\frac{|r_i - r_j|^2}{2\sigma^2}\right) & \forall r_j \in \mathcal{I} \\ 0 & \text{otherw} \end{cases}$$

$$\sigma = \frac{r_{\min}}{\sqrt{3}}$$

$$\tilde{\rho}_n = (k * \rho)_n = \sum_{\substack{i=1\\0 < n-m+i \le n}}^m k_{m-i+1} \rho_{n-m+i},$$



Kernel shapes

Linear kernel

Basics of topology optimisation

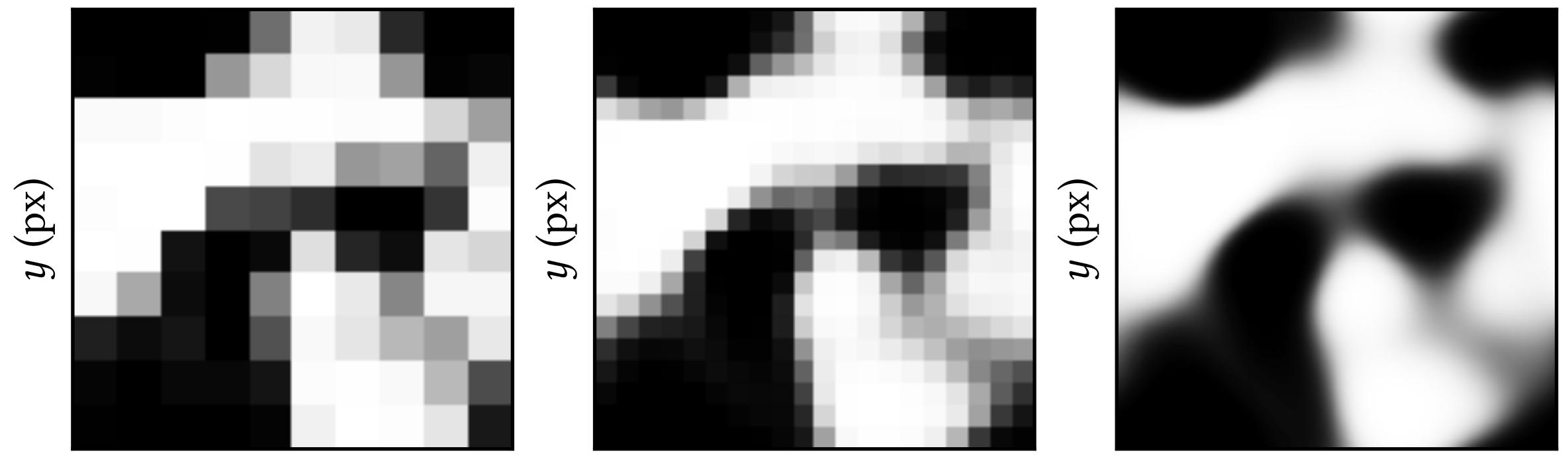
x (px) Gaussian kernel



21

Basics of topology optimisation

mesh independency (results shall not depend on mesh size chosen in simulations)



x (px) 10×10

 20×20

x (px)

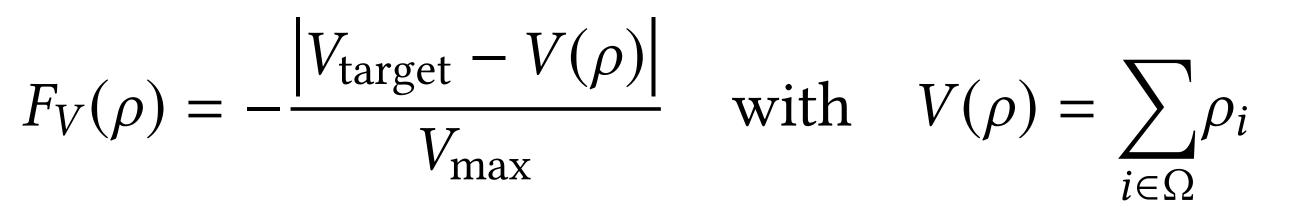
x (px) 1000×1000

- volume constraint (placing a fixed amount of material)
- binarization constraint

 ρ_{\geq}

all types of constraints are permissible

add penalty terms to objective function



$$F_B(\rho) = |\langle \rho_{\geq} \rangle - \langle \rho_{\leq} \rangle| - 1$$

$$= \sum_{\substack{i \in \Omega \\ \forall \rho \ge 0.5}} \rho_i \qquad \qquad \rho_{\le} = \sum_{\substack{i \in \Omega \\ \forall \rho \le 0.5}} \rho_i$$

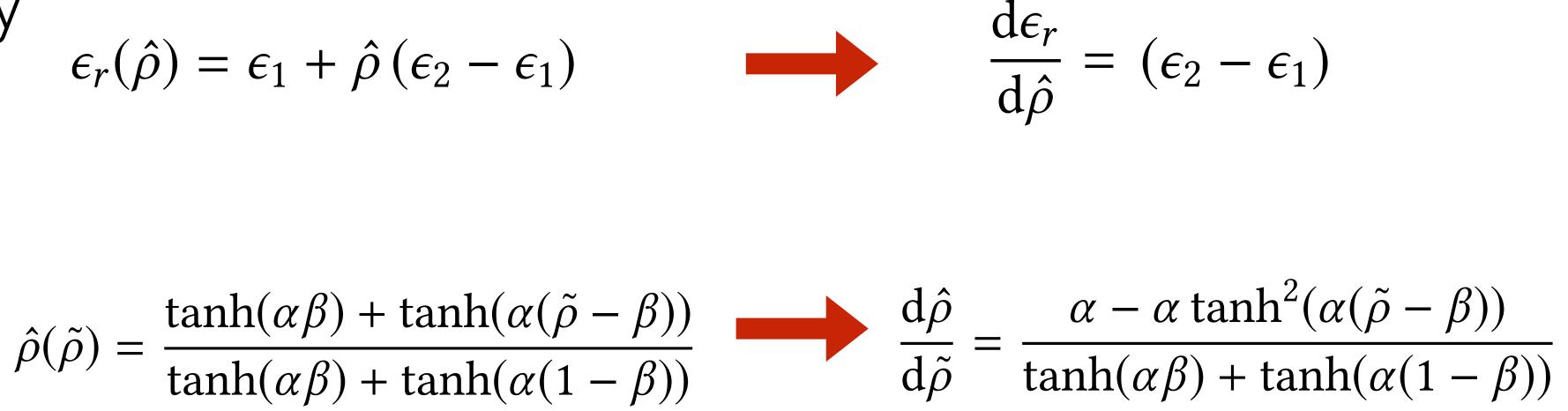
$$\frac{\mathrm{d}F}{\mathrm{d}\rho} = -2\operatorname{Re}\left\{\boldsymbol{x}_{\mathrm{aj}}^{\dagger} \frac{\mathrm{d}A}{\mathrm{d}\rho}\boldsymbol{x}\right\} = -2\operatorname{Re}\left\{\boldsymbol{x}_{\mathrm{aj}}^{\dagger} \frac{\mathrm{d}A}{\mathrm{d}\epsilon_{r}} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\hat{\rho}} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\hat{\rho}} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\rho} \boldsymbol{x}\right\}$$

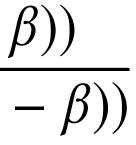
 derivative of density parametrisation

 derivative of binarisation

Now actual topology optimisation

starting from the definition of adjoint gradients and applying chain rule



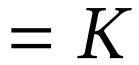


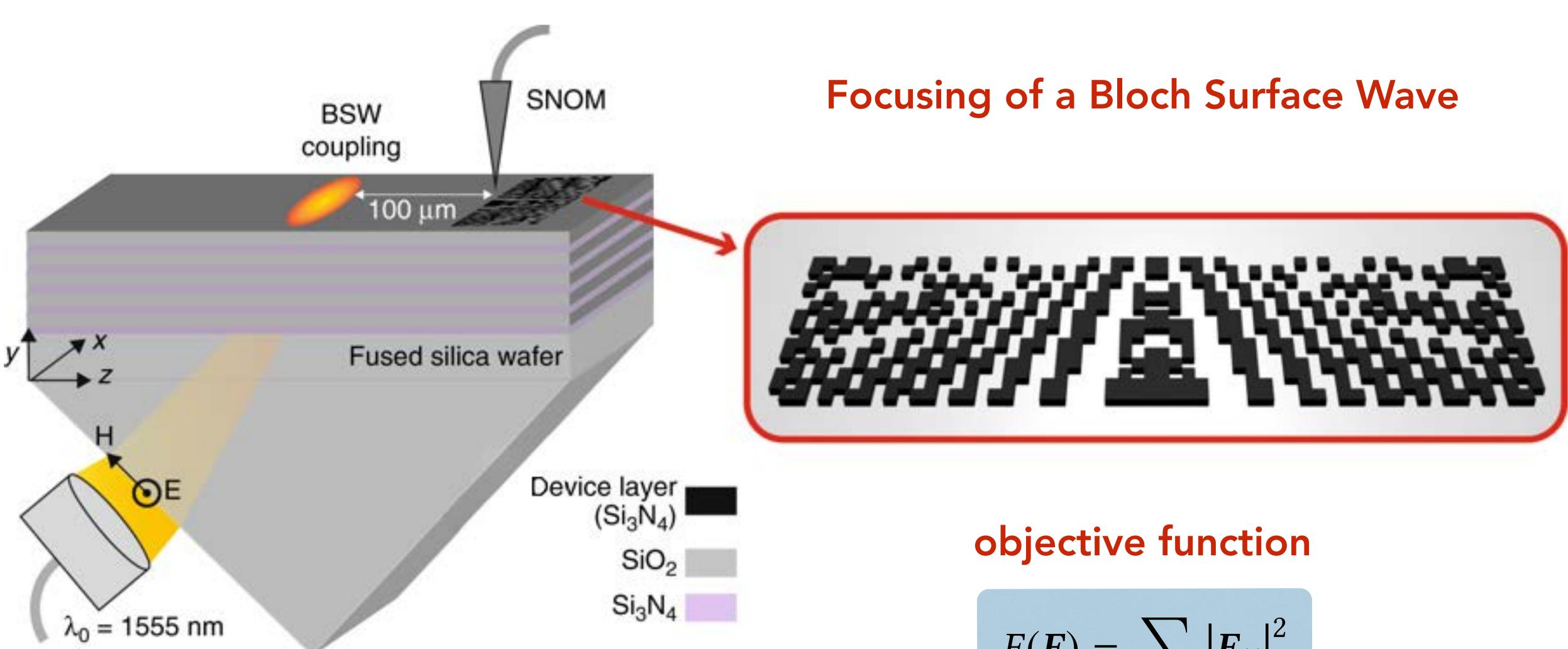
dorivative of convolution

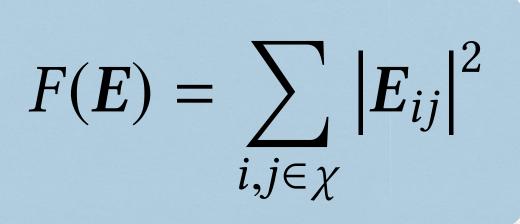
 $\frac{\mathrm{d}F}{\mathrm{d}\rho} = -2\operatorname{Re}\left\{\boldsymbol{x}_{\mathrm{aj}}^{\dagger} \frac{\mathrm{d}A}{\mathrm{d}\epsilon_{r}} \frac{\mathrm{d}\epsilon_{r}}{\mathrm{d}\hat{\rho}} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\hat{\rho}} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\rho} \boldsymbol{x}\right\} = 2\omega^{2}\mu_{0}\epsilon_{0}\left(\epsilon_{2} - \epsilon_{1}\right) \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}\hat{\rho}} K\operatorname{Re}\left\{\boldsymbol{x}_{\mathrm{aj}}^{\dagger} \boldsymbol{x}\right\}$

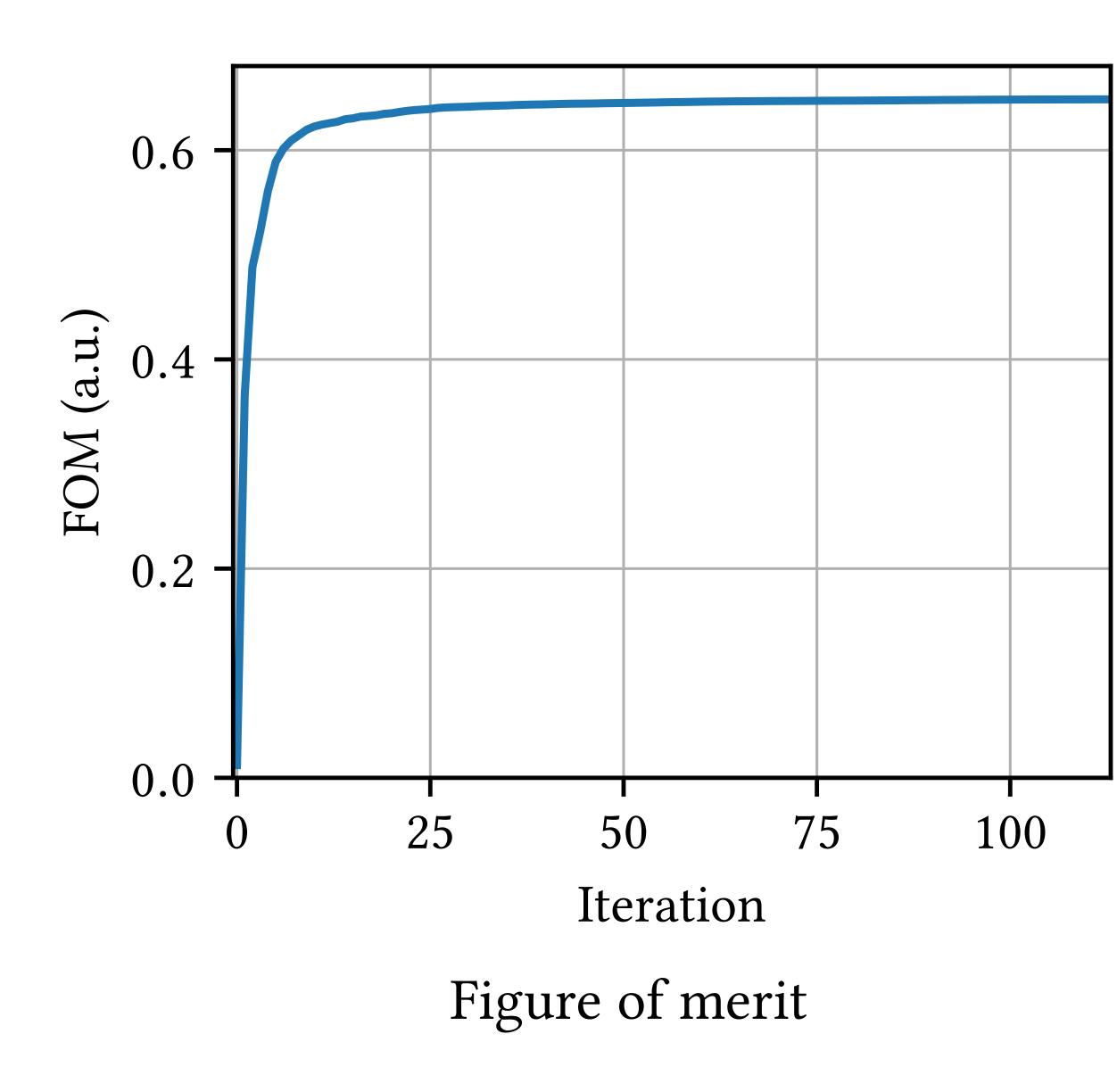
Now actual topology optimisation

finally



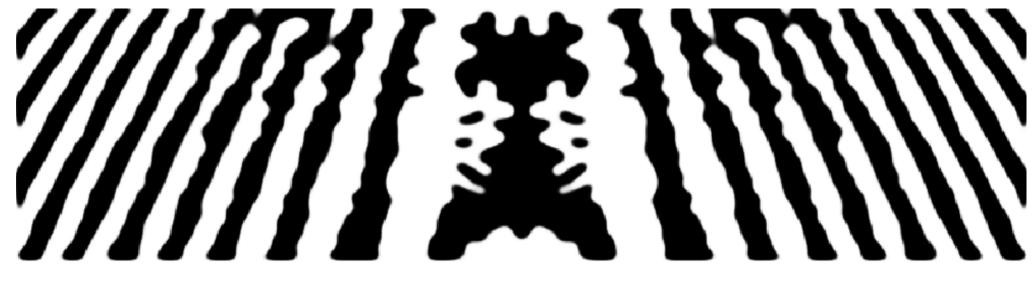






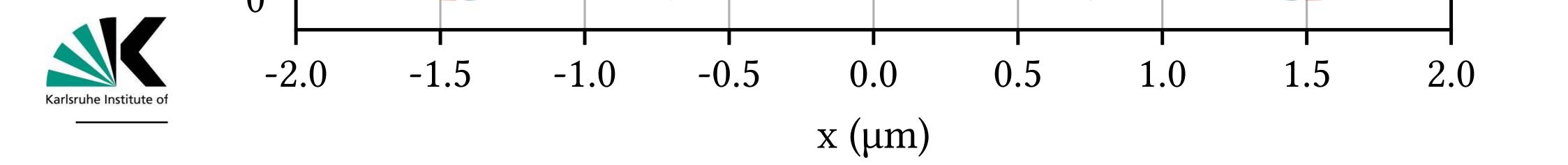
Example I

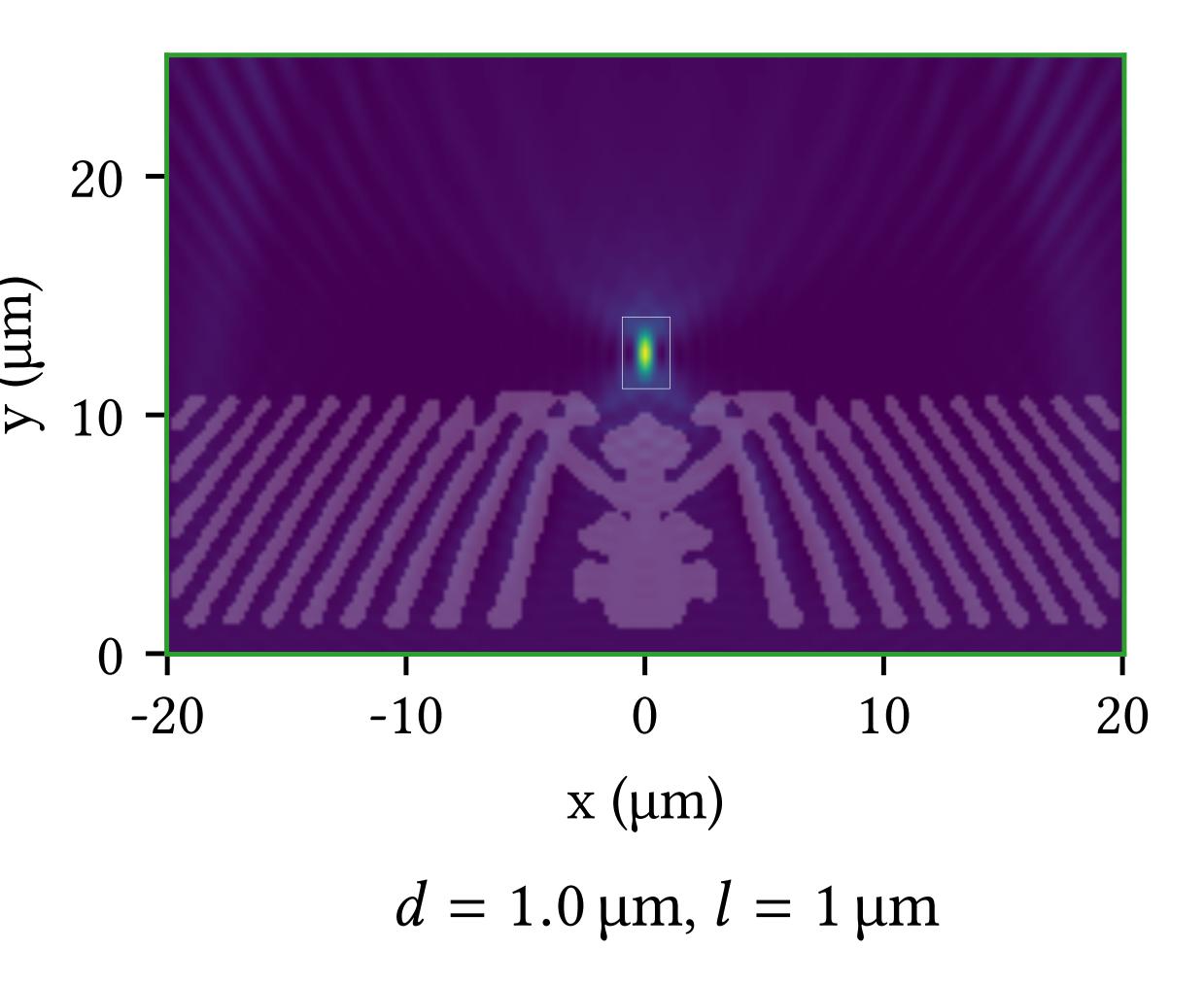
First iteration

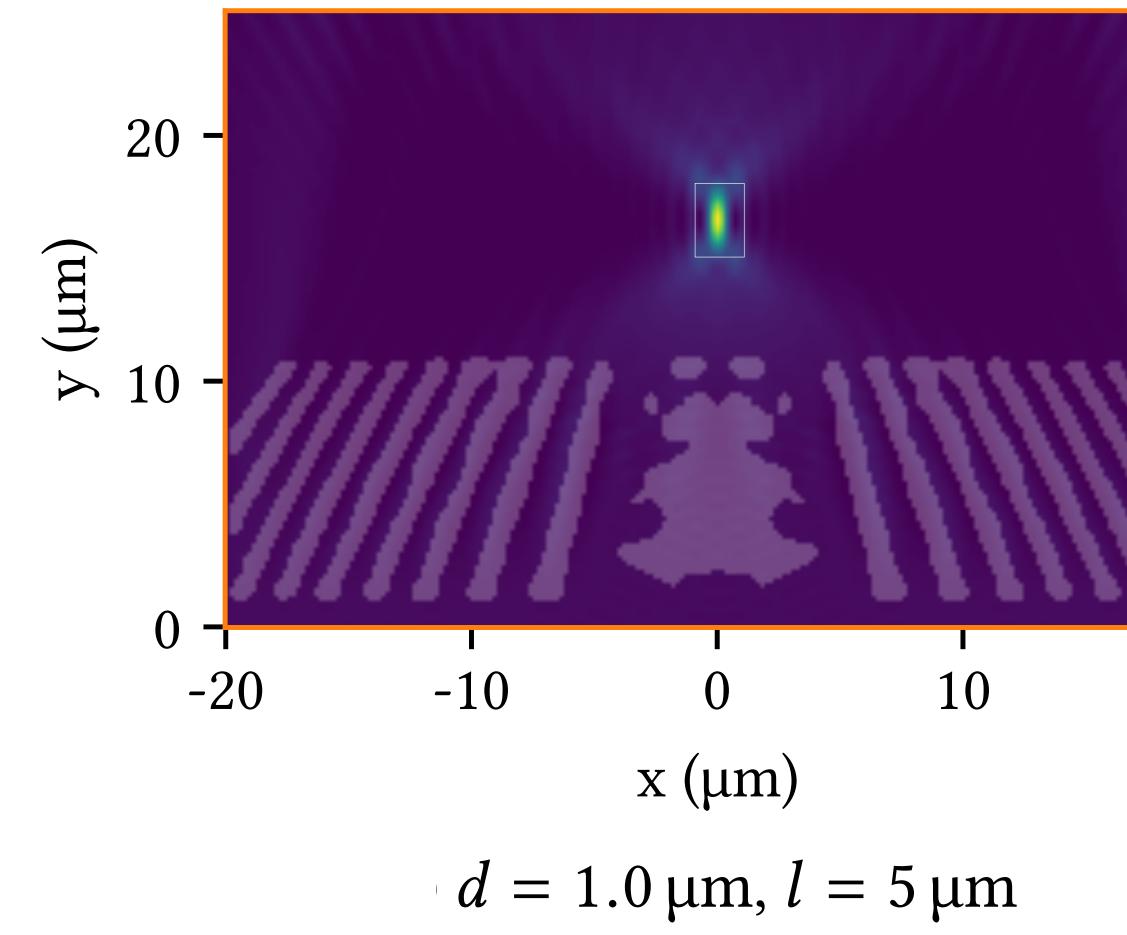


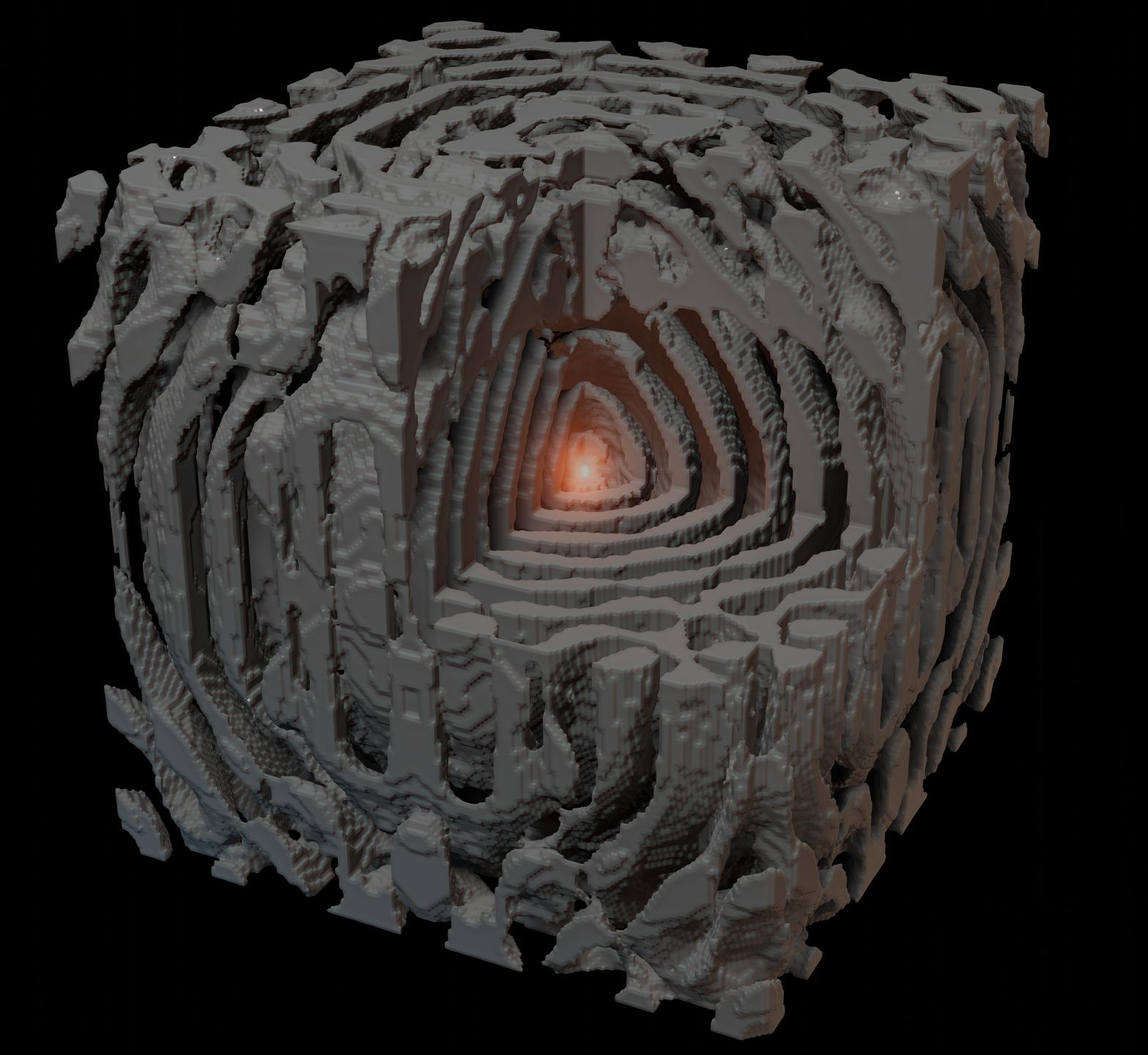
Iteration 30

Final iteration

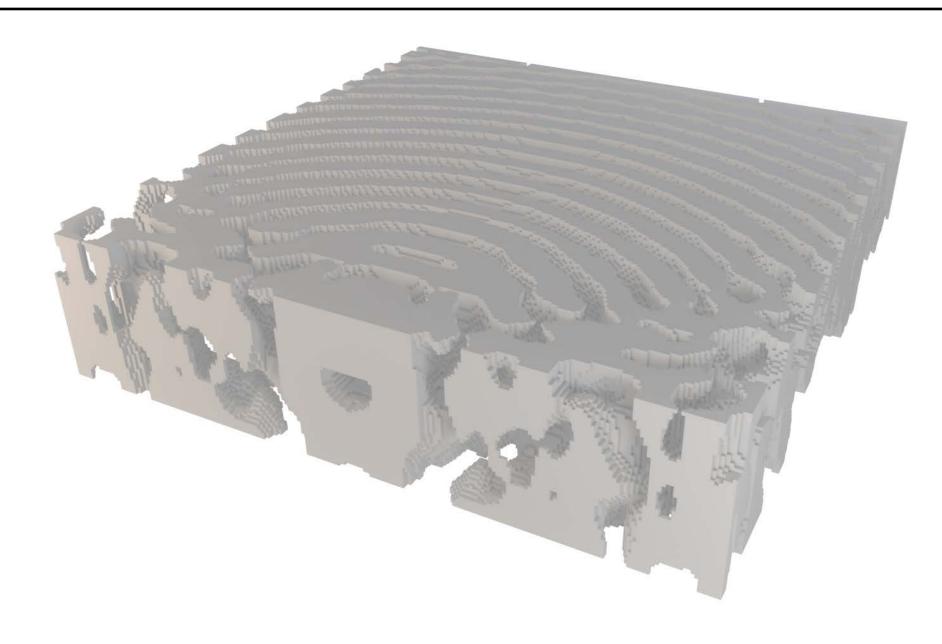




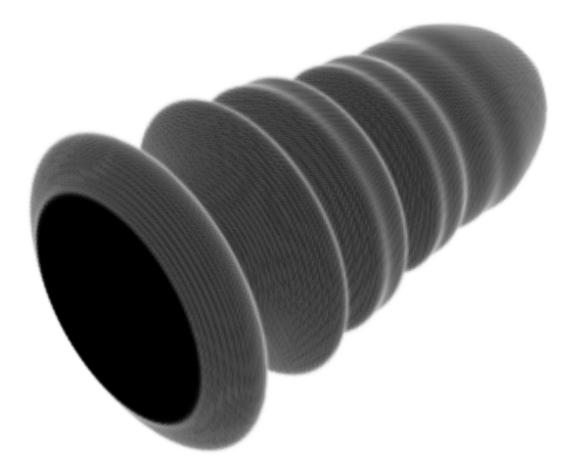


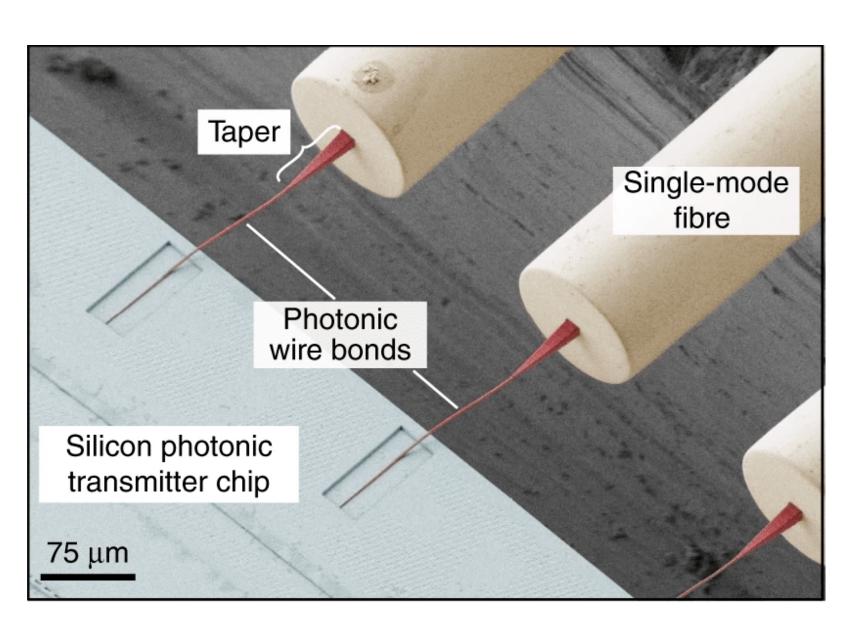


Top-coupler

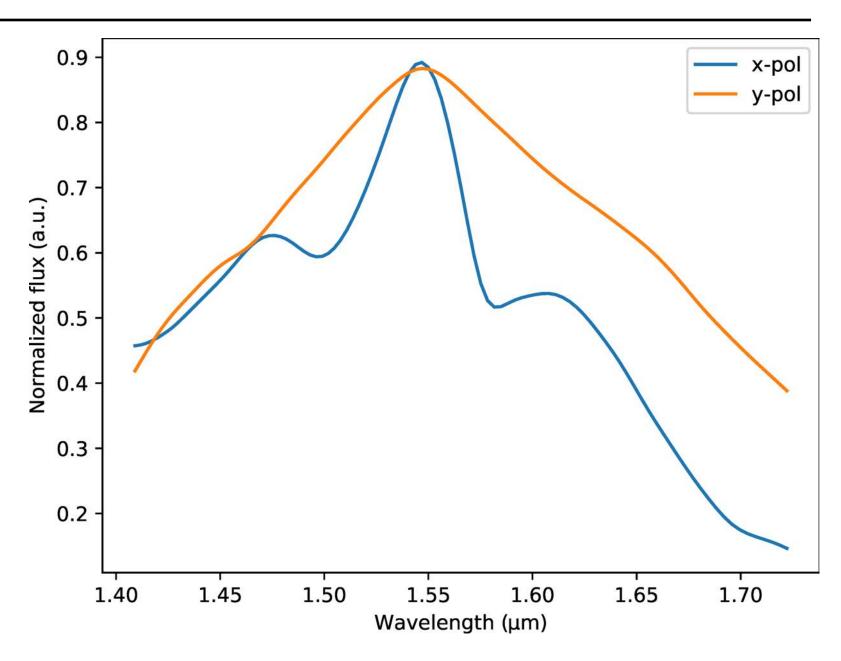


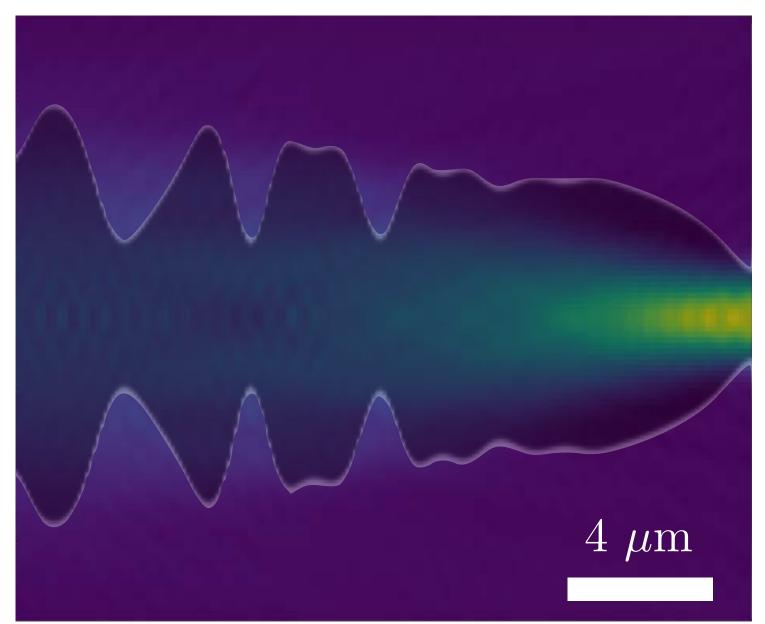
Butt-Coupler





Example III



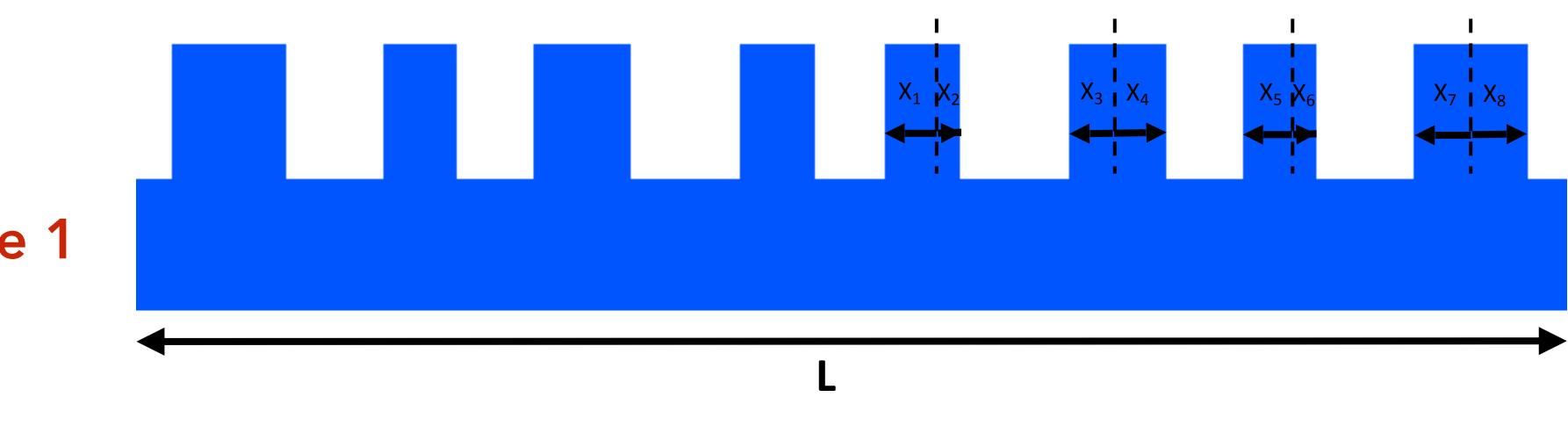


strive to find a global optimum

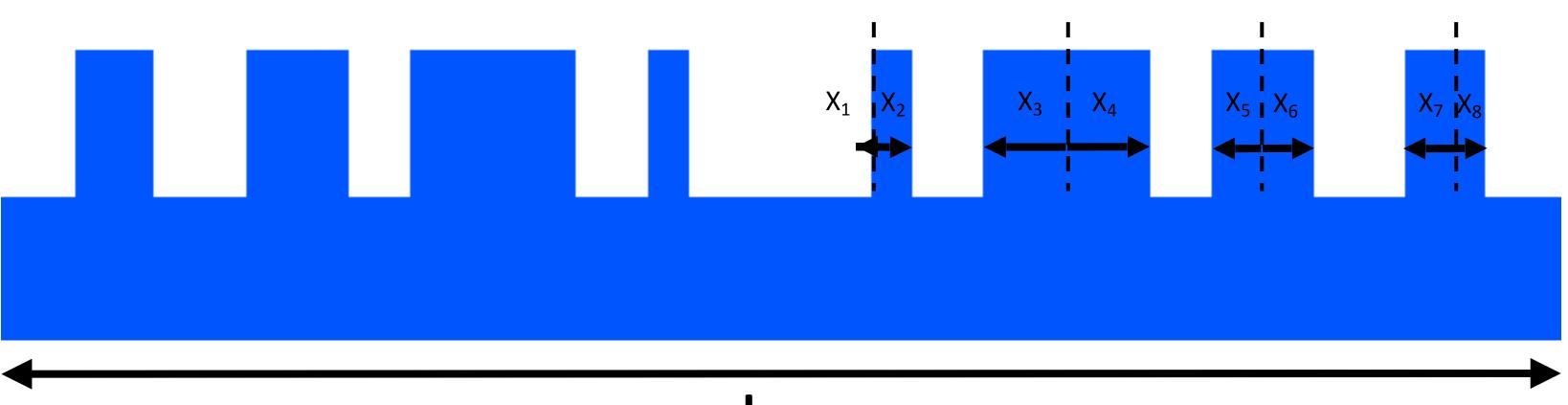
- particular design parametrised in vector $\mathbf{x} = [x_1, x_2, ..., x_d]^T$
- one element in the possible design space D
- Gaussian processes: all possible functions that possibly could be the objective function, mean and standard deviation are well defined
- derive from that a next data point to be evaluated

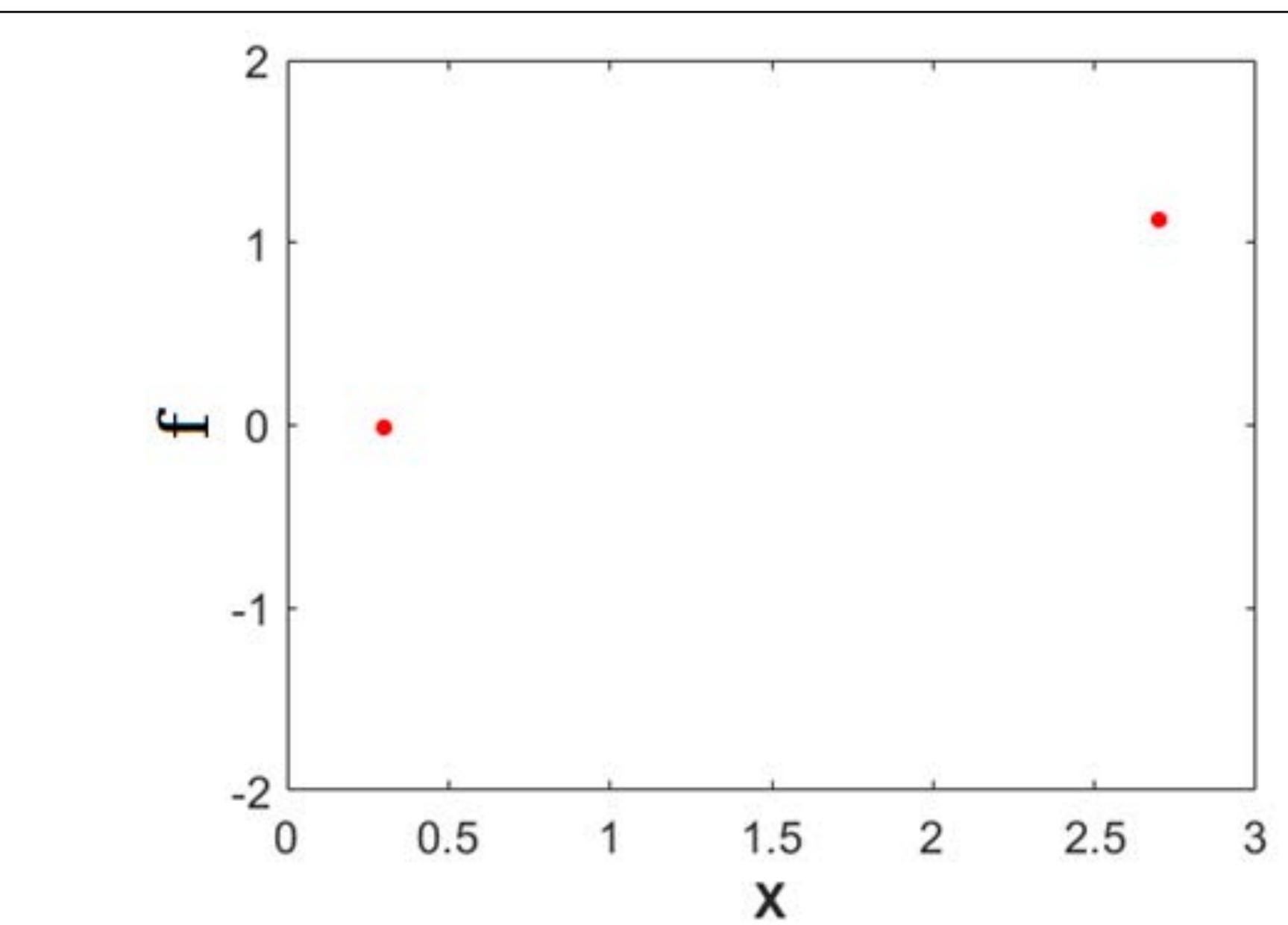
Bayesian optimization

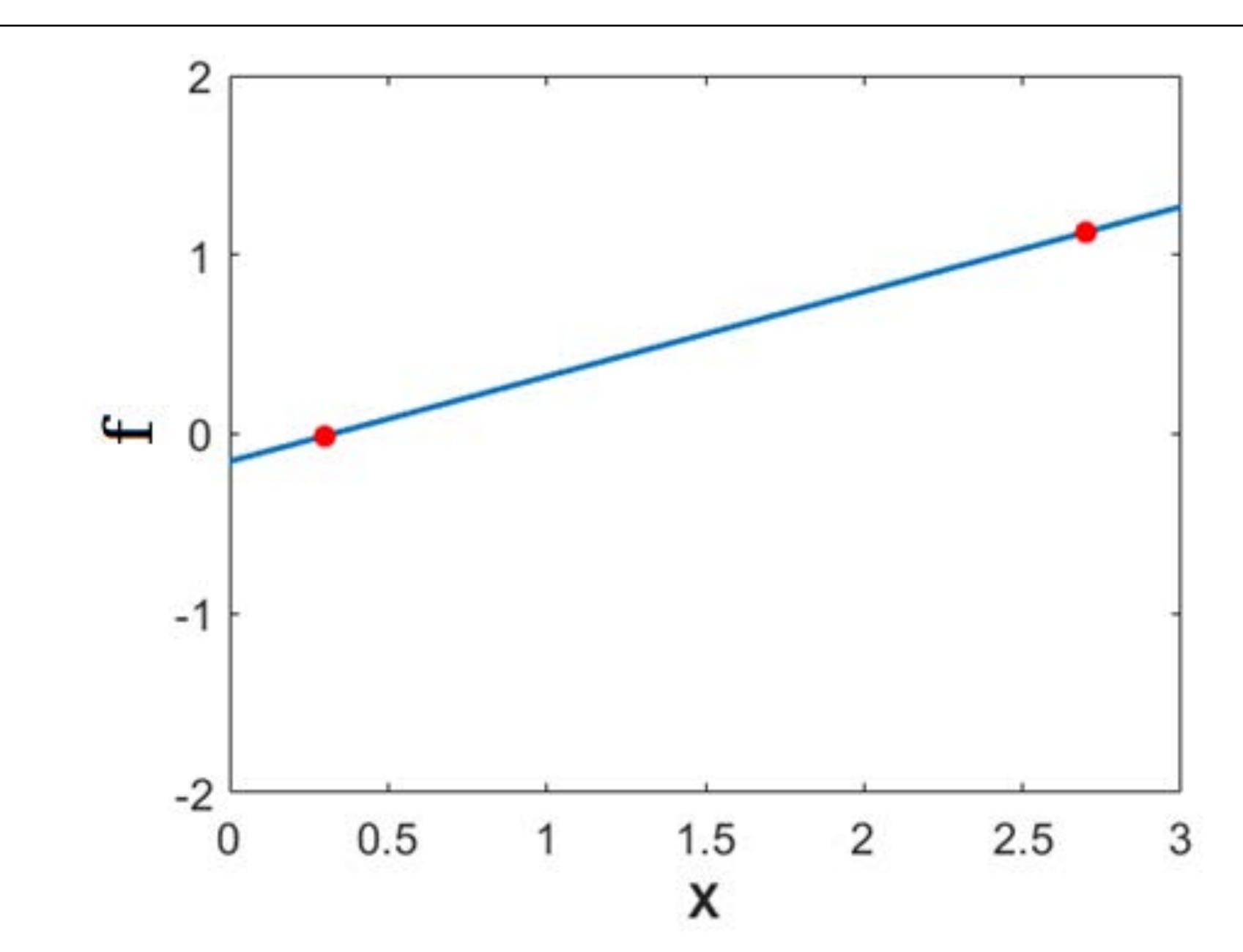
$$f_{\rm ob}(\mathbf{x}_{\rm opt}) \leq f_{\rm ob}(\mathbf{x}) \, \forall \, \mathbf{x} \in \mathcal{D}$$

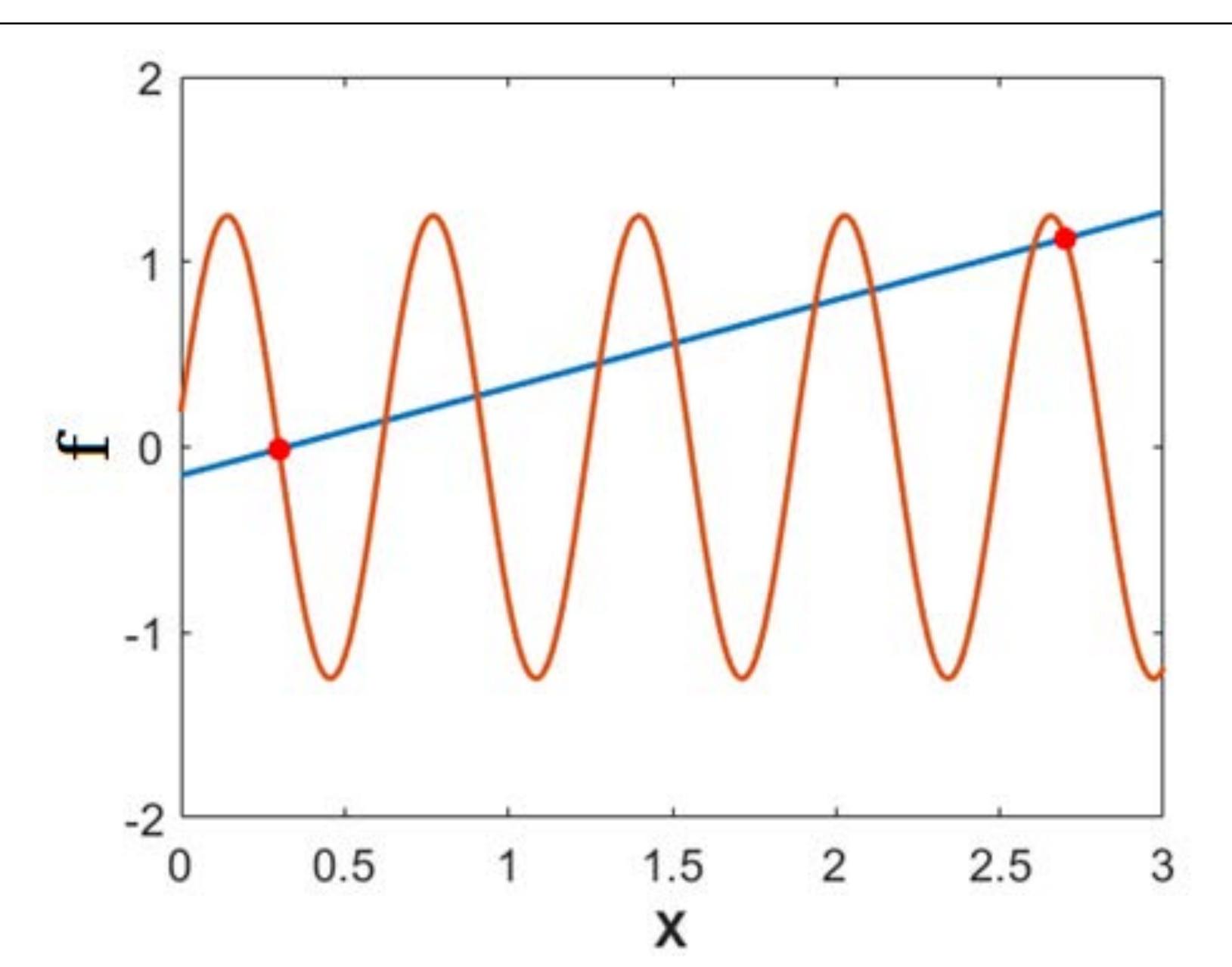


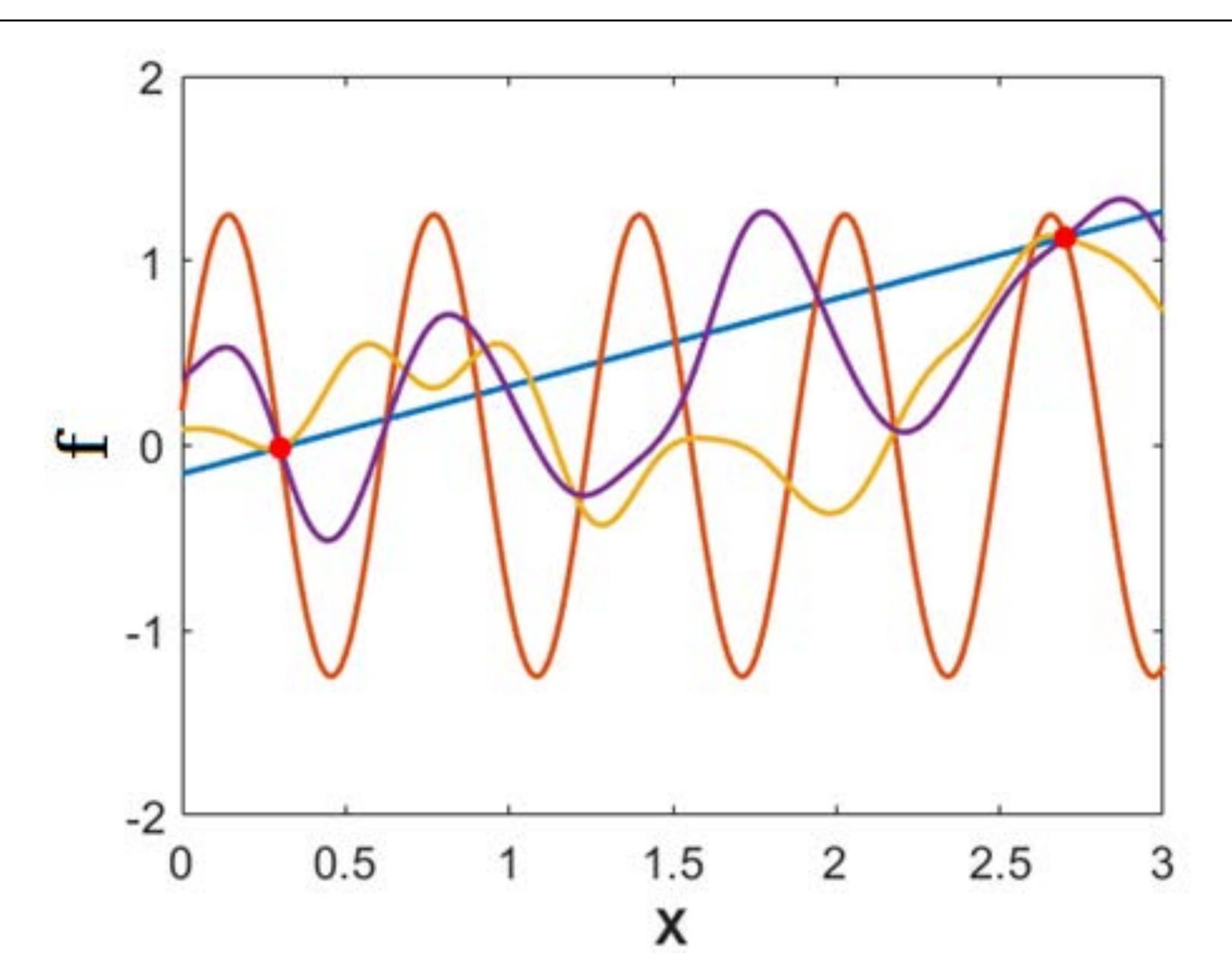
sample 1



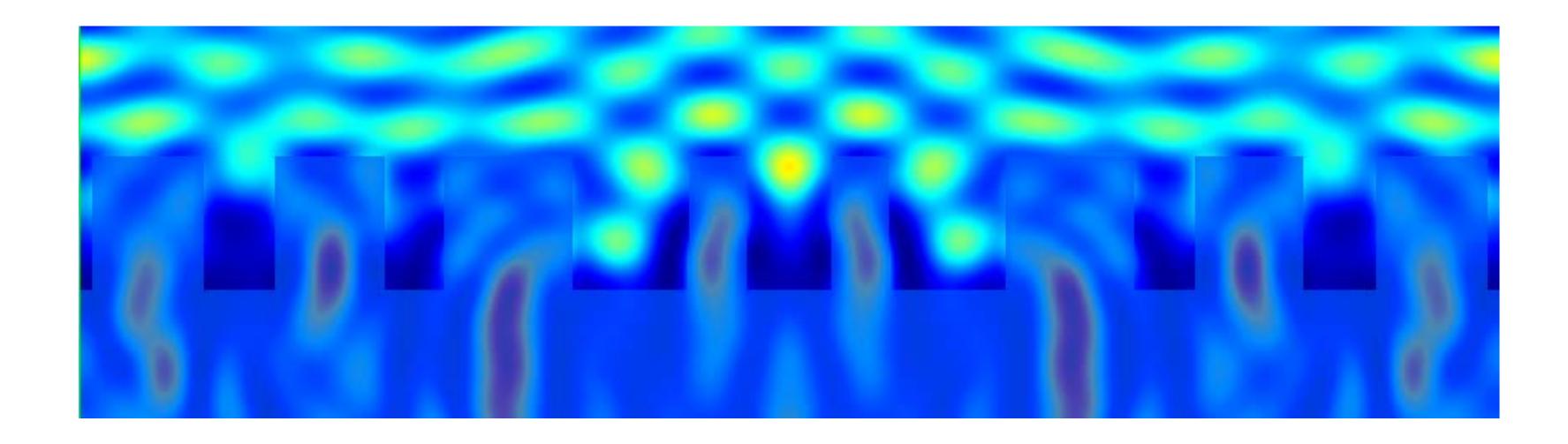






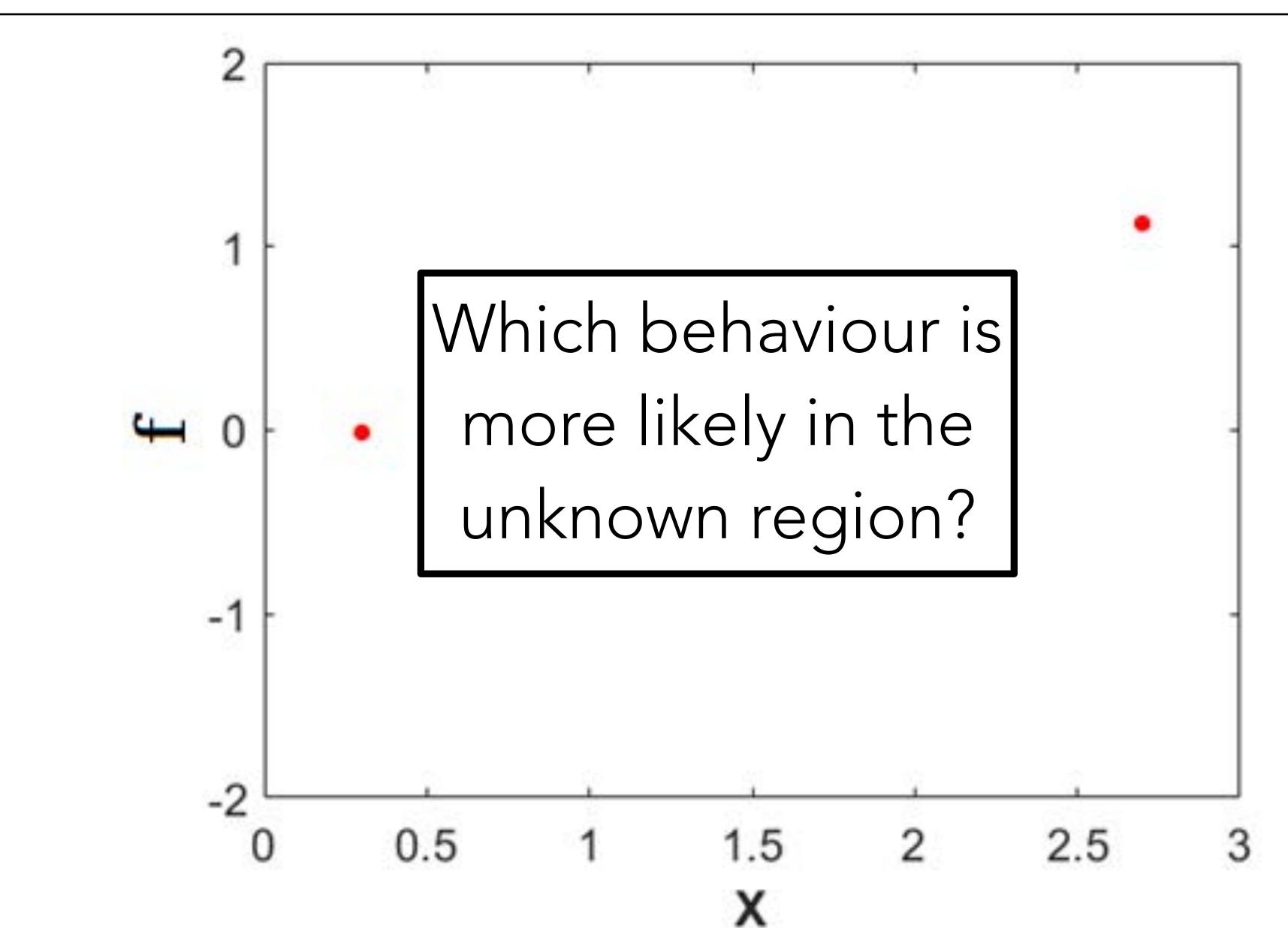


Curse of dimensionality



dimensions	Number of evaluations	
	Coarse sampling (2s/d)	Finer sampling (5s/d)
2	4	25
6	64	15,625
12	4,096	244,140,625
20	1,048,576	9.5367 e13

Curse of dimensionality



probability density function for a set of points

vector of mean values:

probability distribution of function

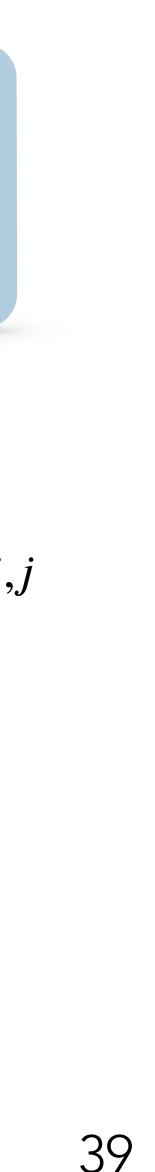
Gaussian process

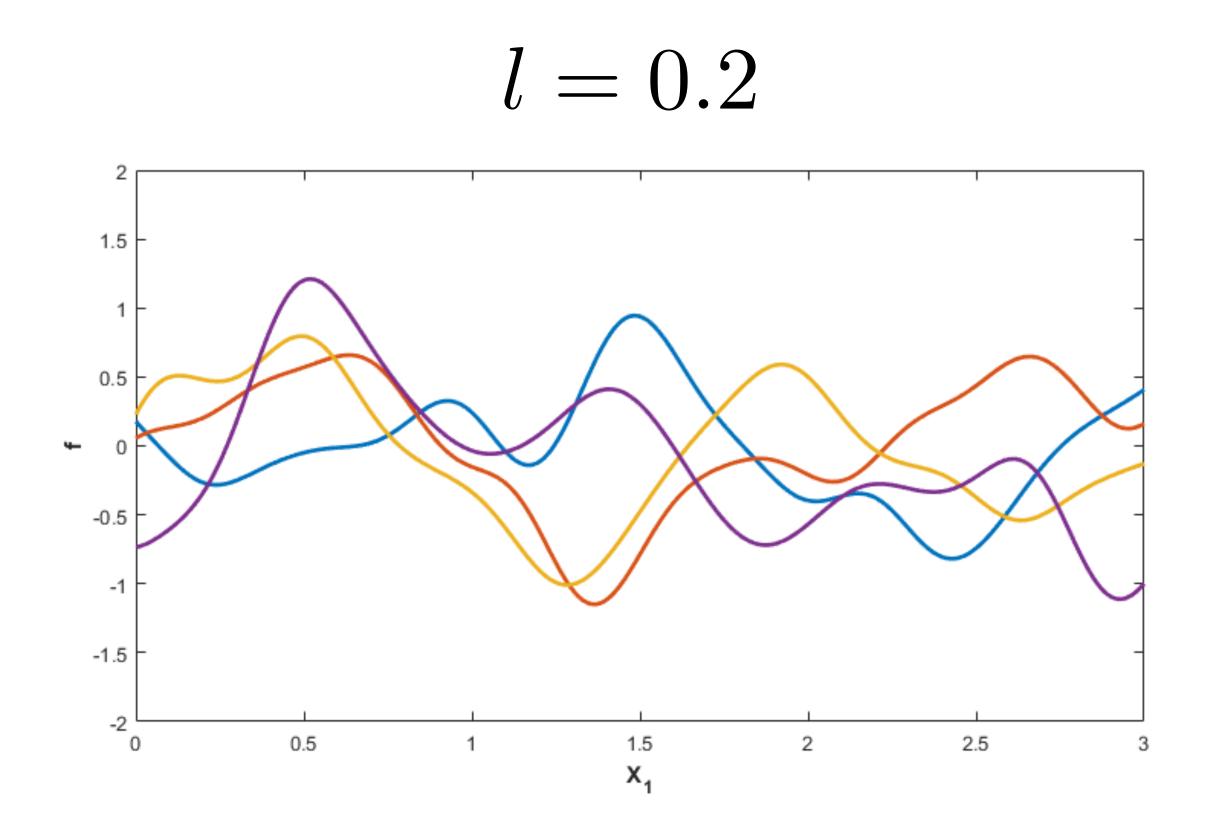
$$P(F) = \frac{1}{(2\pi)^{\frac{N}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2} (F - \mu)^{T} \Sigma^{-1} (F - \mu)}$$

$$\mathbf{k}(\mathbf{x},\mathbf{x}') = \sigma^2 e^{-\frac{(\mathbf{x}-\mathbf{x}')^2}{l^2}} \qquad \Sigma = \left[k\left(\mathbf{x}_i,\mathbf{x}_j\right)\right]_{i_j}$$

$$\boldsymbol{\mu} = [\boldsymbol{\mu}(\boldsymbol{x}_1), \dots, \boldsymbol{\mu}(\boldsymbol{x}_N)]$$

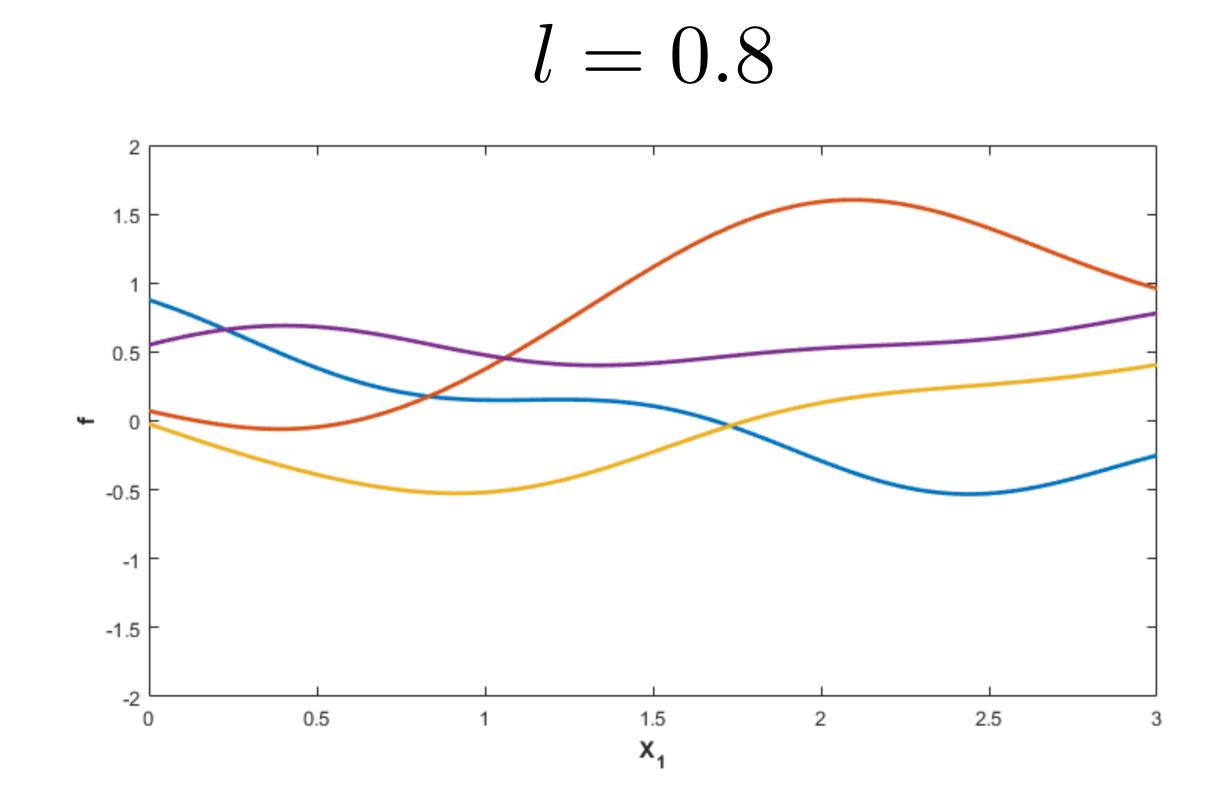
$$\mathbf{F} = [f_1, ..., f_N]$$

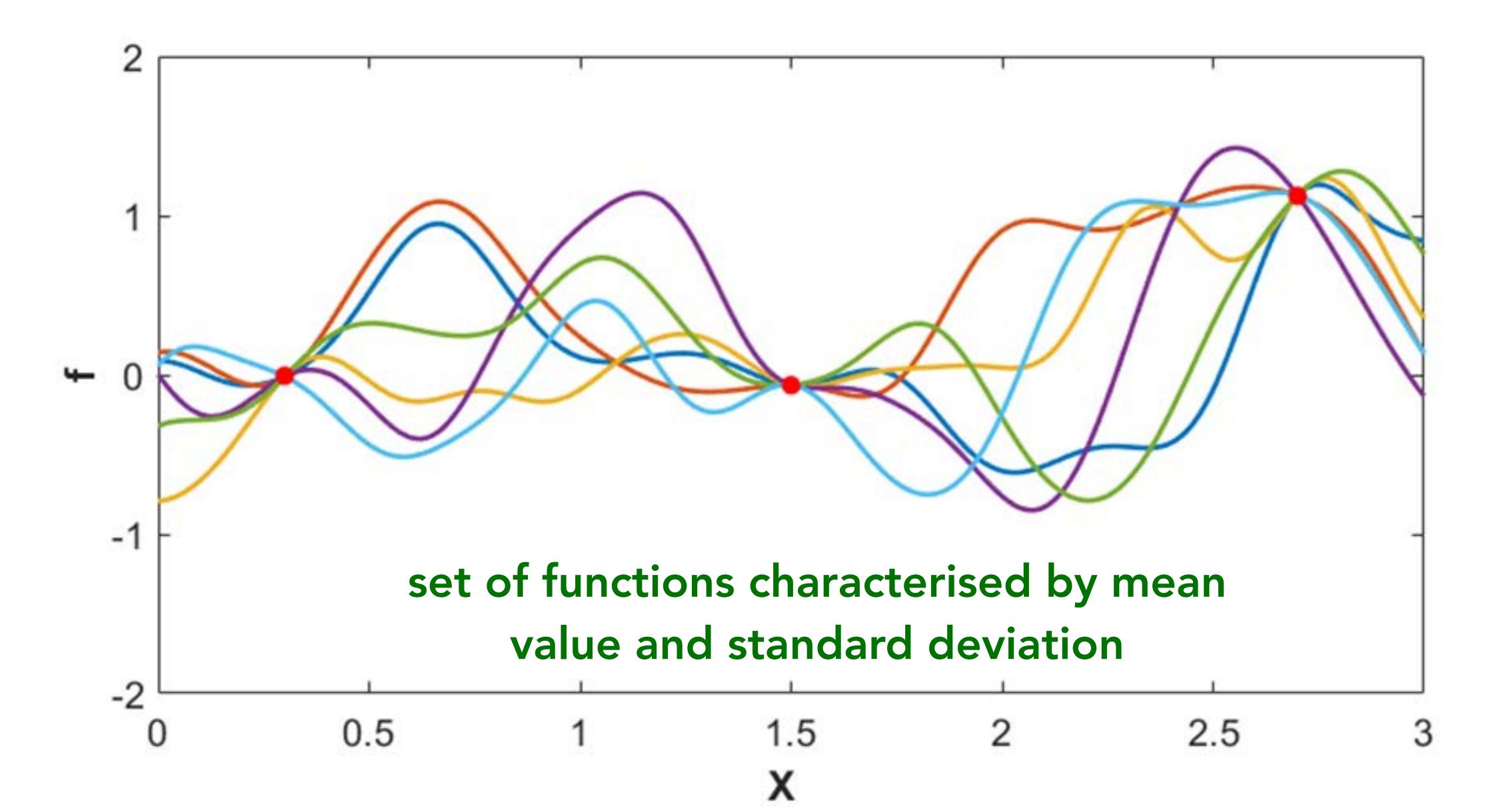




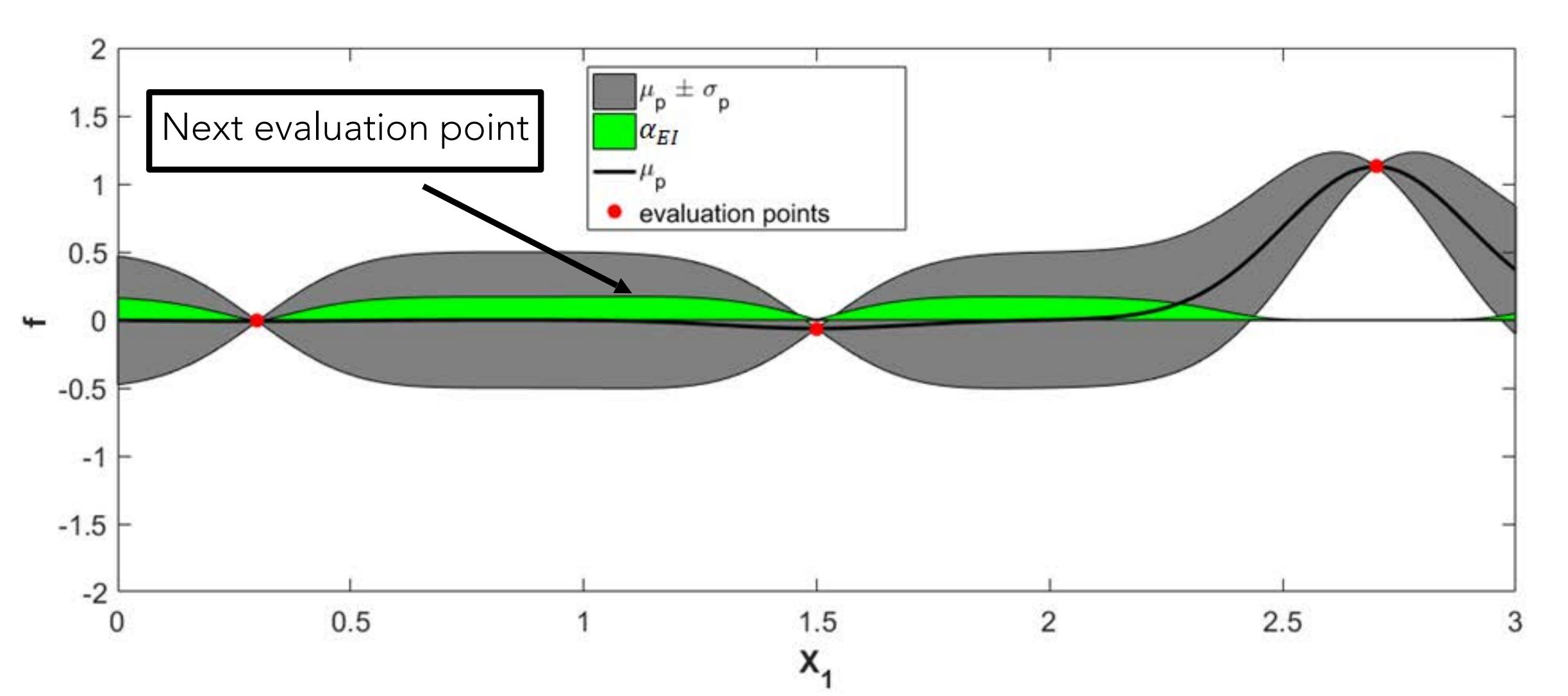
different functions samples from a GP modelled with a Gaussian covariance function

Gaussian process

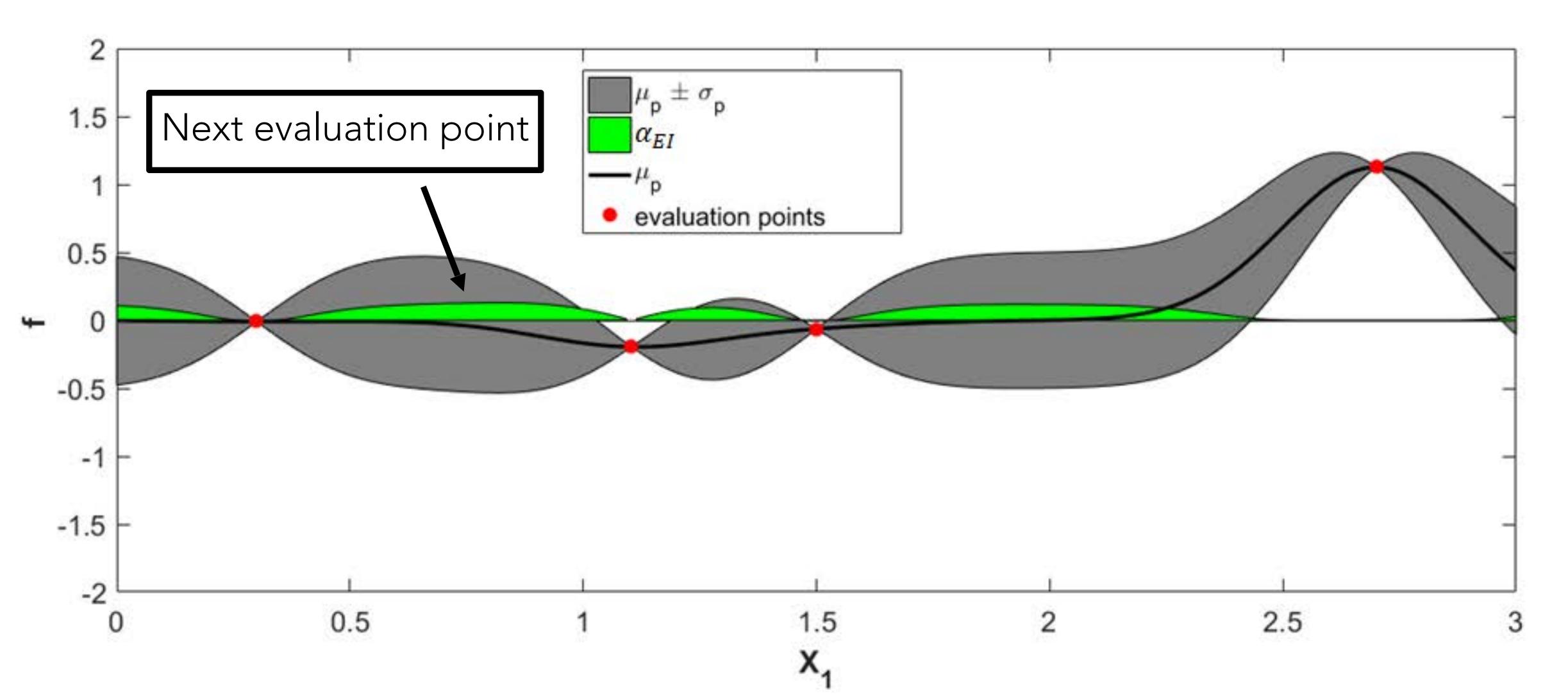




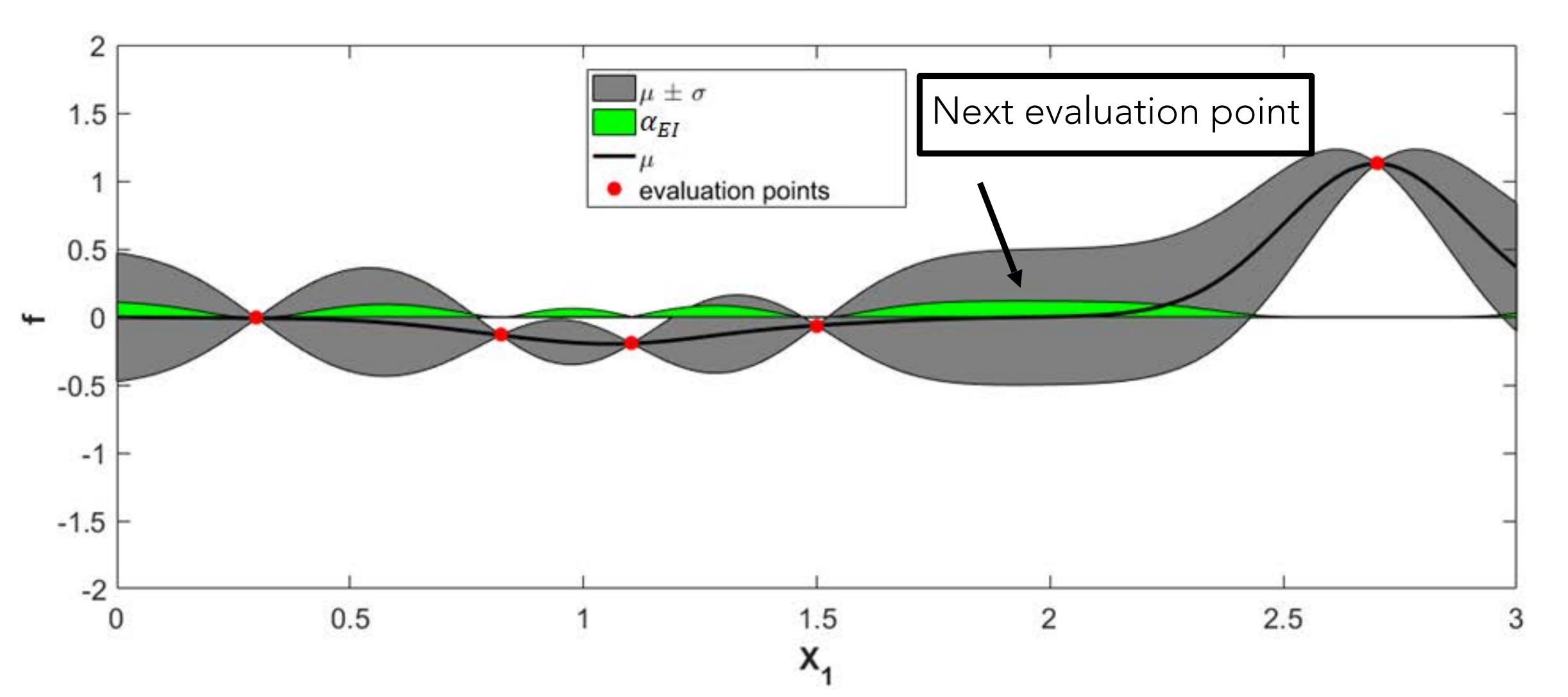
Gaussian process



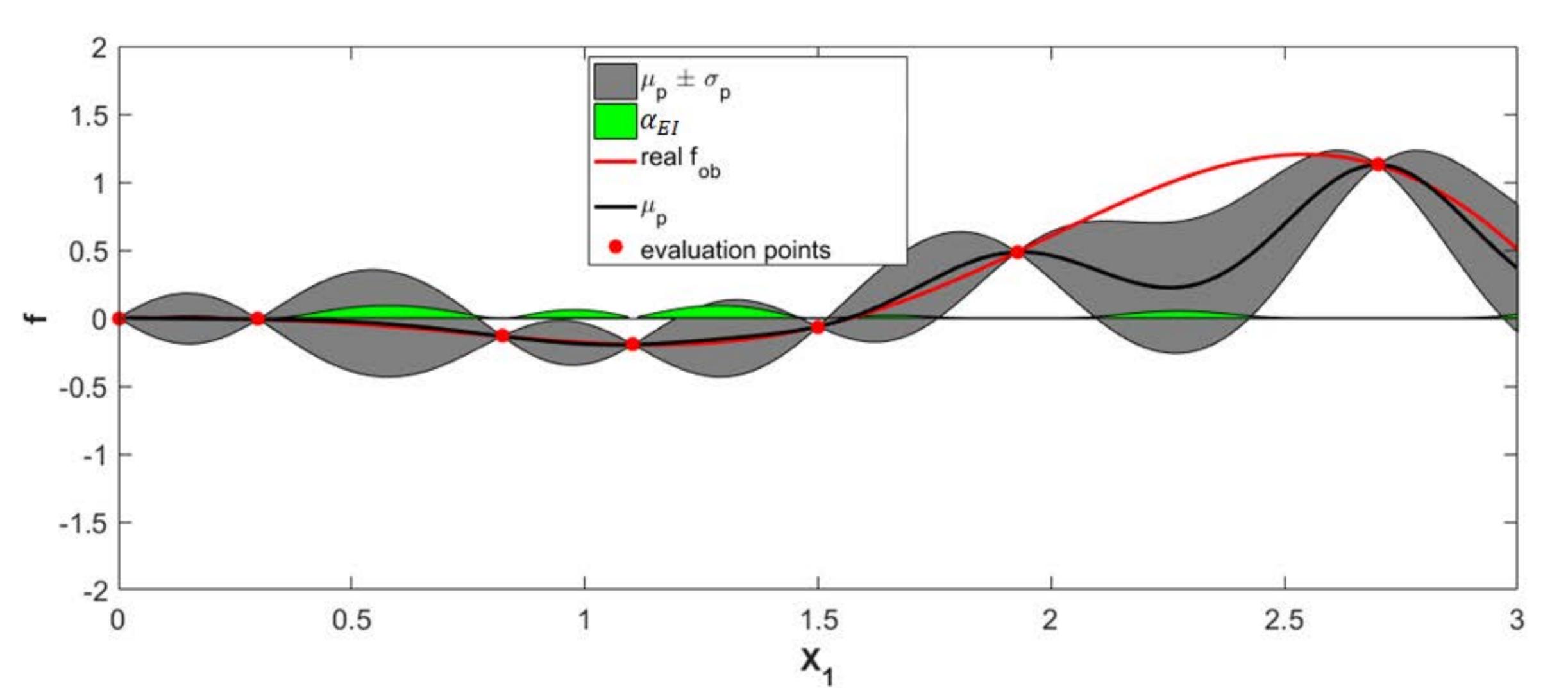
acquisition function (expected improvement) $\alpha_{EI} = \mathbb{E} \left| \max(0, f_{min} - f(x)) \right|$



acquisition function (expected improvement) $\alpha_{EI} = \mathbb{E} \left| \max(0, f_{min} - f(x)) \right|$

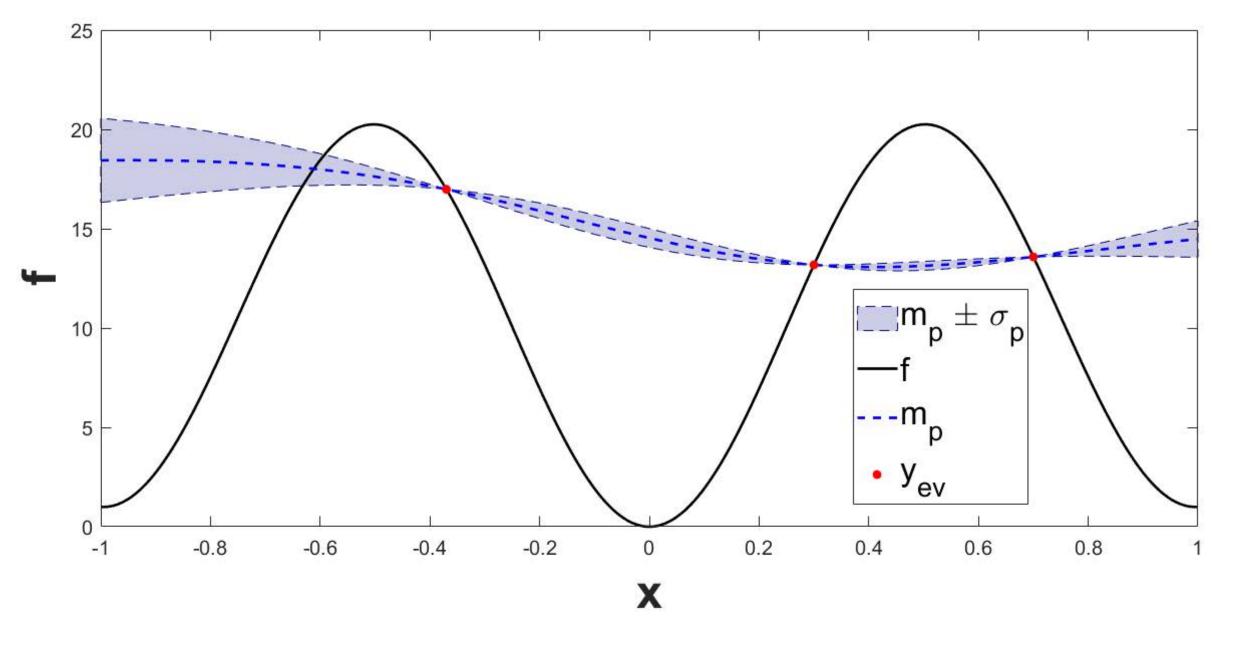


acquisition function (expected improvement) $\alpha_{EI} = \mathbb{E} \left| \max(0, f_{min} - f(x)) \right|$

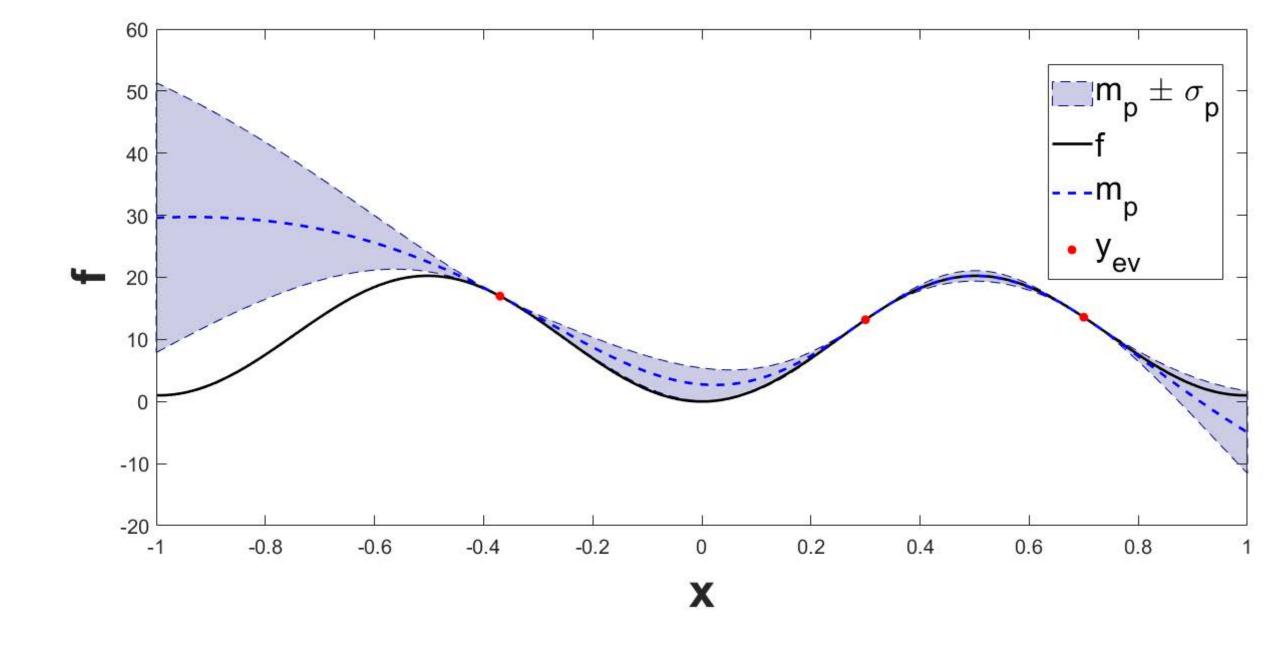


acquisition function (expected improvement) $\alpha_{EI} = \mathbb{E} \left[\max \left(0, f_{min} - f(x) \right) \right]$

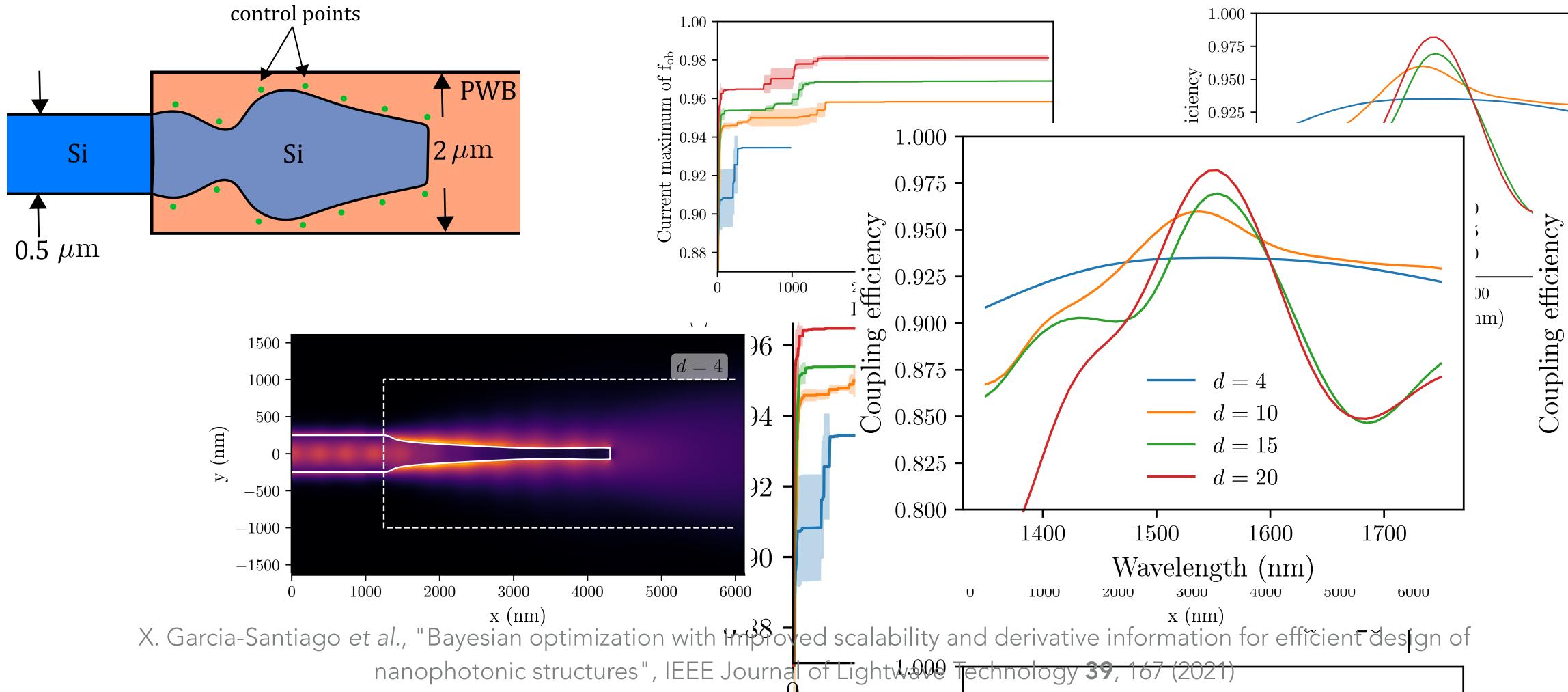
Adding gradient information helps!

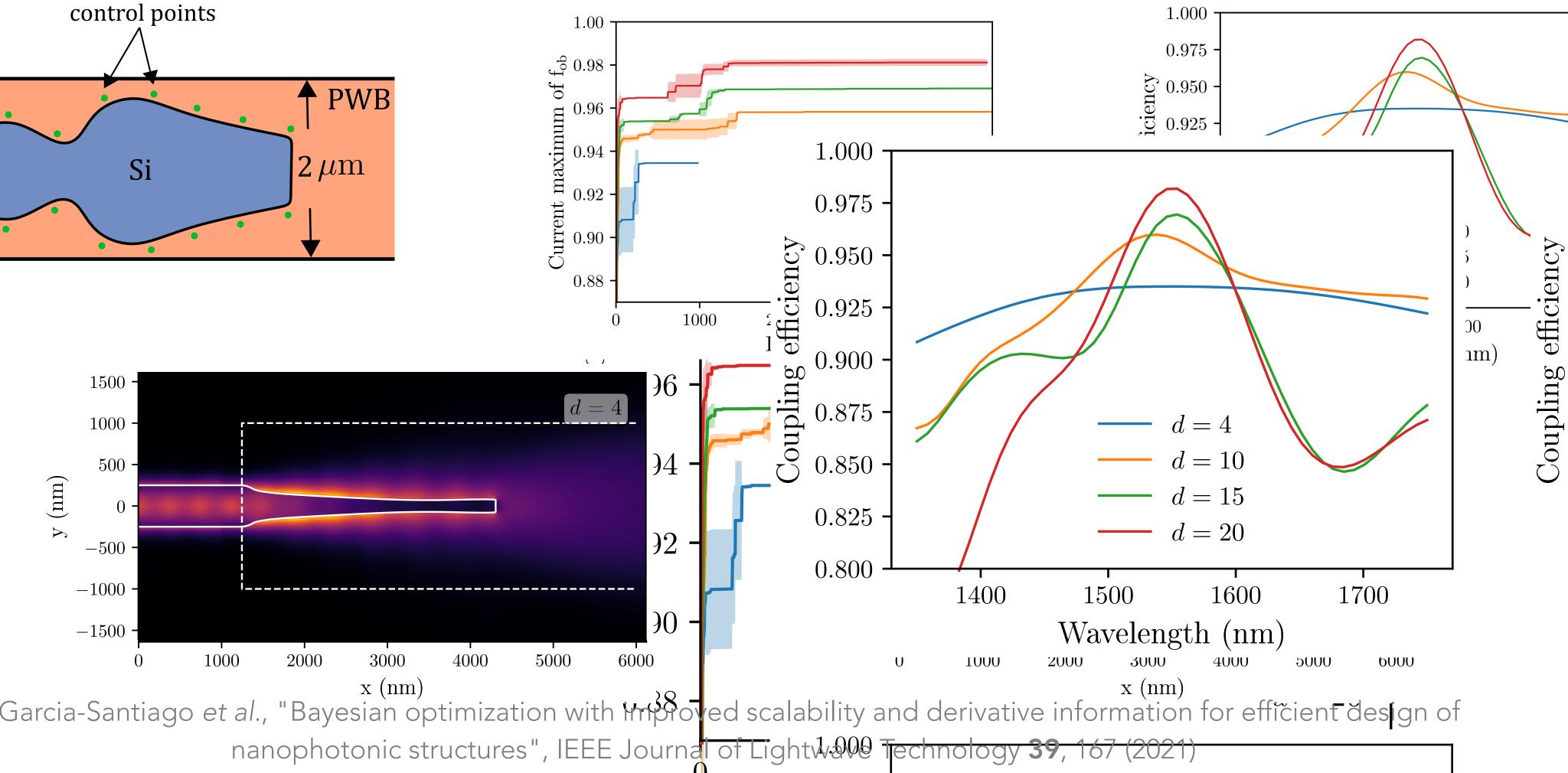


no gradient information



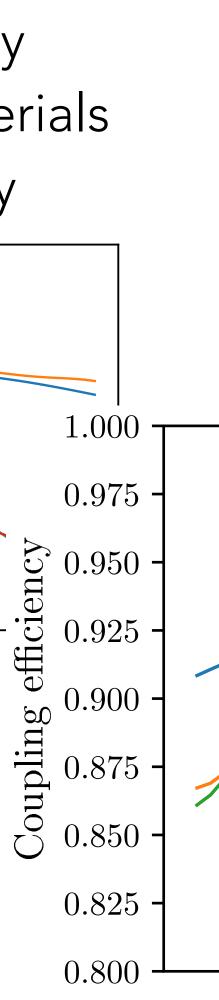
gradient information



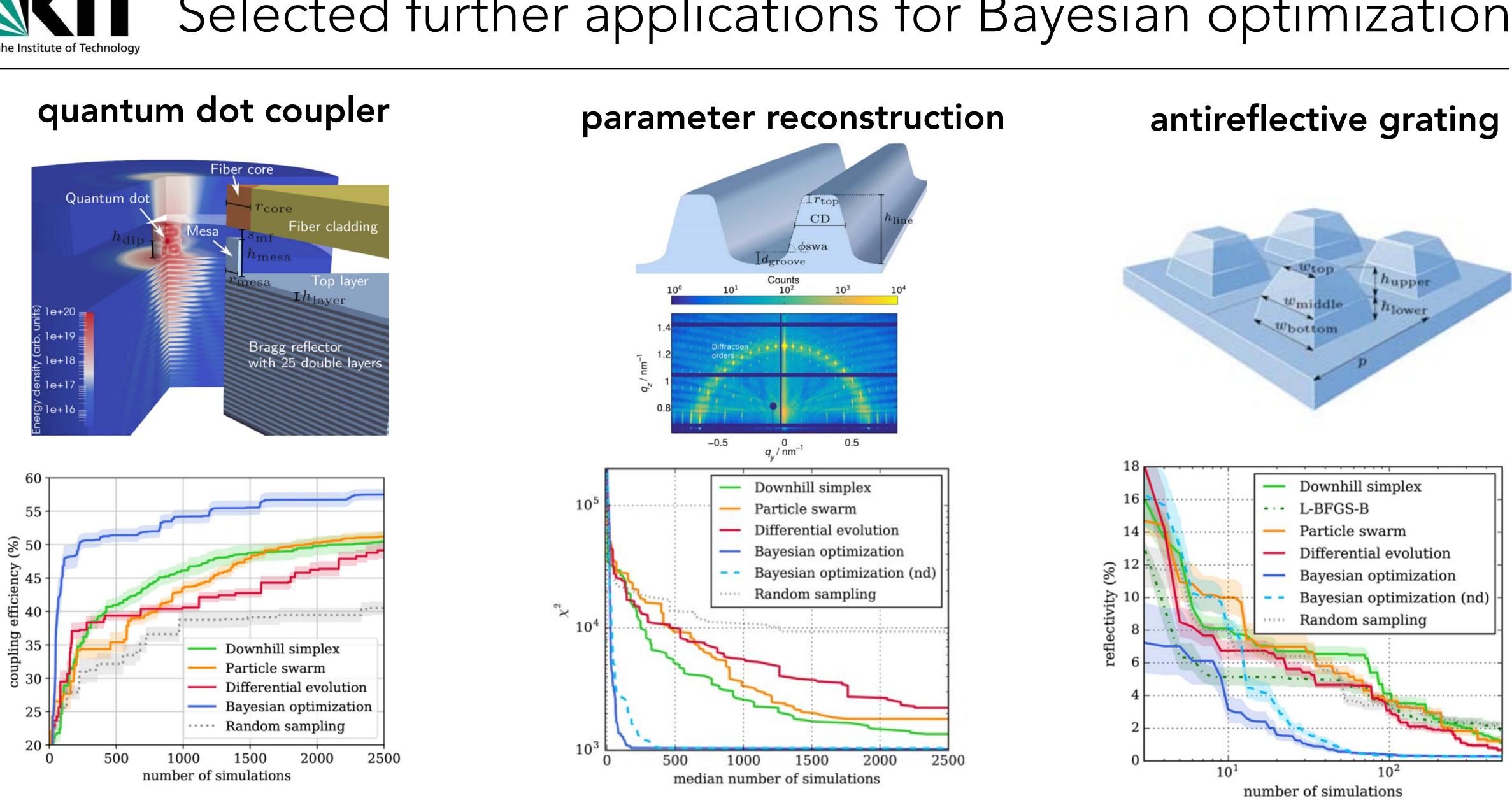


Bayesian optimization

• photonic wire bonds are freeform dielectric waveguides written with 3D direct laser lithography • part of optical chips that consist of different materials capitalising on strength of different materials • major of source of losses are incomplete coupling sites to the chips as well as curved trajectory



Selected further applications for Bayesian optimization



P.-I. Schneider et al., "Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction", ACS Photonics, 6, 2726 (2019)

Computational Photonics

Solving inverse problems