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Solving inverse problems

numerical solverstructure to optimize 
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xi+1  [x1, ...,xi�1,xi]
objective 
function

constraints: • limited time available to find an optimal design 
• adapted to fabrication methodologies 
• ideally automatic without human intervention
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Classification of approaches

number of degrees of freedoms in your system

low dimensional
(1-3 parameters)

• reach global optimum

• scan entire parameter space

• use preferential forward solver 

curse of 
dimensionality

medium dimensional
(4-15 parameters)

• some hope for global optimum

• sample parameter space in an 
effective way

local / stochastic / 
model-based

high dimensional
(15 up to 10    parameters)

• only go for local optimum

• exploit adjoint/backpropagation 
methods to adjust many DoF 

topology / neural 
networks

X

overarching concerns: • exploit derivative informations efficiently 
• consider time for an individual evaluation 
• accurate data is a precious value
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Basic idea topology optimisation
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Basic idea topology optimisation
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Basic idea topology optimisation
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Basic idea topology optimisation
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Aspects that we discuss in the following

Adjoint formulation1) How to determine with two full wave simulations the 
gradients of an objective function with respect to all 

degrees of freedom?

Parametrisation 2) How to parametrise the spatial distribution of the 
permittivity that will be optimised in the next step?

Imposing constraints3) How to express the fact that the permittivity should be 
a binary function, it should respect minimal feature 
size, a predefined volume or any other constraint?

Running an optimisation4) How to perform an actual gradient descent?
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Basics of adjoint formalism

• generic forward problem

�. Adjoint sensitivity analysis

What we ultimately aim for in this thesis is the ability to perform gradient-based optimiza-
tion of nanophotonic devices. Therefore, the most crucial step towards achieving this is
�nding these gradients in the �rst place. As we have pointed out in chapter 1, simple �nite
di�erencing will not do the trick if we are looking to obtain gradients for a large number
of design variables, so an alternative approach is required. Such an alternative approach is
the adjoint state method for sensitivity analysis, which was originally formulated by Lev
Pontryagin [11] for ordinary di�erential equations and later extended by Jacques Louis
Lions [19] for partial di�erential equations (PDEs).
Adjoint sensitivity analysis has a long history in optimal control theory as a method

of �nding a certain optimality criterion for a given system. It has been used extensively
in the engineering disciplines in the context of computational �uid dynamics (CFD) and
structural engineering, cf. [13, 14].

The adjoint formalism is rooted in Pontryagin’s maximum principle [11], which is used
to �nd the best possible control for taking a dynamical system from one state to another.
As such, it is an extension of the calculus of variations and there are two natural ways to
arrive at an adjoint system. One way is to derive the objective gradient from a continuous
design problem and discretize it in the computational domain afterwards. Alternatively,
the problem can be discretized �rst, in which case the objective gradient is derived from
the discretized version of the system. Both gradients are equivalent in the limit of in�nite
resolution in the discretization, otherwise they di�er slightly. For a discussion of the
di�erences between the two methods, cf. [20, 21].

Here we have chosen to follow the fully discrete approach, mainly because our objective
functions are discrete anyhow as they are speci�ed in the computational domain. This
means that the discretize-�rst approach yields the exact gradients of the objective function,
ensuring that the optimization process can fully converge. The method will be introduced
in a general form for computing gradients of systems that are characterized by di�erential
equations. We will then apply adjoint sensitivity analysis to the frequency domain wave
equation for the electric �eld and highlight the physical intuition behind the approach.

�.�. General formulation of the discrete adjoint method

Many physical phenomena, such as thermal �ow, structural mechanics or electromagnetics
(via Maxwell’s equations) are accurately described by PDEs. To numerically solve such
systems, the problem space is typically discretized into a system of linear equations
describing the physics one is trying to model. The resulting linear equations are of the
form

Ax = b , (2.1)
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(PDE discretized in coupled linear equations)

2. Adjoint sensitivity analysis

whereA 2 Rn⇥n is the system matrix, x 2 Rn is the solution �eld vector and b 2 Rn are the
sources. Equation (2.1) is then solved using a direct (e.g. LU or Cholesky decomposition)
or iterative (e.g. Richardson or Jacobi methods) solver. Generally, the size of A and b will
depend on the number of design variables Ç 2 Rm of the system. Expressing A, b and x as
explicit functions of Ç and solving for x we get

x(Ç) = A
�1(Ç)b(Ç) , (2.2)

which is the so-called forward (or direct) problem, since we are calculating the physical
response x of a system A with known inputs b. Getting x requires one (typically costly)
matrix inversion.

When designing physical structures, be it load bearing elements in mechanical engineer-
ing or integrated optical circuits in nanophotonics, one is typically interested in optimizing
some scalar objective function F (x) of the �elds x . As long as it can be expressed as a
function of the �elds, the objective function can be any quantity such as mean compli-
ance, maximum thermal �ow, or the power in a waveguide mode, cf. [22, 23]. This is an
optimization problem of the form

min
Ç

F (x(Ç))

subject to A(Ç)x(Ç) = b(Ç) .
(2.3)

Since we are interested in the sensitivity of the objective function F with respect to a
change in the design variables Ç, we take the chain rule to yield

dF
dÇ
=

dF
dx

dx
dÇ
. (2.4)

The derivative of the objective function with respect to x is easy to compute as F is typically
a simple scalar function of x . On the other hand, the Jacobian dx/dÇ is a large dense
matrix of size n ⇥m and requires solving the linear system in (2.1). Taking the derivative
of (2.2) with respect to a single design variable �i yields:

@x

@�i
=
@A�1

@�i
b +A�1 @b

@�i
(2.5a)

= �A�1 @A
@�i

A
�1
b +A�1 @b

@�i
(2.5b)

= A
�1
✓
@b

@�i
� @A
@�i

x

◆
. (2.5c)

Thus, the full expression for (2.4) becomes:

dF
dÇ
=

dF
dx

A
�1
✓ 
@b

@�1
,
@b

@�2
, · · · , @b

@�m

�
�

@A

@�1
x ,
@A

@�2
x , · · · , @A

@�m
x

� ◆
. (2.6)

This represents a system of linear equations for each design variable �i . The above
calculation is, however, very ine�cient. Our goal in this calculation is not to get the
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(system matrix)

2. Adjoint sensitivity analysis
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(solution vector)

2. Adjoint sensitivity analysis
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(source vector)

• all quantities depend on the design parameters

2. Adjoint sensitivity analysis
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• solution of the forward problem

2. Adjoint sensitivity analysis
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[direct (e.g., LU or Cholesky decomposition) or 
iterative (e.g., Richardson or Jacobi methods)]

expensive

• Maxwell’s equations:
<latexit sha1_base64="7Mwhz42H5r0k9lFyuXztVduKyVw="></latexit>⇥
r⇥r⇥�!2µ0✏0✏(r,!)

⇤
Ẽ(r,!) = i!µ0j̃(r,!)

(material properties appear in an independent term)
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• design goodness quantified by objective function 

2. Adjoint sensitivity analysis
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or iterative (e.g. Richardson or Jacobi methods) solver. Generally, the size of A and b will
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sources. Equation (2.1) is then solved using a direct (e.g. LU or Cholesky decomposition)
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explicit functions of Ç and solving for x we get
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whereA 2 Rn⇥n is the system matrix, x 2 Rn is the solution �eld vector and b 2 Rn are the
sources. Equation (2.1) is then solved using a direct (e.g. LU or Cholesky decomposition)
or iterative (e.g. Richardson or Jacobi methods) solver. Generally, the size of A and b will
depend on the number of design variables Ç 2 Rm of the system. Expressing A, b and x as
explicit functions of Ç and solving for x we get

x(Ç) = A
�1(Ç)b(Ç) , (2.2)

which is the so-called forward (or direct) problem, since we are calculating the physical
response x of a system A with known inputs b. Getting x requires one (typically costly)
matrix inversion.

When designing physical structures, be it load bearing elements in mechanical engineer-
ing or integrated optical circuits in nanophotonics, one is typically interested in optimizing
some scalar objective function F (x) of the �elds x . As long as it can be expressed as a
function of the �elds, the objective function can be any quantity such as mean compli-
ance, maximum thermal �ow, or the power in a waveguide mode, cf. [22, 23]. This is an
optimization problem of the form

min
Ç

F (x(Ç))

subject to A(Ç)x(Ç) = b(Ç) .
(2.3)

Since we are interested in the sensitivity of the objective function F with respect to a
change in the design variables Ç, we take the chain rule to yield
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The derivative of the objective function with respect to x is easy to compute as F is typically
a simple scalar function of x . On the other hand, the Jacobian dx/dÇ is a large dense
matrix of size n ⇥m and requires solving the linear system in (2.1). Taking the derivative
of (2.2) with respect to a single design variable �i yields:
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This represents a system of linear equations for each design variable �i . The above
calculation is, however, very ine�cient. Our goal in this calculation is not to get the
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which is the so-called forward (or direct) problem, since we are calculating the physical
response x of a system A with known inputs b. Getting x requires one (typically costly)
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Since we are interested in the sensitivity of the objective function F with respect to a
change in the design variables Ç, we take the chain rule to yield
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The derivative of the objective function with respect to x is easy to compute as F is typically
a simple scalar function of x . On the other hand, the Jacobian dx/dÇ is a large dense
matrix of size n ⇥m and requires solving the linear system in (2.1). Taking the derivative
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whereA 2 Rn⇥n is the system matrix, x 2 Rn is the solution �eld vector and b 2 Rn are the
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or iterative (e.g. Richardson or Jacobi methods) solver. Generally, the size of A and b will
depend on the number of design variables Ç 2 Rm of the system. Expressing A, b and x as
explicit functions of Ç and solving for x we get

x(Ç) = A
�1(Ç)b(Ç) , (2.2)

which is the so-called forward (or direct) problem, since we are calculating the physical
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subject to A(Ç)x(Ç) = b(Ç) .
(2.3)
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• derivative with respect to a single design variable:

2. Adjoint sensitivity analysis

whereA 2 Rn⇥n is the system matrix, x 2 Rn is the solution �eld vector and b 2 Rn are the
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�1(Ç)b(Ç) , (2.2)

which is the so-called forward (or direct) problem, since we are calculating the physical
response x of a system A with known inputs b. Getting x requires one (typically costly)
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When designing physical structures, be it load bearing elements in mechanical engineer-
ing or integrated optical circuits in nanophotonics, one is typically interested in optimizing
some scalar objective function F (x) of the �elds x . As long as it can be expressed as a
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• starting from the left of the previous expression:

2.2. Extension of the adjoint formalism to the complex domain

full �eld sensitivity dx/dÇ for each design parameter, which would require m matrix
inversions. This would quickly become prohibitively expensive to compute for a growing
number of design variables, asm typically scales exponentially with the size of the problem.
What we are actually interested in is the inner product of the full �eld sensitivity with
dF/dx . From this perspective, solving (2.6) from right to left is doing far too much work.
Instead, starting from the left side of the product in (2.6), we see that it can be expressed
as a separate system of linear equations:
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which is, in essence, a function of the solution vector x of the direct problem and of the
adjoint solution vector xaj. To calculate the gradient of any objective function with respect
to the design variables Ç, it is su�cient to solve two di�erent linear equation systems
instead of one linear equation system for every design variable. The two required solves
are:

Ax = b|  {z  }
direct

and A
|
xaj =

dF
dx||          {z          }

adjoint

. (2.10)

Note that the sources of the adjoint problem depend on the solutions of the direct problem,
so one has to perform the direct calculation before solving for the adjoints.

�.�. Extension of the adjoint formalism to the complex
domain

Now that we have outlined the general concept of the adjoint formalism we need to extend
it to handle complex numbers. A function f : A 7! CwithA ⇢ C is complex di�erentiable
if the limit

df (z)
dz
= lim

�z!0

f (z + �z) � f (z)
�z

(2.11)

exists for �z 2 C. The function f (z) can be expressed as F (x ,�) = U (x ,�) + iV (x ,�) via
z = x + i� withU (x ,�),V (x ,�) 2 R. With this, the di�erentiability (2.11) implies that the
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What we are actually interested in is the inner product of the full �eld sensitivity with
dF/dx . From this perspective, solving (2.6) from right to left is doing far too much work.
Instead, starting from the left side of the product in (2.6), we see that it can be expressed
as a separate system of linear equations:
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which is, in essence, a function of the solution vector x of the direct problem and of the
adjoint solution vector xaj. To calculate the gradient of any objective function with respect
to the design variables Ç, it is su�cient to solve two di�erent linear equation systems
instead of one linear equation system for every design variable. The two required solves
are:
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and A
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. (2.10)

Note that the sources of the adjoint problem depend on the solutions of the direct problem,
so one has to perform the direct calculation before solving for the adjoints.
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MTẼadj =
dFEM

dẼT
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2. Adjoint sensitivity analysis

where we have used the Hermitian adjoint † to transpose dF/dz and A�1. The �nal form
of our adjoint solution method, analoguous to (2.9), is:
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The two simulations that are now needed to e�ciently compute the sensitivities dF/dÇ
can be expressed, as before, as one forward and one adjoint equation system:

Az = b|  {z  }
direct

and A
†
zaj =

dF
dz†|         {z         }

adjoint

. (2.26)

With (2.26) and (2.25), we are now fully equipped with the tools to apply the adjoint
method of computing gradients to electromagnetics.

�.�. Applying the adjoint method to Maxwell’s equations

For electromagnetics, we need to �rst de�ne an appropriate system of equations to solve
before we can apply the adjoint formalism outlined in section 2.1 and section 2.2. We will
start from the time-domain Maxwell equations that govern all phenomena of macroscopic
electromagnetism:

r · B(r , t) = 0 r ⇥ E(r , t) = �@B(r , t)
@t

r · D(r , t) = �ext(r , t) r ⇥H (r , t) = jmacr(r , t) +
@D(r , t)
@t

,

(2.27)

with the material equations

r · D(r , t) = �0E(r , t) + P(r , t)
r · B(r , t) = µ0H (r , t) +M(r , t) .

(2.28)

In (2.27) and (2.28) we have used SI units and employed the following convention:

E(r , t) = electric �eld
H (r , t) = magnetic �eld
D(r , t) = electric displacement �eld
B(r , t) = magnetic displacement �eld

jmacr(r , t) = macroscopic current density
�ext(r , t) = external charge density
P(r , t) = electric polarization
M(r , t) = magnetic polarization .
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requires two full solutions

Basics of adjoint formalism

• Maxwell’s equations:
(source does not depend on d.o.f.)

2. Adjoint sensitivity analysis

where we have applied the transformation �(r ) ! Ç to stay with the previous convention
for our design variables Ç. We will also drop the tilde from the frequency-domain �eld
notation, as we will only consider frequency-domain �elds from here on. It should be
noted that the �elds x in the frequency-domain are generally complex and we will thus
need to apply (2.25) with z ! x to compute their gradients. For electromagnetics, the
optimization problem (2.3) means that we want to minimize a function F of the electric
�eld E ! x with respect to the dielectric permittivity. In other words: Which material
distribution will produce the target �eld?
Starting from (2.25), we note that db/dÇ = 0, since the sources of our simulation do

not depend on the permittivity distribution. The expression for the adjoint gradient thus
becomes:

dF
dÇ
= �2 Re

⇢
x
†
aj
dA
dÇ

x

�
. (2.36)

The gradient dA/dg with the system matrix A(Ç) from (2.35) seems obvious enough, but
some care has to be taken with regards to dimensionality. Starting from the right hand
side of (2.36), the Jacobian reads as:
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(2.37d)

= ��2
µ0�0 diag(x) , (2.37e)

where diag(x) 2 Cn⇥n denotes a square diagonal matrix whose entries are given by x .
In (2.37c) we have used the fact that the partial derivative of Ann with respect to a single
permittivity element �i is zero everywhere except for i = n.
Left-multiplying (2.37e) by x† 2 Cn yields a column-vector of size 1 ⇥ n, which is the

expected shape for the Jacobian of the objective function F . Plugging (2.37e) into (2.36),
we get

dF
dÇ
= 2�2

µ0�0 Re
�
x̄aj � x

 |
, (2.38)
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where we have used the Hermitian adjoint † to transpose dF/dz and A�1. The �nal form
of our adjoint solution method, analoguous to (2.9), is:
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The two simulations that are now needed to e�ciently compute the sensitivities dF/dÇ
can be expressed, as before, as one forward and one adjoint equation system:
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direct
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†
zaj =
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adjoint

. (2.26)

With (2.26) and (2.25), we are now fully equipped with the tools to apply the adjoint
method of computing gradients to electromagnetics.

�.�. Applying the adjoint method to Maxwell’s equations

For electromagnetics, we need to �rst de�ne an appropriate system of equations to solve
before we can apply the adjoint formalism outlined in section 2.1 and section 2.2. We will
start from the time-domain Maxwell equations that govern all phenomena of macroscopic
electromagnetism:

r · B(r , t) = 0 r ⇥ E(r , t) = �@B(r , t)
@t

r · D(r , t) = �ext(r , t) r ⇥H (r , t) = jmacr(r , t) +
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(2.27)

with the material equations

r · D(r , t) = �0E(r , t) + P(r , t)
r · B(r , t) = µ0H (r , t) +M(r , t) .

(2.28)

In (2.27) and (2.28) we have used SI units and employed the following convention:

E(r , t) = electric �eld
H (r , t) = magnetic �eld
D(r , t) = electric displacement �eld
B(r , t) = magnetic displacement �eld

jmacr(r , t) = macroscopic current density
�ext(r , t) = external charge density
P(r , t) = electric polarization
M(r , t) = magnetic polarization .
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(no special derivation here)



Example2.4. Testing the method on a sample problem
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Figure 2.1.: Free space simulation of a point dipole source with � = 1.55 �m and a total
area of 6 �m ⇥ 6 �m. Shown are the phase angles � = arg(z) of the (a) forward
and (b) adjoint �elds as well as the (c) design gradient.

where we have replaced the product x̄†
ajdiag(x) with the element-wise Hadamard product�

x̄aj � x
�|. They are functionally the same, but the latter is more convenient and more

e�cient to calculate in practice.
It is important to note that in the case of a lossless dielectric material, A in (2.35) is a

Hermitian operator, implying that A = A
†. In this case, the direct and adjoint �elds (2.26)

can be written as:
x = A

�1
b

xaj = A
�1 dF
dx† .

(2.39)

This is a crucial insight because it means that we do not have to manipulate the system
matrix A in order to calculate the adjoint solution xaj for problems involving lossless
dielectrics. In other words, any electromagnetic solver that is able to calculate the direct
solution x can be used without modi�cation to also calculate the adjoint solution xaj.
Since we do not need to have access to the solver’s inner workings, we are able to use
proprietary, open-source, and in-house solvers interchangeably. We only need to be able
to set the sources, i.e. the initial sources b for the direct simulation and (dF/dx )† for the
adjoint simulation. Note that this is not the case for metals or other lossy materials, in
which case one would need to have access to the system matrix and apply the conjugate
transpose. Alternatively, it is possible to achieve a similar result by conjugating thematerial
properties.

�.�. Testing themethod on a sample problem

For illustration purposes, we will apply (2.38) to a sample problem. We consider a z-
polarized line dipole source emitting at a wavelength of � = 1.55 �m that is placed in
vacuum somewhere in the x�-plane. The goal is to change the permittivity in the simulation
region such that the �eld intensity |Ez |2 is maximized at a point located at 3 �m along the
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This is a crucial insight because it means that we do not have to manipulate the system
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Since we do not need to have access to the solver’s inner workings, we are able to use
proprietary, open-source, and in-house solvers interchangeably. We only need to be able
to set the sources, i.e. the initial sources b for the direct simulation and (dF/dx )† for the
adjoint simulation. Note that this is not the case for metals or other lossy materials, in
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2. Adjoint sensitivity analysis

x-axis from the source. This means that the objective function F is de�ned as

F (Ez) =
��Ez(xobj,�obj)��2 , (2.40)

where xobj and �obj are the coordinates of the point at which the �eld intensity should
be maximized. This can be achieved, in general, by placing a small dielectric scatterer
at any location in the simulation domain. The gradient dF/d� will then tell us at which
location the scatterer should be placed in order to maximize the �eld intensity at the
measurement point. Placing a dielectric scatterer at any location in the domain will induce
dipole radiation from the scatterer as it is illuminated by the source. So now there are
essentially two illumination sources; the original source producing the incident �eld and
the induced dipole at the location of the scatterer producing a scattered �eld. Both of
these �elds will contribute to the total �eld at the measurement point. If the incident and
scattered �elds are in phase, the measured �eld will increase. On the other hand, if the
components are out of phase, the measured �eld will decrease.
The phase of the incident �eld can be obtained by a direct simulation and is shown

in Fig. 2.1(a). To get the phase accumulation caused by the scattered �elds, one would
naively do the same calculation for each possible scatterer location. This is of course
prohibitively slow, even for small-scale 2D problems. Instead, we can note that because of
Lorentz reciprocity [25], the phase that is accumulated from the source at the measurement
point is also accumulated by a wave that goes from the measurement point to the source.
So instead of placing a dipole source at every possible scatterer location, the interference
condition at the measurement point can be equivalently obtained by putting a source
at the measurement point and measuring the phase of the �elds at all possible scatterer
locations as shown in Fig. 2.1(b). This is exactly what we do in (2.39) when we set the
sources of the adjoint simulation to (dF/dEz )†.
The total design gradient can then be obtained via (2.38), leading to Fig. 2.1(c). What

we see there are essentially contour lines of equal phase accumulation. The sign of the
gradient tells us if a dielectric inclusion at that point will have an overall positive or
negative impact on the objective function, while the magnitude of the gradient gives us
information about the optimality of the chosen point. Alternatively, we can view the
gradient not as an indicator on where to put a new dielectric inclusion but as a measure of
a continuous change in permittivity of the material at each point in space. This leads us to
di�erent approaches of utilizing the gradient (2.38) for the purpose of optimization, which
we will discuss in chapter 2.
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parametrisation through density representation 

3. Topology optimization using adjoint gradients

�.�. Design parametrization through a density representation

Typically, the shape and connectivity of the material within the design region are unknown
and the goal of topology optimization is to �nd out which points in the design region should
and which points should not contain material. From this perspective, the geometrical
representation of a structure can be seen as a black and white rendering of an image,
the resolution of which depends on the spatial discretization given by the simulation. In
this picture, the spatial discratization can be either in two (“pixels”) or three (“voxels”)
dimensions.
Restricting ourselves to the spatial extent of the reference domain � that is our simu-

lation region, we are looking for an optimal subset in �mat ⇢ � of material points that
satisfy our optimization goal. This approach implies that the set Çad of admissible design
variables consists of those variables that satisfy

�i = 1�mat �
0
i

with 1�mat =

(
1 if x 2 �mat

0 if x 2 � \ �mat , (3.1)

where Ç0 is a property of the given material, e.g. a vector of permittivity values.
The issue that now arises is that this raster representation is binary, turning our opti-

mization into a discrete combinatorial problem. There exist a large number of approaches
to solve this kind of problem, but none of them are well suited for problems with thousands
or even millions of design variables that are easily encountered in topology optimization.
On the other hand, continuous design variables allow for the use of much more e�cient
gradient-based optimization algorithms.

A standard procedure, known as the density approach [12], is to introduce a continuous
design variable � with

0  �  1 (3.2)

that, when combined with a linear interpolation scheme, provides the material properties
of the speci�c problem [27]. The density approach essentially recasts the discrete topology
optimization problem as a sizing problem with continuous design variables over the entire
design domain. In the case of a nanophotonic device made up of two materials, a simple
linear interpolation law would be

�r = �1 + � (�2 � �1) , (3.3)

where �1 and �2 are the speci�c permittivity values of the two materials at the considered
design frequency.
The major advantage of this continuous approach is that it enables gradient-based

optimization. An optimization algorithm could for example, for a given objective gradient
dF/d� , update the permittivities in the design region via a simple gradient descent rule:

�
n+1 = �

n � �
n
dF
d�n
. (3.4)

Here, n and n+ 1 denote the current and next iteration of the optimization and � is the step
size between these iterations. The choice � as well as the general choice of optimization
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Simplified Isotropic Material with Penalization (SIMP) scheme

• power law

3.1. Design parametrization through a density representation

algorithm are discussed in further detail in section 3.2. However, the advantage of this
approach comes at a cost. Optimizing the continuous design variable � naturally leads to
intermediate permittivity values that do not correspond to either of the two considered
materials. There is no way to guarantee that the optimization in (3.4) converges to a
structure that is only made up of the materials �1 and �2. The binarization behaviour of
the optimization generally depends on the problem class as de�ned through the objective
function.
There are problems that favor a �nal design where the optimized structure is binary.

This generally happens when a large local re�ection of waves is required by the objective
function. Here, well de�ned (binary) structures appear automatically because intermediate
permittivities reduce the contrast between materials and thus lead to a reduced re�ection.
In fact, it has been shown that for general wave propagation problems, purely binary
designs are optimal under certain conditions, cf. [28].

�.�.�. Implicit constraints

However, with a few exceptions, automatic binarization is generally unlikely and the
converged design will usually feature a continuous material permittivity. One way to
remedy this is through modi�cation of the linear interpolation scheme in (3.3). By placing
an implicit constraint on the density representation of the material, we naturally guide the
design gradient towards preferable material distributions without modifying the objective
function.

�.�.�.�. Density projection for material binarization

For example, (3.3) can be adjusted so that intermediate values of � are penalized. The �rst
method to feature this in the context of structural optimization was originally introduced
in [12] as the so-called Simpli�ed Isotropic Material with Penalization (SIMP) scheme. The
SIMP approach adds a penalization exponent p so that

�r = �1 + �̂ (�2 � �1) with �̂ = �
p . (3.5)

For p > 1, (3.5) implicitly penalizes intermediate densities and thus favors binary solutions.
At �rst glance, the choice of the exponent is largely arbitrary, but choosing p too low
causes the appearance of too many intermediate values while choosing p too high can
cause rapid convergence to local minima. A choice of p = 3 was found to generally lead to
good convergence, cf. [29].

However, there exist various other methods that serve the same purpose of interpolating
between solid and void with an implicit penalization of intermediate density values. In
the following, we will refer to any such method as a SIMP method. A problem with the
power-law approach in (3.5) is that there is an implicit bias towards placing less material.
Since the gradients in the vicinity of 1 are large, while those around 0 are small, it is very
easy for density values to get “pushed” towards or away from 1, but the same can not
be said for small �. Once the local density approaches 0, it tends to settle there for the
rest of the optimization. While decreasing the total amount of material is favorable in
structural optimization as it reduces weight and cost, this is typically not something we
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Figure 3.1.: Comparison of the smoothed Heaviside SIMP approach for sigmoids with
di�erent values of � and � .

are concerned with in nanophotonics. The goal of topology optimization here is to explore
as much of the available design space as possible and �nd devices with truly optimal (i.e.
as optimal as possible) properties.

With these considerations in mind, we replace the power law approach with a projection
scheme based on a smoothed Heaviside function, cf. [30, 31]:

�̂ =
tanh(��) + tanh(�(� � �))
tanh(��) + tanh(�(1 � �)) , (3.6)

where � controls the steepness of the sigmoid, i.e. the projection strength and � its halfway
point along the �-axis, i.e. the material binarization threshold. The normalization factors
in (3.6) guarantee that the range of projected values is always between 0 and 1. The
functional dependency of some of these projection functions for di�erent possible values
for � and � are demonstrated in Fig. 3.1. With this projection, intermediate permittivities
are still penalized through having a large gradient, but the penalization is now symmetric
in both directions with regards to the two materials. The amount of penalization, and thus
the speed of convergence in the optimization, can be controlled by the parameter � , with
higher values leading to a more aggressive binarization. Even though we designed the
projection to be symmetric, this approach still retains the ability to introduce a material
bias by shifting the sigmoid along the �-axis through the parameter � , with values greater
than 0.5 leading to a bias towards less and values smaller than 0.5 leading to a bias towards
more material. For small values of � and � > 0.5, the sigmoid scheme takes on a shape
that is similar to the power law approach (cf. red line in Fig. 3.1).
The e�ects of this projection scheme with di�erent � and � values are demonstrated

in Fig. 3.2 on a sample design density. An example design density � was initialized on a
20 ⇥ 20 grid with uniformly distributed random variables in the interval [0, 1] (Fig. 3.2(a)).
In an optimization, this would be a reasonable starting condition for a design density,
which represents an initial guess for the material distribution in the design region. The

18

(smoothened Heaviside)

3. Topology optimization using adjoint gradients

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

�̃

� = 20, � = 0.5
� = 3, � = 0.5
� = 3, � = 0.2
� = 3, � = 0.8

Figure 3.1.: Comparison of the smoothed Heaviside SIMP approach for sigmoids with
di�erent values of � and � .

are concerned with in nanophotonics. The goal of topology optimization here is to explore
as much of the available design space as possible and �nd devices with truly optimal (i.e.
as optimal as possible) properties.

With these considerations in mind, we replace the power law approach with a projection
scheme based on a smoothed Heaviside function, cf. [30, 31]:

�̂ =
tanh(��) + tanh(�(� � �))
tanh(��) + tanh(�(1 � �)) , (3.6)

where � controls the steepness of the sigmoid, i.e. the projection strength and � its halfway
point along the �-axis, i.e. the material binarization threshold. The normalization factors
in (3.6) guarantee that the range of projected values is always between 0 and 1. The
functional dependency of some of these projection functions for di�erent possible values
for � and � are demonstrated in Fig. 3.1. With this projection, intermediate permittivities
are still penalized through having a large gradient, but the penalization is now symmetric
in both directions with regards to the two materials. The amount of penalization, and thus
the speed of convergence in the optimization, can be controlled by the parameter � , with
higher values leading to a more aggressive binarization. Even though we designed the
projection to be symmetric, this approach still retains the ability to introduce a material
bias by shifting the sigmoid along the �-axis through the parameter � , with values greater
than 0.5 leading to a bias towards less and values smaller than 0.5 leading to a bias towards
more material. For small values of � and � > 0.5, the sigmoid scheme takes on a shape
that is similar to the power law approach (cf. red line in Fig. 3.1).
The e�ects of this projection scheme with di�erent � and � values are demonstrated

in Fig. 3.2 on a sample design density. An example design density � was initialized on a
20 ⇥ 20 grid with uniformly distributed random variables in the interval [0, 1] (Fig. 3.2(a)).
In an optimization, this would be a reasonable starting condition for a design density,
which represents an initial guess for the material distribution in the design region. The
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3.1. Design parametrization through a density representation
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Figure 3.2.: Depiction of (a) a sample design density � and (b)–(d) the e�ects of di�erent
values for � and � on the mapping from the design density � to the projected
density �̂. The values for � and � were chosen to be the same as in Fig. 3.1.
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accommodating minimal feature sizes

• linear filtering

3.1. Design parametrization through a density representation

A common way of performing density �ltering is by using a linear weighting function
based on the distance between elements, cf. [33, 34]:

�̃i =

Õ
j2Di wij�jÕ
j2Di wij

with wij =

(
rmin �

��r i � r j

�� 8r j 2 Di

0 otherwise
, (3.7)

with the elements �̃i of the �ltered design density �̃, the spatial �ltering weightsw , and the
index set Di of design variables �j that lie within the radius rmin of the design variable �i .
The vectors r i and r j are the spatial grid locations of elements i and j , respectively (either
in 2D or 3D). This �ltering method is separable and can thus be e�ciently implemented as
a one-dimensional discrete linear convolution:

�̃n = (k ⇤ �)n =
m’
i=1

0<n�m+in

km�i+1 �n�m+i , (3.8)

with the “signal” � 2 Rn, the kernel k 2 Rm, and n � m.
In (3.7), the resulting kernel is triangular and its e�ect on �ltering a sample design density

with subsequent projection is shown in Fig. 3.3. However, the linear �ltering weights
in (3.7) lead to visible banding artifacts along the x and � axes in the projected densities,
as is apparent in Fig. 3.3(b). Instead, we propose a modi�ed Gaussian for calculating the
weights:

�̃i =

Õ
j2Di wij�jÕ
j2Di wij

with wij =

8>><
>>:
rmin exp

✓
� |r i�r j |2

2� 2

◆
8r j 2 Di

0 otherwise
, (3.9)

with a standard deviation of � = rmin/p3. The general shape of this weighting kernel remains
similar to the linear kernel (cf. Fig. 3.3(a)), but the resulting �ltered density in Fig. 3.3(c)
does not exhibit the banding artifacts of the linear method while still qualitatively retaining
the same features. At the same time, the minimum length scale of features is restricted by
rmin. Features smaller than rmin are completely blurred out and do not appear in the �nal
design.
We demonstrate the mesh-independency of this approach in Fig. 3.4, where we have

applied the �ltering technique (3.9) to a randomly initialized design density similar to
the one shown in Fig. 3.2(a). Although the mesh resolution varies signi�cantly between
Fig. 3.4(a)–(c), the global features of the projected density remain intact across all meshes.
This is an important property for future optimizations because it guarantees that the
�nal optimized structures are independent of the mesh resolution, given that the lowest
resolution of the simulation mesh is still high enough to resolve all features of the problem,
i.e. it needs to be su�ciently sub-wavelength.

�.�.�.�. Conclusion

To sum up, the material parametrization scheme that we have outlined so far transforms
the design density � to the �ltered density �̃ through linear convolution, which is subse-
quently transformed to the projected density �̂ via a soft thresholding function and �nally
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3. Topology optimization using adjoint gradients
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Figure 3.3.: E�ect of (a) two di�erent low-pass �lter shapes on a sample design density.
A (b) linear kernel and a (c) Gaussian kernel applied to the same design density
using a projection strength of � = 20.

grid resolution would be much higher in practice, of course, but we can view this as a
zoomed-in version of the actual design �eld. We can readily see the e�ects of material
biasing in Fig. 3.2(d) and Fig. 3.2(e), with the former containing much more material than
the latter. In Fig. 3.2(b) and Fig. 3.2(c), we can see the e�ects of the projection strength �

on the design density. While still not completely binary, the strong projection in Fig. 3.2(b)
shows a clear reduction in intermediate density values.

�.�.�.�. Density filtering for minimum length scale andmesh invariance

Having established a strategy for reducing intermediate material values by changing the
representation of the design density, there is another problem we need to handle. The
density � in Fig. 3.2(a) is apparently very noisy, as are the projected densities to varying
degrees. This is a problem because the spatial resolution of the design and permittivity
grids are given by the simulation. A projection as in Fig. 3.2(b) will then lead to feature
sizes that are only restricted by the simulation resolution. This is undesirable in two ways
- for one, we do not want pixel-sized features because of fabrication constraints. The other
reason is that this causes the optimization to become mesh-dependent, meaning that an
optimization will yield qualitatively di�erent results for the same problem at di�erent
spatial resolutions.

An e�ective way of mitigating both of these issues is by using a low-pass �lter to
smoothen the design density � before applying the projection (3.6), as has been proposed
in [32]. This way, single-pixel features are automatically penalized by being moved into a
regime of stronger gradients. To ensure mesh-independency, the size of the �ltering kernel
is de�ned with a �xed geometrical size, meaning that the modi�cation of density values
depends on the surrounding densities that lie within a �xed radius rmin of the element
under consideration.
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3. Topology optimization using adjoint gradients

x (px)

�
(p
x)

(a) 10 ⇥ 10

x (px)

�
(p
x)

(b) 20 ⇥ 20

x (px)

�
(p
x)

(c) 1000 ⇥ 1000

Figure 3.4.: Mesh-independent �ltering and subsequent projection of a 10 �m ⇥ 10 �m
design density with a �ltering radius of rmin = 2 �m, demonstrated on three
di�erent mesh resolutions of (a) 1 px �m−1, (b) 2 px �m−1, and (c) 100 px �m−1.

transformed into the physical permittivities �r by way of linear interpolation. The total
chain of transformations from � to �r is expressed by

�r (�) = �min + �̂(�̃(�)) (�max � �min) , (3.10)

with the individual transformations �̂ and �̃ given by (3.6) and (3.9), respectively.

�.�.�. Explicit constraints

Another way of constraining the set of admissible material distributions is by explicitly
adding penalization terms to the objective function F . These terms are scalar functions of
the design �elds with di�erent weights in the total �gure of merit. It is di�cult to say in
general what types of explicit constraints should be added to an optimization, or if any
should be added at all, as this generally depends on the optimization problem. Explicit
constraints are less general than the implicit material constraints and one usually has to
adapt their weights to a speci�c design problem.

One example for such a constraint is a volume constraint with the objective penalization
term

FV (�) = �
��Vtarget �V (�)

��
Vmax

with V (�) =
’
i2�

�i , (3.11)

where � is the design region, Vmax is the total available volume in �, and Vtarget is the
target volume of the device with values between 0 andVmax. The penalization term is zero
if the current device volume V (�) matches the target volume and takes on negative values
based on the linear distance between target and actual volumes if they do not match, with
the largest possible penalization being normalized to �1. A volume constraint is useful
if there is a �xed amount of material to be placed, although this is not typically the case
for photonic devices. It is, however, a common practice in structural engineering to place
these kinds of constraints, cf. [33, 26].
Perhaps a more interesting kind of constraint in the context of photonic devices is an

explicit formulation of the binarization. While the density projection scheme in (3.6) is
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explicit constraints add penalty terms to objective function

• volume constraint

3. Topology optimization using adjoint gradients
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Figure 3.4.: Mesh-independent �ltering and subsequent projection of a 10 �m ⇥ 10 �m
design density with a �ltering radius of rmin = 2 �m, demonstrated on three
di�erent mesh resolutions of (a) 1 px �m−1, (b) 2 px �m−1, and (c) 100 px �m−1.

transformed into the physical permittivities �r by way of linear interpolation. The total
chain of transformations from � to �r is expressed by

�r (�) = �min + �̂(�̃(�)) (�max � �min) , (3.10)

with the individual transformations �̂ and �̃ given by (3.6) and (3.9), respectively.

�.�.�. Explicit constraints

Another way of constraining the set of admissible material distributions is by explicitly
adding penalization terms to the objective function F . These terms are scalar functions of
the design �elds with di�erent weights in the total �gure of merit. It is di�cult to say in
general what types of explicit constraints should be added to an optimization, or if any
should be added at all, as this generally depends on the optimization problem. Explicit
constraints are less general than the implicit material constraints and one usually has to
adapt their weights to a speci�c design problem.

One example for such a constraint is a volume constraint with the objective penalization
term

FV (�) = �
��Vtarget �V (�)

��
Vmax

with V (�) =
’
i2�

�i , (3.11)

where � is the design region, Vmax is the total available volume in �, and Vtarget is the
target volume of the device with values between 0 andVmax. The penalization term is zero
if the current device volume V (�) matches the target volume and takes on negative values
based on the linear distance between target and actual volumes if they do not match, with
the largest possible penalization being normalized to �1. A volume constraint is useful
if there is a �xed amount of material to be placed, although this is not typically the case
for photonic devices. It is, however, a common practice in structural engineering to place
these kinds of constraints, cf. [33, 26].
Perhaps a more interesting kind of constraint in the context of photonic devices is an

explicit formulation of the binarization. While the density projection scheme in (3.6) is
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(placing a fixed amount of material)

• binarization constraint

3.1. Design parametrization through a density representation

e�ective in certain types of problems, it is a somewhat loose constraint and can leave
unwanted intermediate values that persist until convergence. This is because, depending
on the complexity and type of the objective function, the gradients can become very small
even when the density values have not yet settled on either side of the sigmoid projection.
In these cases, enforcing an explicit penalty for low binarization can be very e�ective. An
example binarization penalty could take on the following form:

FB(�) = |h��i � h�i | � 1 , (3.12)

where h��i and h�i denote the arithmetic means of

�� =
’
i2�

8��0.5

�i and � =
’
i2�

8�0.5

�i . (3.13)

This is essentially a measure for the mean distance between densities higher than and those
lower than 0.5, which is the density midpoint by construction. For complete binarization,
i.e. distributions where the mean distance is 1, (3.12) gives no penalty. The closer the
values h��i and h�i are, the more this penalization tends to �1.

It should be noted that (3.11) and (3.12) are purely heuristic. This is not to say that they
do not work in practice, but one could come up with any number of similar constraints
and end up with similar results. Importantly, the e�ectiveness of these penalties depends
on the type of optimization problem and how they are weighted in the objective function.
This is relatively straightforward for problems where the “real” objective function, i.e.
the function that relates the physical �elds to some �gure of merit, is (or at least can
be) normalized. Typical cases for this are re�ection and transmission coe�cients, for
example. Here, the possible range of output values is well known and the weights for the
binarization or volume penalties can be chosen to be some fraction of the total �gure of
merit.

This is, however, not the case for problems in which the objective function of the �elds
can not be normalized. If, for example, the objective function is de�ned as the total �eld
intensity in some region of the simulation, we have no prior knowledge about the possible
range of its output values. In cases like these, choosing appropriate weights for the explicit
penalization terms proves to be di�cult. We propose to use explicit constraints only in
cases where the output range of the �gure of merit is known and implicit constraints have
been shown to be insu�cient.

�.�.�. Density gradients

Now that we have a scheme for parametrizing constrained material distributions through
a non-physical material density �, we need to derive the gradients dF/d� for an objective
function of the �elds. We will start from the de�nition of the adjoint gradient (2.36). Note
that this expression depends on the design variables Ç (� in this context) via dA/dÇ . To
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lower than 0.5, which is the density midpoint by construction. For complete binarization,
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Now actual topology optimisation

3. Topology optimization using adjoint gradients

derive this gradient, we will apply the chain rule to (3.10), yielding

dF
d�
= �2 Re

⇢
x
†
aj
dA
d�

x

�
(3.14a)

= �2 Re
⇢
x
†
aj
dA
d�r

d�r
d�̂

d�̂
d�̃

d�̃
d�

x

�
. (3.14b)

While we have already derived dA/d�r in (2.37), we still need to calculate the derivatives
of the density parametrization. Starting from the left, we note that

�r (�̂) = �1 + �̂ (�2 � �1)

) d�r
d�̂
= �2

(3.15)

and

�̂(�̃) = tanh(��) + tanh(�(�̃ � �))
tanh(��) + tanh(�(1 � �))

) d�̂
d�̃
=

� � � tanh2(�(�̃ � �))
tanh(��) + tanh(�(1 � �))

(3.16)

The gradient d�̃/d� is slightly more tricky because �̃(�) is a convolution. From (3.8), we
can readily see that

d�̃
d�i
=

8>>>>>>>>>>><
>>>>>>>>>>>:

km i = n �m + 1
km�1 i = n �m + 2
km�2 i = n �m + 3

...

k1 i = n �m +m

0 otherwise

. (3.17)

So the derivative (3.17) gives us a convolution according to (3.8), but with a �ipped kernel.
For consistent notation, we will now derive the matrix form for linear convolutions. We
already have (3.8), which gives us the elements of the result vector after convolution:

�̃(�) = k ⇤ � =

©≠≠≠≠≠≠
´

k1�1
k2�1 + k1�2

k3�1 + k2�2 + k1�3
...Õ

m

i=1 km�i+1�n�m+i

™ÆÆÆÆÆÆ
¨

with 0 < n �m + i  n . (3.18)
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This is essentially a polynomial multiplication and can be written in matrix form:

�̃(�) = K� =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

k1 0 · · · 0 0
k2 k1 · · · 0 0
k3 k2 · · · 0 0
... k3 · · · k1 0

km�2
... · · · k2 k1

km�1 km�2
... k3 k2

km km�1 · · · ... k3

0 km · · · km�2
...

0 0 · · · km�1 km�2
0 0 · · · km km�1
0 0 · · · 0 km

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

©≠≠≠≠≠≠≠≠≠≠
´

�1
�2
�3
...

�n�2
�n�1
�n

™ÆÆÆÆÆÆÆÆÆÆ
¨

, (3.19)

where we have introduced the convolution matrix K , which is a sparse Toeplitz matrix
with dimensions (n +m � 1) ⇥ n. From a computational perspective, this has the added
bene�t that we can compute K before optimization and then simply evaluate one matrix-
vector product in each iteration to get the �ltered density. This is of course not the case if
the kernel changes during optimization, but this is not something we should consider at
this point. Note that the convolution matrix K was constructed from a one-dimensional
convolution kernel and thus only performs a one-dimensional convolution. There are
ways to construct K for higher-dimensional convolutions, resulting in block circulant
matrices, cf. [35, 36], but since the Gaussian kernel is separable, we can apply the one-
dimensional convolution once on each axis and obtain the same result instead. This is
computationally much cheaper (the size of K scales exponentially into higher dimensions)
as well as easier to implement. An example implementation for the construction of both
one- and two-dimensional convolution matrices is provided in sections B.1 and B.2.

Coming back to (3.17), we showed that the derivative d�̃/d� is simply the �ipped kernel
k . Since the kernel we use is symmetric, the �ipped kernel is equivalent to the original
one and we do not need to recompute K . Using (3.19) we can simply write the gradient as

d�̃
d�
= K (3.20)

Now that we have all the gradients in (3.14b), we can write down the full gradient of the
objective function analogously to (2.37):

dF
d�
= �2 Re

⇢
x
†
aj
dA
d�r

d�r
d�̂

d�̂
d�̃

d�̃
d�

x

�
(3.21a)

= �2�2
µ0�0�r

d�̂
d�̃

K Re
n
x
†
aj x

o
. (3.21b)

The results of thematerial transformations as well as their gradients are shown in Fig. 3.5,
where we have opted not to show the transformation from �̂ to �r as it looks identical
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While we have already derived dA/d�r in (2.37), we still need to calculate the derivatives
of the density parametrization. Starting from the left, we note that

�r (�̂) = �1 + �̂ (�2 � �1)
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and
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The gradient d�̃/d� is slightly more tricky because �̃(�) is a convolution. From (3.8), we
can readily see that
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So the derivative (3.17) gives us a convolution according to (3.8), but with a �ipped kernel.
For consistent notation, we will now derive the matrix form for linear convolutions. We
already have (3.8), which gives us the elements of the result vector after convolution:
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3.1. Design parametrization through a density representation

This is essentially a polynomial multiplication and can be written in matrix form:
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where we have introduced the convolution matrix K , which is a sparse Toeplitz matrix
with dimensions (n +m � 1) ⇥ n. From a computational perspective, this has the added
bene�t that we can compute K before optimization and then simply evaluate one matrix-
vector product in each iteration to get the �ltered density. This is of course not the case if
the kernel changes during optimization, but this is not something we should consider at
this point. Note that the convolution matrix K was constructed from a one-dimensional
convolution kernel and thus only performs a one-dimensional convolution. There are
ways to construct K for higher-dimensional convolutions, resulting in block circulant
matrices, cf. [35, 36], but since the Gaussian kernel is separable, we can apply the one-
dimensional convolution once on each axis and obtain the same result instead. This is
computationally much cheaper (the size of K scales exponentially into higher dimensions)
as well as easier to implement. An example implementation for the construction of both
one- and two-dimensional convolution matrices is provided in sections B.1 and B.2.

Coming back to (3.17), we showed that the derivative d�̃/d� is simply the �ipped kernel
k . Since the kernel we use is symmetric, the �ipped kernel is equivalent to the original
one and we do not need to recompute K . Using (3.19) we can simply write the gradient as

d�̃
d�
= K (3.20)

Now that we have all the gradients in (3.14b), we can write down the full gradient of the
objective function analogously to (2.37):
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The results of thematerial transformations as well as their gradients are shown in Fig. 3.5,
where we have opted not to show the transformation from �̂ to �r as it looks identical
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The results of thematerial transformations as well as their gradients are shown in Fig. 3.5,
where we have opted not to show the transformation from �̂ to �r as it looks identical
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4.4. Gradient-free design approach

Figure 4.6.: Sketch of the prism coupling con�guration for coupling incident light with a
free space wavelength of 1555 nm to the Bloch surface mode in the terminating
layer of the multilayer stack by means of frustrated total internal re�ection.
The spatially structured device layer (red frame) is located on top of the 1D
photonic crystal and controls the propagation of the BSW by locally changing
its e�ective index.5

is that the devices with small feature sizes seem to perform better than the ones with
large feature sizes. Moreover, the focusing intensity is generally higher for devices with a
focal length of 5 �m. The fact that greater focal lengths achieve greater intensities can be
explained by the total accumulated phase change that the BSW can acquire throughout
the structure, which is linked to the e�ective index contrast of the two materials and the
height of the functional element. This phase change needs to be greater the smaller the
focal length of the functional element is and the further the dielectric inclusion is from
the focal spot. Together, these two conditions imply that there is some cuto� distance in x
where the functional element is unable to impart enough “directionality” to the incoming
BSW for it to signi�cantly contribute to the intensity in the focal spot. In other words, the
functional element can only “de�ect” the BSW up to a certain degree, and the required
amount of de�ection increases the closer the focal spot is to the element. This e�ect can
be observed in Fig. 4.5(b)–(e), where the intensities increase again on the far sides of the
x-axis.

Nonetheless, the functional elements from this rather unre�ned optimization approach
seem to perform excellently when compared to the designs achieved by rational design
in [46], showing both decreased focal widths (⇡ 0.5�BSW versus 0.73�BSW) and increased
intensity (up to 40 % versus ⇡ 10 %). Because of these promising results, the functional
elements from this optimization were further investigated experimentally.

�.�.�. Experimental setup and excitation scheme

The experimental prism coupling setup consists of a one-dimensional photonic crystal
on top of a glass prism, shown in Fig. 4.6. The topmost layer of the photonic crystal is

5Figure adapted from [18], licensed under CC BY 4.0
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objective function

4. Inverse design of elements that focus Bloch surface waves

We will use exactly the same �gure of merit as in section 4.4, given by

F (E) =
’
i,j2�

��Eij ��2 . (4.29)

All the constraints in the optimization will be given in the form of implicit constraints
imposed on the density transformation as described in subsection 3.1.1.

�.�.�. Optimization results

Analogously to the ones discussed in section 4.5, these optimizations were performed on a
single desktop machine. Each iteration took on average around 20 s and the optimizations
converged in between 60 and 300 iterations, with little correlation between the feature size
and the total optimization time. We suggest that this is because even though we de�ne
a minimum feature size through the size of the Gaussian convolution kernel, this does
not actually constrain the amount of variation of the geometry in the spatial domain,
which is given by the simulation resolution. Di�erences in optimization time are thus
likely due to other e�ects, e.g. the change in gradient magnitudes introduced by the
�ltering step, which causes more or less density values to get pushed into regions of
strong gradients depending on the �ltering radius. The average time needed for the full
topology optimization to converge was roughly on the order of one hour. Due to the
relaxed geometric constraints, these optimizations took quite a bit longer to converge
than the digitized adjoint optimizations, but were still orders of magnitude faster than the
exhaustive search. A brief discussion on the computational cost of the optimizations is
given in Fig. A.5.

The complete list of optimization results is given in Tab. C.5 for the devices with a focal
length of 1 �m and in Tab. C.6 for those with a focal length of 5 �m and additional �gures
of optimized material distributions are provided in Fig. A.3.

The course of the optimization for the device optimized at a feature size of 0.5 �m for a
focal length of 5 �m is shown in Fig. 4.12. The evolution of the �gure of merit in Fig. 4.12(a)
is very smooth and we can see that the optimization is well converged. Similar to the
digitized adjoint optimizations, we can observe a strong increase in the FOM in the �rst
⇡ 10 iterations. This has the same reason as before, in that the general layout of the
solution is already given after the �rst iteration as seen in Fig. 4.12(b). Afterwards, only
incremental changes seem to be made, with the permittivity distribution gaining more
re�ned features throughout the optimization, cf. Fig. 4.12(c)–(d).
To analyse the optimized devices, we have again combined their permittivity distri-

butions with a depiction of their respective intensity pro�les and plotted their focal line
shapes as shown in Fig. 4.13. The �rst thing we would like to mention is that the �ltering
radius apparently serves its purpose quite well, with the devices optimized with a �ltering
radius of 1 �m shown in Fig. 4.13(b)–(c) having noticeably larger continuous features than
those optimized with a �ltering radius of 0.5 �m shown in Fig. 4.13(d)–(e). There are,
however, some features in the center part of the permittivities in Fig. 4.13(b)–(c) that are
clearly smaller than 1 �m. What this shows is that while the �ltering step is generally
e�ective in constraining the overall minimum length scale of features in these devices, it is
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4.6. Topology optimization
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Figure 4.12.: The (a) evolution of the �gure of merit for the topology optimization of a
40 �m ⇥ 10 �m functional element with a �ltering radius of 0.5 �m and a focal
length of 5 �m. On the right hand side are snapshots of the permittivity
distribution after (b) 1, (c) 30, and (d) 114 iterations.

not a guarantee that smaller features will not appear. This is not that surprising, because
at no point in this optimization did we actually implement anything that strictly enforces
geometric constraints. The implicit constraints only give the gradients a “nudge” in the
desired direction, but they do not pose strict limitations on the �nal designs. If one wishes
to constrain the optimized geometries in very speci�c ways, one has to either impose
explicit constraints on the objective function as we have done in section 4.5 or resort to
alternative ways to parametrize the geometry. For the purposes of this thesis, we will
treat the minimum length scales introduced by the implicit constraints for these optimized
devices as su�cient.

Coming back to the devices at hand, we can observe that while the dielectric distributions
look smoother and more organic, the same overall features as in the optimization results
of the exhaustive search and digitized methods are present. One notable exception is the
device in Fig. 4.13(d), which exhibits a feature that we have not encountered before. In
the upper third of its dielectric distribution, there seem to be ring-like structures that are
concentrically arranged around the focal spot. It is possible that these structures present a
kind of Bragg grating, but this is hard to tell just from looking at the permittivity.
There are no surprises regarding the �eld intensities shown in Fig. 4.13(b)–(e); the

devices seem to do a good job at creating a focal spot at the appropriate focal lengths.
What is perhaps noteworthy is that the intensity distributions appear to be smoother
than the ones examined before, with relatively little intensity visible in regions other than
the focal spot. This suggests that these devices do an even better job at focusing than
the digitized adjoint devices. We can con�rm this by looking at Fig. 4.13(a), where we
have shown the focal line shapes as before. The red line, which corresponds to the device
with a feature size of 0.5 �m and a focal length of 5 �m shows a maximum intensity of
around 65 %. Remarkably, this is over 10 % higher than the largest intensity observed in
the devices optimized via the digitized adjoint method. Also notable is that the focal region
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Figure 4.13.: Results of the topology optimization of BSW focusing devices for selected
structures with minimum length scales d of 0.5 �m and 1.0 �m and focal
lengths l of 1 �m and 5 �m. Shown are (a) the lateral �eld pro�les in the focal
region as well as (b)–(e) the intensity of the electric �elds with the optimized
material distribution (white overlay) and the focal region (white box).
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strive to find a global optimum

3 | Bayesian optimization

3.1 Introduction

The process of designing an optimal nanophotonic device consists in finding the combi-
nation of materials and geometry that results in a device with the best performance. The
materials and geometries available for the design are often constrained by limitations of
fabrication technology, costs, and time requirements. To find the optimal design, one
needs to describe the set of feasible geometries and materials with a parametrization
that uses a vector of d design variables x = [x1, x2, ..., xd]

T . The set of all possible points
x composes the design space D of the device. Then, a numerical method is needed to
measure the performance of each possible device characterized by x with the use of an
objective function, fob(x).The aim of the game is to find the point xopt in the design space
that fulfills

fob(xopt)  fob(x) 8x 2 D. (3.1)

That corresponds to finding the global optimum. The maximum theoretically perfor-
mance achievable by the optimization is directly limited by the chosen parametrization,
i.e., by the range of possible devices considered. Generally, the higher the number of pa-
rameters used in the design space, the larger the range of devices that one can address.
However, due to the curse of dimensionality [89], also known as theHughes effect [90, 91],
the computational demand of finding a global optimum increases exponentially with the
number d of parameters, unless fob(x) is a convex function. In nanophotonic devices, the
objective function depends on the values of the electromagnetic field in a given structure
and one generally needs to solve Maxwell’s equations to evaluate fob(x). The evalua-
tion of Maxwell’s equations for a given structure is in general resource demanding and,
strongly depending on the complexity, the geometrical dimensionality, and the presence
or absence of possible geometrical symmetries, this is a task that requires computational
times between a few minutes and several hours.

The combination of computationally highly demanding objective functions and exponen-
tially scaling design spaces makes the problem of finding the optimal nanophotonic de-
vice an intractable problem even for medium size dimensional problems, where d ranges
in the order of 10 till 20. Only for highly symmetric devices, where one can exploit the
symmetries to drastically reduce the computation times of the evaluation of fob(x) or in
problems where a high parallelization of the evaluation of fob(x) is possible, finding a
global optimum can still be a feasible task in a reasonable amount of time.

However, even if a priori finding a global optimummust be assumed as unlikely, it is still
important to find a device that performs as good as possible within the available time for
the given task. This is the purpose of optimization algorithms. To do that, the optimiza-
tion algorithms choose the next evaluation points for the objective function based on a
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• one element in the possible design space
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• Gaussian processes: all possible functions that possibly could be the 
objective function, mean and standard deviation are well defined

• derive from that a next data point to be evaluated
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dimensions	
Number	of	evaluations

Coarse	sampling	(2s/d) Finer	sampling	(5s/d)
2 4 25
6 64 15,625
12 4,096 244,140,625
20 1,048,576 9.5367	e13
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Which behaviour is 
more likely in the 
unknown region?
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𝑃(𝑭 ) =
1

(2𝜋)
𝑁
2 Σ

1
2

𝑒− 1
2 (𝑭 − 𝝁)𝑇Σ−1(𝑭−𝝁)

𝝁 = [𝜇(𝒙𝟏), …, 𝜇(𝒙𝑵)]

Σ = [𝑘(𝒙𝒊, 𝒙𝒋)]𝑖,𝑗
	k(x, x′ ) = 𝜎2 𝑒− (𝑥 − 𝑥′ )2

𝑙2

• probability density function 
for a set of points 

covariance function:

vector of mean values:

probability distribution of function
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value and standard deviation
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Next evaluation point

𝛼𝐸𝐼 = 𝔼[max(0,𝑓𝑚𝑖𝑛 − 𝑓(𝑥))]acquisition function (expected improvement)
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𝛼𝐸𝐼 = 𝔼[max(0,𝑓𝑚𝑖𝑛 − 𝑓(𝑥))]acquisition function (expected improvement)
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Fig. 4. Schematic of the waveguide coupler between the silicon waveguide
and the photonic wire bond waveguide. The shape of the coupler is described
by a NURBS curve. The curve has a number d of control points, equispaced
along the x direction. The total length of the coupler is 3 µm.

its shape and also the smaller is its bandwidth. Many different
ultra-compact devices have been achieved using topology
optimization [56], [57]. However, the fabrication of these
devices is complex. An alternative is to design a freeform
taper. This approach has been used to design similar silicon
photonic elements, such as power splitters [58], [59]. Here,
we follow this approach to design a waveguide coupler with a
length of 3 µm. The shape of the coupler is parametrized with
a mirror symmetric NURBS curve, with a series of d control
points. The control points are equispaced in the x dimension
and they are allowed to vary in the y dimension. The width
of the coupler is constrained to be larger than 140 nm and
smaller than 1800 nm. These dimensions are compatible with
fabrication processes using e-beam lithography.

The simulation of the full 3D structure is computationally
very demanding. In order to reduce the computation time and
to be able to assess how the coupling efficiency improves when
more complex shapes are considered, i.e., when more control
points are included, we reduce the three dimensional problem
to an effective two dimensional approximation. In the two
dimensional simulations, the refractive indices of the silicon
waveguide and PWB are replaced by the effective refractive
indices of their fundamental modes [60] computed with a FEM
mode solver [22]. The refractive index used for the cladding
corresponds to the one of the cladding of the 3D model, 1.36.
The layout of the considered model corresponds to the x-y top
plane shown in Fig. 4.

The objective function used for the optimization is the mode
overlap of the scattered field, Escat, and the fundamental mode
of the PWB, EPWB,0 along the cross section S,

fob =

����
Z �

Escat ⇥HPWB,0

�
· dS

����
2

. (25)

The silicon waveguide is excited with its fundamental mode
ESi,0. For the simulations of the scattered field, we use a FEM
with a polynomial order of 3 and a mesh size of �/10, where �
is the wavelength inside the material. Each simulation requires
around 15 seconds to obtain both the coupling efficiency and

its shape derivatives with respect to the control points of the
NURBS curve.

We have performed optimizations for waveguide couplers
parameterized with a different number of control points d
equal to 4, 10, 15, and 20. To test the convergence rate of
the optimizations, every optimization is repeated four times.
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Fig. 5. Current optimal value of fob during the optimization process
of the waveguide coupler. The results are shown for waveguide couplers
parametrized with a different number d of control points. The line shown for
each d is the mean value obtained over four independent optimization runs.
The shadowed area represents the region within one standard deviation.The
optimizations for d equals to 4 were stopped after one thousand simulations,
as the maximum values of the expected improvement were already lower than
10�10.

The results of the optimizations are shown in Fig. 5. They
show the average convergence rate of the four optimizations
and its standard deviation. We can see that the optimizations
for different d converge to different values. The efficiency of
the coupler increases with the value of d. This result can
be expected, as the shape of the devices represented with
fewer control points are contained in the design spaces of the
larger parametrizations. However, increasing the number of
parameters d could also slow down the convergence rate due
to the exponentially growing search space. Each optimization
exploits the data of Nev · (d + 1) observations, being Nev

the total number of iterations used. One can measure the
percentage of the explored volume of the parameter space as
the ratio between the number of observations used and the
number of d-dimensional length scale blocks with side lengths
li that composes the parameter space. The length scales are
defined in Eqn. (10). This measure gives values of 20.5, 10.2,
1.0, and 0.02 percent for the optimizations with d equals to 4,
10, 15, and 20 respectively.

Indeed, for a growing number of parameters it takes increas-
ingly longer to locate the global maximum. This can be seen
in Fig. 6, where the average distance to the best parameter
configuration of all four optimization runs are shown as a
function of the iteration number. For the optimizations with 15
parameters, around four thousand simulations are required for
all four optimization runs to approach the same optimum. For
the optimizations with 20 parameters, the optimizations did
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for different d converge to different values. The efficiency of
the coupler increases with the value of d. This result can
be expected, as the shape of the devices represented with
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Fig. 8. Geometries of the obtained optimal waveguide couplers. The results
show the optimal designs for couplers parametrized with a number d of
4, 15, and 20 control points. The colors indicate the energy density of the
electromagnetic field.

reflections along the coupler are small and they are produced
continuously along the coupler. This can be concluded from
the smooth profile of the field intensity within the core of the
coupler. After 2 µm, most of the incident light has already been
radiated into the PWB waveguide section where it continues
to be guided and the core carries almost no energy. Such
a behaviour can be considered as the expected or rational
solution to the problem.

The behavior of the coupler with d = 20 is completely
different. Its width is larger than the width of the silicon
waveguide almost along the entire 3 µm of the coupling sec-
tion. As a consequence, the light is kept confined in the silicon
core of the coupler and there is almost no radiation into the
PWB waveguide until the terminating section of the coupler.
The profile of the coupler presents a chirped subwavelength
modulation. As a further difference to the design with d = 4, an
interference pattern is clearly present within the core section
of the coupler. The strong interference is a clear indication that
multiple reflections occur along the coupler. Nevertheless, the
interferences between counter propagating waves in the input
silicon waveguide are weaker than in the design for d = 4.
This observation is in agreement with the higher coupling
efficiency shown in Fig. 5. The fact that the coupler with
d = 20 produces higher internal reflections but it presents a

smaller total reflection at the input port can only be explained
by destructive interference of the multiple reflections. The
shape of the coupler seems to modulate the reflections in
such a way that they interfere destructively at the design
wavelength, allowing all the incoming power to be emitted
into the PWB waveguide. At the same time, the shape at the
region of the tip also modulates the radiation pattern, leading
to an almost perfect overlap with the fundamental mode of
the PWB. This alternative, completely non-adiabatic solution
emerges somewhat unexpected.
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Fig. 9. Wavelength sweeps for the coupling efficiency of the optimal couplers.

To demonstrate how this fine tuning of the geometry affects
the coupling efficiency in a spectral bandwidth around the
central wavelength, Fig. 9 shows a wavelength scan of the
efficiencies of the optimized designs. The more complex cou-
plers present a more pronounced, spectrally selective response.
Their coupling efficiencies are higher than that of the adiabatic
taper within a bandwidth of 100 nm. Beyond this spectral
region the efficiencies drop below that of the adiabatic coupler,
which maintains an efficiency above 0.9.

IV. CONCLUSION

We propose a global optimization scheme for the design
of nanophotonic devices composed of a FEM solver with
forward shape derivatives and an iterative Bayesian optimiza-
tion algorithm. The iterative algorithm improves the main
scalability problem of Bayesian optimization, allowing to
access optimization problems that are not feasible for Bayesian
optimization with a classical implementation, specially when
derivative observations are included. With this approach, one
can benefit from the good performance of Bayesian optimiza-
tion for a wider range of devices.

As an application example, we optimized the two di-
mensional model of a compact freeform waveguide coupler,
achieving a coupling efficiency of 98 percent. The coupler
is optimized for a target wavelength of 1550 nm and it
can be implemented using e-beam lithography. The results
show that a larger dimensional design space for the freeform
shape leads to significantly higher coupling efficiencies at the
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Fig. 8. Geometries of the obtained optimal waveguide couplers. The results
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reflections along the coupler are small and they are produced
continuously along the coupler. This can be concluded from
the smooth profile of the field intensity within the core of the
coupler. After 2 µm, most of the incident light has already been
radiated into the PWB waveguide section where it continues
to be guided and the core carries almost no energy. Such
a behaviour can be considered as the expected or rational
solution to the problem.

The behavior of the coupler with d = 20 is completely
different. Its width is larger than the width of the silicon
waveguide almost along the entire 3 µm of the coupling sec-
tion. As a consequence, the light is kept confined in the silicon
core of the coupler and there is almost no radiation into the
PWB waveguide until the terminating section of the coupler.
The profile of the coupler presents a chirped subwavelength
modulation. As a further difference to the design with d = 4, an
interference pattern is clearly present within the core section
of the coupler. The strong interference is a clear indication that
multiple reflections occur along the coupler. Nevertheless, the
interferences between counter propagating waves in the input
silicon waveguide are weaker than in the design for d = 4.
This observation is in agreement with the higher coupling
efficiency shown in Fig. 5. The fact that the coupler with
d = 20 produces higher internal reflections but it presents a

smaller total reflection at the input port can only be explained
by destructive interference of the multiple reflections. The
shape of the coupler seems to modulate the reflections in
such a way that they interfere destructively at the design
wavelength, allowing all the incoming power to be emitted
into the PWB waveguide. At the same time, the shape at the
region of the tip also modulates the radiation pattern, leading
to an almost perfect overlap with the fundamental mode of
the PWB. This alternative, completely non-adiabatic solution
emerges somewhat unexpected.
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To demonstrate how this fine tuning of the geometry affects
the coupling efficiency in a spectral bandwidth around the
central wavelength, Fig. 9 shows a wavelength scan of the
efficiencies of the optimized designs. The more complex cou-
plers present a more pronounced, spectrally selective response.
Their coupling efficiencies are higher than that of the adiabatic
taper within a bandwidth of 100 nm. Beyond this spectral
region the efficiencies drop below that of the adiabatic coupler,
which maintains an efficiency above 0.9.
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We propose a global optimization scheme for the design
of nanophotonic devices composed of a FEM solver with
forward shape derivatives and an iterative Bayesian optimiza-
tion algorithm. The iterative algorithm improves the main
scalability problem of Bayesian optimization, allowing to
access optimization problems that are not feasible for Bayesian
optimization with a classical implementation, specially when
derivative observations are included. With this approach, one
can benefit from the good performance of Bayesian optimiza-
tion for a wider range of devices.

As an application example, we optimized the two di-
mensional model of a compact freeform waveguide coupler,
achieving a coupling efficiency of 98 percent. The coupler
is optimized for a target wavelength of 1550 nm and it
can be implemented using e-beam lithography. The results
show that a larger dimensional design space for the freeform
shape leads to significantly higher coupling efficiencies at the
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reflections along the coupler are small and they are produced
continuously along the coupler. This can be concluded from
the smooth profile of the field intensity within the core of the
coupler. After 2 µm, most of the incident light has already been
radiated into the PWB waveguide section where it continues
to be guided and the core carries almost no energy. Such
a behaviour can be considered as the expected or rational
solution to the problem.

The behavior of the coupler with d = 20 is completely
different. Its width is larger than the width of the silicon
waveguide almost along the entire 3 µm of the coupling sec-
tion. As a consequence, the light is kept confined in the silicon
core of the coupler and there is almost no radiation into the
PWB waveguide until the terminating section of the coupler.
The profile of the coupler presents a chirped subwavelength
modulation. As a further difference to the design with d = 4, an
interference pattern is clearly present within the core section
of the coupler. The strong interference is a clear indication that
multiple reflections occur along the coupler. Nevertheless, the
interferences between counter propagating waves in the input
silicon waveguide are weaker than in the design for d = 4.
This observation is in agreement with the higher coupling
efficiency shown in Fig. 5. The fact that the coupler with
d = 20 produces higher internal reflections but it presents a

smaller total reflection at the input port can only be explained
by destructive interference of the multiple reflections. The
shape of the coupler seems to modulate the reflections in
such a way that they interfere destructively at the design
wavelength, allowing all the incoming power to be emitted
into the PWB waveguide. At the same time, the shape at the
region of the tip also modulates the radiation pattern, leading
to an almost perfect overlap with the fundamental mode of
the PWB. This alternative, completely non-adiabatic solution
emerges somewhat unexpected.
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To demonstrate how this fine tuning of the geometry affects
the coupling efficiency in a spectral bandwidth around the
central wavelength, Fig. 9 shows a wavelength scan of the
efficiencies of the optimized designs. The more complex cou-
plers present a more pronounced, spectrally selective response.
Their coupling efficiencies are higher than that of the adiabatic
taper within a bandwidth of 100 nm. Beyond this spectral
region the efficiencies drop below that of the adiabatic coupler,
which maintains an efficiency above 0.9.

IV. CONCLUSION

We propose a global optimization scheme for the design
of nanophotonic devices composed of a FEM solver with
forward shape derivatives and an iterative Bayesian optimiza-
tion algorithm. The iterative algorithm improves the main
scalability problem of Bayesian optimization, allowing to
access optimization problems that are not feasible for Bayesian
optimization with a classical implementation, specially when
derivative observations are included. With this approach, one
can benefit from the good performance of Bayesian optimiza-
tion for a wider range of devices.

As an application example, we optimized the two di-
mensional model of a compact freeform waveguide coupler,
achieving a coupling efficiency of 98 percent. The coupler
is optimized for a target wavelength of 1550 nm and it
can be implemented using e-beam lithography. The results
show that a larger dimensional design space for the freeform
shape leads to significantly higher coupling efficiencies at the
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reflections along the coupler are small and they are produced
continuously along the coupler. This can be concluded from
the smooth profile of the field intensity within the core of the
coupler. After 2 µm, most of the incident light has already been
radiated into the PWB waveguide section where it continues
to be guided and the core carries almost no energy. Such
a behaviour can be considered as the expected or rational
solution to the problem.

The behavior of the coupler with d = 20 is completely
different. Its width is larger than the width of the silicon
waveguide almost along the entire 3 µm of the coupling sec-
tion. As a consequence, the light is kept confined in the silicon
core of the coupler and there is almost no radiation into the
PWB waveguide until the terminating section of the coupler.
The profile of the coupler presents a chirped subwavelength
modulation. As a further difference to the design with d = 4, an
interference pattern is clearly present within the core section
of the coupler. The strong interference is a clear indication that
multiple reflections occur along the coupler. Nevertheless, the
interferences between counter propagating waves in the input
silicon waveguide are weaker than in the design for d = 4.
This observation is in agreement with the higher coupling
efficiency shown in Fig. 5. The fact that the coupler with
d = 20 produces higher internal reflections but it presents a

smaller total reflection at the input port can only be explained
by destructive interference of the multiple reflections. The
shape of the coupler seems to modulate the reflections in
such a way that they interfere destructively at the design
wavelength, allowing all the incoming power to be emitted
into the PWB waveguide. At the same time, the shape at the
region of the tip also modulates the radiation pattern, leading
to an almost perfect overlap with the fundamental mode of
the PWB. This alternative, completely non-adiabatic solution
emerges somewhat unexpected.
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To demonstrate how this fine tuning of the geometry affects
the coupling efficiency in a spectral bandwidth around the
central wavelength, Fig. 9 shows a wavelength scan of the
efficiencies of the optimized designs. The more complex cou-
plers present a more pronounced, spectrally selective response.
Their coupling efficiencies are higher than that of the adiabatic
taper within a bandwidth of 100 nm. Beyond this spectral
region the efficiencies drop below that of the adiabatic coupler,
which maintains an efficiency above 0.9.

IV. CONCLUSION

We propose a global optimization scheme for the design
of nanophotonic devices composed of a FEM solver with
forward shape derivatives and an iterative Bayesian optimiza-
tion algorithm. The iterative algorithm improves the main
scalability problem of Bayesian optimization, allowing to
access optimization problems that are not feasible for Bayesian
optimization with a classical implementation, specially when
derivative observations are included. With this approach, one
can benefit from the good performance of Bayesian optimiza-
tion for a wider range of devices.

As an application example, we optimized the two di-
mensional model of a compact freeform waveguide coupler,
achieving a coupling efficiency of 98 percent. The coupler
is optimized for a target wavelength of 1550 nm and it
can be implemented using e-beam lithography. The results
show that a larger dimensional design space for the freeform
shape leads to significantly higher coupling efficiencies at the
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