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Motivation and idea

General-purpose partial differential equation
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» Spatially varying resolution

» Discretization that conforms to

geometrical shapes

» Arbitrarily shaped computational

domain
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Concepts

» Finite element: a discrete piece of
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space

interval

> 2D: triangle

> 1D:

rectangle, ...

» 3D: tetrahedron, cube, ...

» Node: a point, e.g., a vertex of a

triangle

» Mesh: collection of nodes and elements
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In FEM, basis functions are localized and usually piecewise polynomial.

"Global"
picture

"Elementwise"

picture

Basis functions and finite elements

From now on, let us consider 1D problems for simplicity.
A field u(x) in terms of basis functions ¢,(x):

U(X) = Z Un¢n(x)

Here, “Lagrangian” or “nodal” elements
Quadratick =2

Linear k =1

Ele- M
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- One basis function
per vertex

- One element "owns"
k+1 basis functions
- Can build system
element by element
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The weak form
Wave equation eigenvalue problem (1D waveguide, TE polarization)

82[] X, 82 X R . 8y
6'(x2 ) + 8(y J) +kge(x)a(x,y) =0, d(x,y) = u(x)e”

2U X
T | ex)ulx) = Fulx)

Expansion of u(x) into sum of basis functions

Zunw’" #1832 0ne0n() = 53 )

Multiply by one of the basis functions (“test function”, ¢m(x)) and
integrate (inner product)

S [ om0 o a4 S [ 901600
= 52 Z un/¢m(x)¢n(x)dx
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Weak form to matrix equation

Multiply with each different ¢m(x): N equations (N is the number of
basis functions). Then,

(S + W)u = 5°Mu

where

82 o (X

Winn = I / Dm(X)e(x)Bn(x) dx
My = / Dm(x)6n(x) dx

Generalized eigenvalue problem with system matrix S + W and mass
matrix M.
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Evaluating the integrals
The integrals can be done element by element. E.g. for the element
X € [x1, %]
Second derivative term

S [ om0 k-

Z n<l5m Z /X2 Ipm(x n( X) dx

Wave number term

B3 un [ o))

Eigenvalue term

| Orm(x)n(x) o

In the sums, only the basis functions on this element need to be
considered: convenience of the “elementwise” picture.
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With piecewise linear basis functions

Prototype element x € [0, 1], only two prototype basis functions on it:

Po(x) =1 -
d1(x) = x
Normalization: peak value 1.
1 1
| ot = 3. | entonaia = 5
Oo(x) Do (x) L Ogo(x) dgn(x)
/0 Ox  Ox =1 /0 Ox  Ox di =1

For doing the integral fol oj(x)e(x)pi(x)dx
> If e(x) is constant on each element (very common), it becomes just
a prefactor.

» Numerical integration: e.g. Gaussian quadrature rules.
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Integrals on an arbitrary element

Transformation from arbitrary element to prototype element (notation:
element’s untransformed basis functions ¢g, prototype basis functions ¢)

Xp 1
/ OE,m(X)PE n(x)dx = (xp — xa)/0 Gm(X")pn(x")dx’
/Xb a(yZSE,m(X) aQSE,n(X) dx — Xp — Xa /1 8Qbm(xl) aQén(xl)dx/
X 0

Ox Ox (xp— x2)? ox' ox’

a

On the RHS, the integrals are exactly the same as the ones on the
previous slide, and the prefactors reflect the fact that different elements
(intervals) can have different sizes.
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Practical implementation of 1D FEM

System to build and solve

(S +W)u = 5°Mu

S = [ o) )20 g

Ipm(x) O¢n(x)
/ Ox Ox dx

Mf%/%
mmz/ﬁmxmx x

where
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Practical implementation of 1D FEM
Defining the mesh and distribution of ¢:
> Define nodes [xg, x1, X2, - . - |.
» Element n is an interval between nodes x, and x,;1.
> Let € be constant on each element: [eg, €, ... ]
Constructing the system

» Create empty sparse matrices S, W and M.
» For each element n with length L, = x,11 — x,, and corresponding
field unknowns u, and upy1:
» Add to second derivative operator:
» Spnt= —1/Ln, thisis —1/L [ Oxo(x")Oxpo(x")dx’
> Sn+1,n+1+: —1/Ln, this is —1/Ln faxgbl(xl)ax(ﬁl(xl)dxl
» Spnti1+=1/Ln, thisis —1/L, [ Oxpo(x")Oxd1(x")dx’
> Spi1,nt=1/Ln, thisis —1/L, [ Ox¢1(x")0xpo(x")dx’
»> Add to wave number operator:
> Wynt= kgEnLn%, this is k3enLn [ do(x")po(x")dx’
> Wn+1,n+1+: kg€nLn%
> Wn,n+1+: kg’fnLné
> Wn+1,n+: kgfnLné
»> Add to mass matrix: same as wave number operator but without
kien.

10/22



Example system

Let x =1[0,1,2,3] and e = 1 everywhere. Then,

-1 1 0 0
1 -2 1 0
S= 0 1 -2 1
0 0 1 -1

which has a boundary condition du/0x = 0.

13 1/6 0 0
o lie 23 16 0
W=k10 1/6 2/3 1/6

0o 0 1/6 1/3

is not just a diagonal matrix.
M is like W but without the k3.
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Boundary conditions

» Metallic / perfect electric conductor / Dirichlet boundary condition:
set field unknowns u, for all n on boundary to zero, remove them
from the unknown vector, and remove all rows / columns
corresponding to these n from the matrices.

» Field continuity / Neumann boundary condition: implemented
through the system matrix's boundary term

ad)” (X) X
Z Un®m Ox ™

n

If we do not implement this term, we set du/0x = 0 as in the
example.

» Periodic boundary condition: constraint equations
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FEM in two dimensions

Scalar wave equation eigenvalue problem

82[)(X,y72) 82ﬁ(X7y7z) 32ﬁ(x,y,z) A
Ox? + ayz + 022 + kg€(X,y)u(x7y7 Z) =0
a(x,y,z) = u(x,y)e'??
Pulx,y) , Pulxy)
X2 a2 kse(x,y)u(x,y) = B2u(x,y)

Basis functions should be two-dimensional as well

u(x,y) = Zun¢nxy
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2D basis functions

Example: triangle elements, linear basis functions
Prototype element: a triangle with the vertices (0,0), (1,0), (0,1).

1-x-y y X

14 /22



Transformation to/from prototype element in 2D

Mapping the triangle element E defined by points (x,y) = (xo, o),
(x1, 1), (x2,¥2) to (x',¥") = (0,0), (1,0), (0,1) can be done with an
affine transformation

a b -1 X1 —Xo X2 — Xp
A= b= AT =
L d} [XO yo} |;V1 —Yo Y2— )/o}

Basis function on the arbitrary element defined from the prototype basis
function

PE(x,y) = ¢(ax + by, cx + dy) = ¢(x', ')
Gradients of the basis functions of an arbitrary element
Voe(x,y) = ATV ¢(x',y')
where V = (0/0x,0/0y), V' = (9/0x’,0/9y").
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Transformation of integrals in 2D

All integrals pick up a prefactor from the change of dxdy:

[ oemcy)oentxyandy = (@etA ) [[ ooty o'y )y
E proto

With linear elements (V¢e(x, y) constant) the gradient integrals are
simple:

/ / Vo m(x, ) - Vo n(x,y)dxdy = Voe.m- Ve o(det A1) / / o' dy’
E

proto

= (ATV¢n)  (ATV¢,)(det A*l)// dx'dy’
proto
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Practical implementation of 2D FEM

N points, N, elements
Mesh is defined by:

» points array (Nx2): each row has the x and y coordinates of a
point

» simplices array (N.x3): each row has 3 indices to the points array,
defining the 3 point of the triangle element

The transformations A~! and A can be easily calculated from these.
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Practical implementation of 2D FEM

Build the system and mass matrices element by element:

> Get this element’s indices of the three points (i1, i» and i3) and the
transform A.

» Calculate gradients of the element’s basis functions:
V¢E(X7y) = ATV¢(Xa y)
» For the pair of points (i1, i) in the triangle (and associated basis
functions):
> Add to Laplace operator L, ,— = 1/2(det A™*)(Vee1 - Voe2)
» Add to wave number operator
Wi i, + = kiee(det A1) ([ dx'dy’$1¢r2)
> Add to mass matrix M; ,+ = (det A=) ([ dx'dy’162)

» Do the same for every other pair of basis functions (9 pairs in total).
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Mesh construction methods

Subdivision

Triangulation
of a grid

Delaunay
triangulation
of a point cloud

Subdivision can be applied on any triangular mesh: automatic mesh
refinement.
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Example

Mesh Laplace operator matrix
4] 20 40 60 80 100 120 140

20

40 -

60

80

100 1

1201

140 1

20/22



Ingredients of FEM for vectorial Maxwell's equations

V x V x E= k3cE

Deriving the eigenvalue form with 52 is a bit more complicated

» Vector fields: vector basis functions E,, weak form

—/ EmX(VXEn)-dS+/ (VXEm)-(VXE,)dV = kg/ ¢Ep-EpdV
ov v v

» Allowing discontinuous solutions (most of the time V - E is not
zero): edge-type elements, curl elements
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