
Finite element method

Computational Photonics 2023

1 / 22



Motivation and idea

General-purpose partial differential equation
discretization method that allows for:

▶ Spatially varying resolution

▶ Discretization that conforms to
geometrical shapes

▶ Arbitrarily shaped computational
domain

Concepts
▶ Finite element: a discrete piece of

space
▶ 1D: interval
▶ 2D: triangle, rectangle, ...
▶ 3D: tetrahedron, cube, ...

▶ Node: a point, e.g., a vertex of a
triangle

▶ Mesh: collection of nodes and elements
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Basis functions and finite elements
From now on, let us consider 1D problems for simplicity.

A field u(x) in terms of basis functions ϕn(x):

u(x) =
∑
n

unϕn(x)

In FEM, basis functions are localized and usually piecewise polynomial.
Here, “Lagrangian” or “nodal” elements
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The weak form
Wave equation eigenvalue problem (1D waveguide, TE polarization)

∂2û(x , y)

∂x2
+

∂2û(x , y)

∂y2
+ k2

0 ϵ(x)û(x , y) = 0, û(x , y) = u(x)e iβz

∂2u(x)

∂x2
+ k2

0 ϵ(x)u(x) = β2u(x)

Expansion of u(x) into sum of basis functions∑
n

un
∂2ϕn(x)

∂x2
+ k2

0

∑
n

unϵ(x)ϕn(x) = β2
∑
n

unϕn(x)

Multiply by one of the basis functions (“test function”, ϕm(x)) and
integrate (inner product)∑

n

un

∫
ϕm(x)

∂2ϕn(x)

∂x2
dx + k2

0

∑
n

un

∫
ϕm(x)ϵ(x)ϕn(x)dx

= β2
∑
n

un

∫
ϕm(x)ϕn(x)dx
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Weak form to matrix equation

Multiply with each different ϕm(x): N equations (N is the number of
basis functions). Then,

(S+W)u = β2Mu

where

Sm,n =

∫
ϕm(x)

∂2ϕn(x)

∂x2
dx

Wm,n = k2
0

∫
ϕm(x)ϵ(x)ϕn(x)dx

Mm,n =

∫
ϕm(x)ϕn(x)dx

Generalized eigenvalue problem with system matrix S+W and mass
matrix M.
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Evaluating the integrals
The integrals can be done element by element. E.g. for the element
x ∈ [x1, x2]:
Second derivative term ∑

n

un

∫ x2

x1

ϕm(x)
∂2ϕn(x)

∂x2
dx =

∑
n

unϕm
∂ϕn(x)

∂x
|x2x1 −

∑
n

un

∫ x2

x1

∂ϕm(x)

∂x

∂ϕn(x)

∂x
dx

Wave number term

k2
0

∑
n

un

∫ x2

x1

ϕm(x)ϵ(x)ϕn(x)dx

Eigenvalue term

β2
∑
n

un

∫ x2

x1

ϕm(x)ϕn(x)dx

In the sums, only the basis functions on this element need to be
considered: convenience of the “elementwise” picture.
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With piecewise linear basis functions

Prototype element x ∈ [0, 1], only two prototype basis functions on it:

ϕ0(x) = 1− x

ϕ1(x) = x

Normalization: peak value 1.∫ 1

0

ϕ0(x)ϕ0(x)dx =
1

3
,

∫ 1

0

ϕ0(x)ϕ1(x)dx =
1

6∫ 1

0

∂ϕ0(x)

∂x

∂ϕ0(x)

∂x
dx = 1,

∫ 1

0

∂ϕ0(x)

∂x

∂ϕ1(x)

∂x
dx = −1

For doing the integral
∫ 1

0
ϕj(x)ϵ(x)ϕi (x)dx :

▶ If ϵ(x) is constant on each element (very common), it becomes just
a prefactor.

▶ Numerical integration: e.g. Gaussian quadrature rules.
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Integrals on an arbitrary element

Transformation from arbitrary element to prototype element (notation:
element’s untransformed basis functions ϕE , prototype basis functions ϕ)∫ xb

xa

ϕE ,m(x)ϕE ,n(x)dx = (xb − xa)

∫ 1

0

ϕm(x
′)ϕn(x

′)dx ′∫ xb

xa

∂ϕE ,m(x)

∂x

∂ϕE ,n(x)

∂x
dx =

xb − xa
(xb − xa)2

∫ 1

0

∂ϕm(x
′)

∂x ′
∂ϕn(x

′)

∂x ′
dx ′

On the RHS, the integrals are exactly the same as the ones on the
previous slide, and the prefactors reflect the fact that different elements
(intervals) can have different sizes.
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Practical implementation of 1D FEM

System to build and solve

(S+W)u = β2Mu

where

Sm,n =

∫
ϕm(x)

∂2ϕn(x)

∂x2
dx

= −
∫

∂ϕm(x)

∂x

∂ϕn(x)

∂x
dx

Wm,n = k2
0

∫
ϕm(x)ϵ(x)ϕn(x)dx

Mm,n =

∫
ϕm(x)ϕn(x)dx
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Practical implementation of 1D FEM
Defining the mesh and distribution of ϵ:

▶ Define nodes [x0, x1, x2, . . . ].

▶ Element n is an interval between nodes xn and xn+1.

▶ Let ϵ be constant on each element: [ϵ0, ϵ1, . . . ]

Constructing the system

▶ Create empty sparse matrices S, W and M.
▶ For each element n with length Ln = xn+1 − xn, and corresponding

field unknowns un and un+1:
▶ Add to second derivative operator:

▶ Sn,n+= −1/Ln, this is −1/Ln
∫
∂xϕ0(x ′)∂xϕ0(x ′)dx ′

▶ Sn+1,n+1+= −1/Ln, this is −1/Ln
∫
∂xϕ1(x ′)∂xϕ1(x ′)dx ′

▶ Sn,n+1+= 1/Ln, this is −1/Ln
∫
∂xϕ0(x ′)∂xϕ1(x ′)dx ′

▶ Sn+1,n+= 1/Ln, this is −1/Ln
∫
∂xϕ1(x ′)∂xϕ0(x ′)dx ′

▶ Add to wave number operator:
▶ Wn,n+= k2

0 ϵnLn
1
3
, this is k2

0 ϵnLn
∫
ϕ0(x ′)ϕ0(x ′)dx ′

▶ Wn+1,n+1+= k2
0 ϵnLn

1
3

▶ Wn,n+1+= k2
0 ϵnLn

1
6

▶ Wn+1,n+= k2
0 ϵnLn

1
6

▶ Add to mass matrix: same as wave number operator but without
k2
0 ϵn.
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Example system

Let x = [0, 1, 2, 3] and ϵ = 1 everywhere. Then,

S =


−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1


which has a boundary condition ∂u/∂x = 0.

W = k2
0


1/3 1/6 0 0
1/6 2/3 1/6 0
0 1/6 2/3 1/6
0 0 1/6 1/3


is not just a diagonal matrix.
M is like W but without the k2

0 .
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Boundary conditions

▶ Metallic / perfect electric conductor / Dirichlet boundary condition:
set field unknowns un for all n on boundary to zero, remove them
from the unknown vector, and remove all rows / columns
corresponding to these n from the matrices.

▶ Field continuity / Neumann boundary condition: implemented
through the system matrix’s boundary term∑

n

unϕm
∂ϕn(x)

∂x
|x2x1

If we do not implement this term, we set ∂u/∂x = 0 as in the
example.

▶ Periodic boundary condition: constraint equations
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FEM in two dimensions

Scalar wave equation eigenvalue problem

∂2û(x , y , z)

∂x2
+

∂2û(x , y , z)

∂y2
+

∂2û(x , y , z)

∂z2
+ k2

0 ϵ(x , y)û(x , y , z) = 0

û(x , y , z) = u(x , y)e iβz

∂2u(x , y)

∂x2
+

∂2u(x , y)

∂y2
+ k2

0 ϵ(x , y)u(x , y) = β2u(x , y)

Basis functions should be two-dimensional as well

u(x , y) =
∑
n

unϕn(x , y)
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2D basis functions
Example: triangle elements, linear basis functions
Prototype element: a triangle with the vertices (0,0), (1,0), (0,1).

∫ 1

0

∫ 1−x

0

(1− x − y)(1− x − y)dydx =
1

12∫ 1

0

∫ 1−x

0

(1− x − y)xdydx =
1

24

. . .
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Transformation to/from prototype element in 2D
Mapping the triangle element E defined by points (x , y) = (x0, y0),
(x1, y1), (x2, y2) to (x ′, y ′) = (0, 0), (1, 0), (0, 1) can be done with an
affine transformation

[
x ′

y ′

]
= A(

[
x
y

]
− b)

A =

[
a b
c d

]
,b =

[
x0 y0

]
,A−1 =

[
x1 − x0 x2 − x0
y1 − y0 y2 − y0

]
Basis function on the arbitrary element defined from the prototype basis
function

ϕE (x , y) = ϕ(ax + by , cx + dy) = ϕ(x ′, y ′)

Gradients of the basis functions of an arbitrary element

∇ϕE (x , y) = AT∇′ϕ(x ′, y ′)

where ∇ = (∂/∂x , ∂/∂y), ∇′ = (∂/∂x ′, ∂/∂y ′).
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Transformation of integrals in 2D

All integrals pick up a prefactor from the change of dxdy :∫∫
E

ϕE ,m(x , y)ϕE ,n(x , y)dxdy = (detA−1)

∫∫
proto

ϕm(x
′, y ′)ϕn(x

′, y ′)dx ′dy ′

With linear elements (∇ϕE (x , y) constant) the gradient integrals are
simple:∫∫

E

∇ϕE ,m(x , y) · ∇ϕE ,n(x , y)dxdy = ∇ϕE ,m · ∇ϕE ,n(detA
−1)

∫∫
proto

dx ′dy ′

= (AT∇ϕm) · (AT∇ϕn)(detA
−1)

∫∫
proto

dx ′dy ′
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Practical implementation of 2D FEM

N points, Ne elements
Mesh is defined by:

▶ points array (Nx2): each row has the x and y coordinates of a
point

▶ simplices array (Nex3): each row has 3 indices to the points array,
defining the 3 point of the triangle element

The transformations A−1 and A can be easily calculated from these.
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Practical implementation of 2D FEM

Build the system and mass matrices element by element:

▶ Get this element’s indices of the three points (i1, i2 and i3) and the
transform A.

▶ Calculate gradients of the element’s basis functions:
∇ϕE (x , y) = AT∇ϕ(x , y)

▶ For the pair of points (i1, i2) in the triangle (and associated basis
functions):
▶ Add to Laplace operator Li1,i2− = 1/2(detA−1)(∇ϕE ,1 · ∇ϕE ,2)
▶ Add to wave number operator

Wi1,i2+ = k2
0 ϵE (detA

−1)(
∫
dx ′dy ′ϕ1ϕ2)

▶ Add to mass matrix Mi1,i2+ = (detA−1)(
∫
dx ′dy ′ϕ1ϕ2)

▶ Do the same for every other pair of basis functions (9 pairs in total).
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Mesh construction methods

Subdivision can be applied on any triangular mesh: automatic mesh
refinement.
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Example

Mesh Laplace operator matrix
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Ingredients of FEM for vectorial Maxwell’s equations

∇×∇× E = k2
0 ϵE

Deriving the eigenvalue form with β2 is a bit more complicated

▶ Vector fields: vector basis functions En, weak form

−
∫
∂V

Em×(∇×En)·dS+
∫
V

(∇×Em)·(∇×En)dV = k2
0

∫
V

ϵEm·EndV

▶ Allowing discontinuous solutions (most of the time ∇ · E is not
zero): edge-type elements, curl elements
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