Finite element method

Computational Photonics 2023

Motivation and idea

General-purpose partial differential equation discretization method that allows for:

- Spatially varying resolution
- Discretization that conforms to geometrical shapes
- Arbitrarily shaped computational domain

Concepts

- Finite element: a discrete piece of space
 - 1D: interval
 - 2D: triangle, rectangle, …
 - 3D: tetrahedron, cube, …
- Node: a point, e.g., a vertex of a triangle
- Mesh: collection of nodes and elements

Basis functions and finite elements

From now on, let us consider 1D problems for simplicity. A field u(x) in terms of basis functions $\phi_n(x)$:

$$u(x)=\sum_n u_n\phi_n(x)$$

In FEM, basis functions are *localized* and usually piecewise polynomial. Here, "Lagrangian" or "nodal" elements Linear k = 1Quadratic k = 2 "Global" - One basis function picture per vertex Ele-2 3 ments¹ Flement 1 Element 2 - One element "owns" "Elementwise" k+1 basis functions picture - Can build system element by element Ele-

Element 1

Element 2

2 3 4

ments

The weak form

Wave equation eigenvalue problem (1D waveguide, TE polarization)

$$\frac{\partial^2 \hat{u}(x,y)}{\partial x^2} + \frac{\partial^2 \hat{u}(x,y)}{\partial y^2} + k_0^2 \epsilon(x) \hat{u}(x,y) = 0, \quad \hat{u}(x,y) = u(x) e^{i\beta z}$$
$$\frac{\partial^2 u(x)}{\partial x^2} + k_0^2 \epsilon(x) u(x) = \beta^2 u(x)$$

Expansion of u(x) into sum of basis functions

$$\sum_{n} u_{n} \frac{\partial^{2} \phi_{n}(x)}{\partial x^{2}} + k_{0}^{2} \sum_{n} u_{n} \epsilon(x) \phi_{n}(x) = \beta^{2} \sum_{n} u_{n} \phi_{n}(x)$$

Multiply by one of the basis functions ("test function", $\phi_m(x)$) and integrate (inner product)

$$\sum_{n} u_{n} \int \phi_{m}(x) \frac{\partial^{2} \phi_{n}(x)}{\partial x^{2}} dx + k_{0}^{2} \sum_{n} u_{n} \int \phi_{m}(x) \epsilon(x) \phi_{n}(x) dx$$
$$= \beta^{2} \sum_{n} u_{n} \int \phi_{m}(x) \phi_{n}(x) dx$$

Weak form to matrix equation

Multiply with each different $\phi_m(x)$: *N* equations (*N* is the number of basis functions). Then,

$$(S + W)u = \beta^2 Mu$$

where

$$S_{m,n} = \int \phi_m(x) \frac{\partial^2 \phi_n(x)}{\partial x^2} dx$$
$$W_{m,n} = k_0^2 \int \phi_m(x) \epsilon(x) \phi_n(x) dx$$
$$M_{m,n} = \int \phi_m(x) \phi_n(x) dx$$

Generalized eigenvalue problem with system matrix ${\boldsymbol{\mathsf{S}}} + {\boldsymbol{\mathsf{W}}}$ and mass matrix ${\boldsymbol{\mathsf{M}}}.$

Evaluating the integrals

The integrals can be done element by element. E.g. for the element $x \in [x_1, x_2]$: Second derivative term

$$\sum_{n} u_{n} \int_{x_{1}}^{x_{2}} \phi_{m}(x) \frac{\partial^{2} \phi_{n}(x)}{\partial x^{2}} dx =$$
$$\sum_{n} u_{n} \phi_{m} \frac{\partial \phi_{n}(x)}{\partial x} |_{x_{1}}^{x_{2}} - \sum_{n} u_{n} \int_{x_{1}}^{x_{2}} \frac{\partial \phi_{m}(x)}{\partial x} \frac{\partial \phi_{n}(x)}{\partial x} dx$$

Wave number term

$$k_0^2 \sum_n u_n \int_{x_1}^{x_2} \phi_m(x) \epsilon(x) \phi_n(x) dx$$

Eigenvalue term

$$\beta^2 \sum_n u_n \int_{x_1}^{x_2} \phi_m(x) \phi_n(x) dx$$

In the sums, only the basis functions *on this element* need to be considered: convenience of the "elementwise" picture.

With piecewise linear basis functions

Prototype element $x \in [0, 1]$, only two prototype basis functions on it:

$$\phi_0(x) = 1 - x$$
$$\phi_1(x) = x$$

Normalization: peak value 1.

$$\int_{0}^{1} \phi_{0}(x)\phi_{0}(x)dx = \frac{1}{3}, \qquad \qquad \int_{0}^{1} \phi_{0}(x)\phi_{1}(x)dx = \frac{1}{6}$$
$$\int_{0}^{1} \frac{\partial \phi_{0}(x)}{\partial x} \frac{\partial \phi_{0}(x)}{\partial x}dx = 1, \qquad \int_{0}^{1} \frac{\partial \phi_{0}(x)}{\partial x} \frac{\partial \phi_{1}(x)}{\partial x}dx = -1$$

For doing the integral $\int_0^1 \phi_j(x) \epsilon(x) \phi_i(x) dx$:

- ► If e(x) is constant on each element (very common), it becomes just a prefactor.
- Numerical integration: e.g. Gaussian quadrature rules.

Integrals on an arbitrary element

Transformation from arbitrary element to prototype element (notation: element's untransformed basis functions ϕ_E , prototype basis functions ϕ)

$$\int_{x_a}^{x_b} \phi_{E,m}(x)\phi_{E,n}(x)dx = (x_b - x_a)\int_0^1 \phi_m(x')\phi_n(x')dx'$$
$$\int_{x_a}^{x_b} \frac{\partial \phi_{E,m}(x)}{\partial x} \frac{\partial \phi_{E,n}(x)}{\partial x}dx = \frac{x_b - x_a}{(x_b - x_a)^2}\int_0^1 \frac{\partial \phi_m(x')}{\partial x'} \frac{\partial \phi_n(x')}{\partial x'}dx'$$

On the RHS, the integrals are exactly the same as the ones on the previous slide, and the prefactors reflect the fact that different elements (intervals) can have different sizes.

Practical implementation of 1D FEM

System to build and solve

$$(S + W)u = \beta^2 Mu$$

where

$$S_{m,n} = \int \phi_m(x) \frac{\partial^2 \phi_n(x)}{\partial x^2} dx$$
$$= -\int \frac{\partial \phi_m(x)}{\partial x} \frac{\partial \phi_n(x)}{\partial x} dx$$
$$W_{m,n} = k_0^2 \int \phi_m(x) \epsilon(x) \phi_n(x) dx$$
$$M_{m,n} = \int \phi_m(x) \phi_n(x) dx$$

Practical implementation of 1D FEM

Defining the mesh and distribution of ϵ :

- Define nodes $[x_0, x_1, x_2, \dots]$.
- Element *n* is an interval between nodes x_n and x_{n+1} .
- Let ϵ be constant on each element: $[\epsilon_0, \epsilon_1, \dots]$

Constructing the system

- Create empty sparse matrices S, W and M.
- ► For each element *n* with length L_n = x_{n+1} x_n, and corresponding field unknowns u_n and u_{n+1}:
 - Add to second derivative operator:

•
$$S_{n,n} += -1/L_n$$
, this is $-1/L_n \int \partial_x \phi_0(x') \partial_x \phi_0(x') dx'$

$$S_{n+1,n+1} += -1/L_n, \text{ this is } -1/L_n \int \partial_x \phi_1(x') \partial_x \phi_1(x') dx'$$

$$S_{n,n+1} += 1/L_n, \text{ this is } -1/L_n \int \partial_x \phi_0(x') \partial_x \phi_1(x') dx'$$

$$S_{n+1,n} = 1/L_n, \text{ this is } -1/L_n \int \partial_x \phi_1(x') \partial_x \phi_0(x') dx'$$

Add to wave number operator:

•
$$W_{n,n} += k_0^2 \epsilon_n L_n \frac{1}{3}$$
, this is $k_0^2 \epsilon_n L_n \int \phi_0(x') \phi_0(x') dx'$

$$W_{n+1,n+1} += k_0^2 \epsilon_n L_n$$

$$W_{n,n+1} += k_0^2 \epsilon_n L_n \frac{1}{6}$$

$$W_{n+1,n} += k_0^2 \epsilon_n L_n \frac{1}{6}$$

Add to mass matrix: same as wave number operator but without $k_0^2 \epsilon_n$.

Example system

Let x = [0, 1, 2, 3] and $\epsilon = 1$ everywhere. Then,

$$\mathbf{S} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

which has a boundary condition $\partial u/\partial x = 0$.

$$\mathbf{W} = k_0^2 \begin{bmatrix} 1/3 & 1/6 & 0 & 0\\ 1/6 & 2/3 & 1/6 & 0\\ 0 & 1/6 & 2/3 & 1/6\\ 0 & 0 & 1/6 & 1/3 \end{bmatrix}$$

is not just a diagonal matrix. **M** is like **W** but without the k_0^2 .

Boundary conditions

- Metallic / perfect electric conductor / Dirichlet boundary condition: set field unknowns u_n for all n on boundary to zero, remove them from the unknown vector, and remove all rows / columns corresponding to these n from the matrices.
- Field continuity / Neumann boundary condition: implemented through the system matrix's boundary term

$$\sum_{n} u_{n} \phi_{m} \frac{\partial \phi_{n}(x)}{\partial x} \Big|_{x_{1}}^{x_{2}}$$

If we do not implement this term, we set $\partial u/\partial x = 0$ as in the example.

Periodic boundary condition: constraint equations

FEM in two dimensions

Scalar wave equation eigenvalue problem

$$\frac{\partial^2 \hat{u}(x, y, z)}{\partial x^2} + \frac{\partial^2 \hat{u}(x, y, z)}{\partial y^2} + \frac{\partial^2 \hat{u}(x, y, z)}{\partial z^2} + k_0^2 \epsilon(x, y) \hat{u}(x, y, z) = 0$$
$$\hat{u}(x, y, z) = u(x, y) e^{i\beta z}$$
$$\frac{\partial^2 u(x, y)}{\partial x^2} + \frac{\partial^2 u(x, y)}{\partial y^2} + k_0^2 \epsilon(x, y) u(x, y) = \beta^2 u(x, y)$$

Basis functions should be two-dimensional as well

$$u(x,y)=\sum_n u_n\phi_n(x,y)$$

2D basis functions

Example: triangle elements, linear basis functions Prototype element: a triangle with the vertices (0,0), (1,0), (0,1).

$$\int_{0}^{1} \int_{0}^{1-x} (1-x-y)(1-x-y)dydx = \frac{1}{12}$$
$$\int_{0}^{1} \int_{0}^{1-x} (1-x-y)xdydx = \frac{1}{24}$$

. . .

Transformation to/from prototype element in 2D Mapping the triangle element *E* defined by points $(x, y) = (x_0, y_0)$, (x_1, y_1) , (x_2, y_2) to (x', y') = (0, 0), (1, 0), (0, 1) can be done with an affine transformation

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \mathbf{A}(\begin{bmatrix} x\\y\end{bmatrix} - \mathbf{b})$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \mathbf{b} = \begin{bmatrix} x_0 & y_0 \end{bmatrix}, \mathbf{A}^{-1} = \begin{bmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{bmatrix}$$

Basis function on the arbitrary element defined from the prototype basis function

$$\phi_E(x,y) = \phi(ax + by, cx + dy) = \phi(x', y')$$

Gradients of the basis functions of an arbitrary element

$$\nabla \phi_{E}(x, y) = \mathbf{A}^{T} \nabla' \phi(x', y')$$

where $\nabla = (\partial/\partial x, \partial/\partial y), \ \nabla' = (\partial/\partial x', \partial/\partial y').$

Transformation of integrals in 2D

All integrals pick up a prefactor from the change of dxdy:

$$\iint_{E} \phi_{E,m}(x,y)\phi_{E,n}(x,y)dxdy = (\det \mathbf{A}^{-1})\iint_{\text{proto}} \phi_{m}(x',y')\phi_{n}(x',y')dx'dy'$$

With linear elements ($\nabla \phi_E(x, y)$ constant) the gradient integrals are simple:

$$\begin{split} \iint_{E} \nabla \phi_{E,m}(x,y) \cdot \nabla \phi_{E,n}(x,y) dx dy &= \nabla \phi_{E,m} \cdot \nabla \phi_{E,n}(\det \mathbf{A}^{-1}) \iint_{\text{proto}} dx' dy' \\ &= (\mathbf{A}^{T} \nabla \phi_{m}) \cdot (\mathbf{A}^{T} \nabla \phi_{n})(\det \mathbf{A}^{-1}) \iint_{\text{proto}} dx' dy' \end{split}$$

Practical implementation of 2D FEM

N points, N_e elements Mesh is defined by:

- points array (Nx2): each row has the x and y coordinates of a point
- simplices array (N_e×3): each row has 3 indices to the points array, defining the 3 point of the triangle element

The transformations A^{-1} and A can be easily calculated from these.

Practical implementation of 2D FEM

Build the system and mass matrices element by element:

- ▶ Get this element's indices of the three points (*i*₁, *i*₂ and *i*₃) and the transform **A**.
- Calculate gradients of the element's basis functions: $\nabla \phi_E(x, y) = \mathbf{A}^T \nabla \phi(x, y)$
- ► For the pair of points (*i*₁, *i*₂) in the triangle (and associated basis functions):
 - Add to Laplace operator $L_{i_1,i_2} = 1/2(\det \mathbf{A}^{-1})(\nabla \phi_{E,1} \cdot \nabla \phi_{E,2})$
 - Add to wave number operator $W_{i_1,i_2} + = k_0^2 \epsilon_E (\det \mathbf{A}^{-1}) (\int dx' dy' \phi_1 \phi_2)$
 - Add to mass matrix $M_{i_1,i_2} + = (\det \mathbf{A}^{-1})(\int dx' dy' \phi_1 \phi_2)$

Do the same for every other pair of basis functions (9 pairs in total).

Mesh construction methods

Subdivision can be applied on any triangular mesh: automatic mesh refinement.

Example

Ingredients of FEM for vectorial Maxwell's equations

 $\nabla \times \nabla \times \mathbf{E} = k_0^2 \epsilon \mathbf{E}$

Deriving the eigenvalue form with β^2 is a bit more complicated

Vector fields: vector basis functions E_n, weak form

$$-\int_{\partial V} \mathbf{E}_m \times (\nabla \times \mathbf{E}_n) \cdot d\mathbf{S} + \int_V (\nabla \times \mathbf{E}_m) \cdot (\nabla \times \mathbf{E}_n) dV = k_0^2 \int_V \epsilon \mathbf{E}_m \cdot \mathbf{E}_n dV$$

► Allowing discontinuous solutions (most of the time ∇ · E is not zero): edge-type elements, curl elements

Finite element method

Computational Photonics 2023