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Scattering theory: 
quasi-static sphere
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Nanosphere

(courtesy of T. Bürgi, University Geneva)



in the quasi-static regime phase variations of the field across 
the surface can be neglected electrostatics, no magnetic field

has to be a solution to 
Laplace equation:

(absence of charges) 

�� = 0

1
r2

⇤

⇤r

�
r2 ⇤�

⇤r

⇥
+

1
r2 sin �

⇤

⇤�

�
sin �

⇤�
⇤�

⇥
+

1
r2 sin2 �

⇤2�
⇤⇥2

= 0

e.g. spherical coordinates:

introducing a scalar potential: E(r) = �⇥�(r)

Quasi-static regime

temporarily the fields still oscillate according to e�i!t
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introducing three potentials:
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general solution of this equation is given by: 

(solved by separation of variables the same way as before)
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Quasi-static regime
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two boundary conditions have to be used to determine           andanm bnm

z-polarised incident wave is assumed to be constant in the 
vicinity of the coordinate center (quasi-static)
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Quasi-static regime

in the inner domain all          coefficients are zero as the 
potential has to remain finite

bnm

in the outer domain all          coefficients are zero as the 
potential has to remain finite

anm

illuminating field has only a nonzero component for n=1 and m=0 

other components remain zero, hence 2 equations with 2 unknowns 
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Quasi-static regime
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Quasi-static regime

scattered field corresponds to the field of a dipole with a moment p

p = ⇥2�E0ez

Polarisability: � = 4⇤R3 ⇥1 � ⇥2
⇥1 + 2⇥2

Gold Silver



Quantities of interest
scattering cross section

time average of energy flow is expressed by the real part of the Poynting vector
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Quantities of interest
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scattering cross section

time average of energy flow is expressed by the real part of the Poynting vector
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extinction cross section
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Quasi-static regime
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scattered field corresponds to the field of a dipole with a moment 

p = ⇥2�E0ez

Polarisability: � = 4⇤R3 ⇥1 � ⇥2
⇥1 + 2⇥2



Quasi-static regime
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scattered field corresponds to the field of a dipole with a moment 

p = ⇥2�E0ez

Polarisability: � = 4⇤R3 ⇥1 � ⇥2
⇥1 + 2⇥2
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taken from

2020science.org



Field induced by oscillating dipole

have ignored time dependence of the external field
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first two terms in are the static field and the scattering field

next two terms, called the induction field, are the field 
induced by the current due to the dipole oscillation

last term is called the radiation field
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Scattering theory: 
quasi-static sphere
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Scattering theory: 
fully dynamic sphere



Mie theory for spheres

reducing the full vectorial to a scalar problem

divergence of a curl of any vector 
function vanishes
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needs to satisfy a scalar wave equation� (1)
(2)
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from algebra we know that a vector can 
be construct from a scalar function and 
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Scalar solutions to wave equation
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Vector solutions to wave equation

plugging this solution into the vector solution provide

vector harmonics can be constructed via
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calculated everywhere in space for a given illumination. It is obvious that for an arbitrary
scatterer the calculation of the T-matrix is a highly complex task. The entries depend on the
material parameters, the shape of the scatterer, and also reflect the boundary conditions.
Analytical solutions are only known for highly symmetric scatterers such as e.g., spheres
[139], ellipsoids [140] or clusters of spheres [141, 142]. For any other geometry the T-matrix
entries have to be computed numerically [143–145]. In the next section the T-matrix is
introduced for the most important symmetric scatterer in the context of this thesis; a single
sphere.

2.2 Scattering by a single sphere

Consider the scatterer shown in Fig. 2.1 to be a perfect sphere with radius a made of a
homogeneous, local, linear, and isotropic material described by "sph(!), µsph(!) embedded
in a surrounding with "(!), µ(!). This scattering problem is known as Mie scattering of a
single sphere [146, 147], or simply Mie theory. The Helmholtz equation (Eq. 2.7) is solved
by a separation of the Laplace operator in spherical coordinates (r, ✓,'). The resulting
eigenfunctions are the so-called vector spherical harmonics (VSHs) M and N. They are
defined as [54, 148]

M
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where êr, ê✓, ê' are the unit vectors in spherical coordinates. The function  (J)
n describing

the radial dependency of the VSHs refers to one kind of the four spherical Bessel functions:
J=1 to the spherical Bessel function jn, J=2 to the spherical Neumann function yn and
J=3, 4 to the spherical Hankel functions of the first and second kind h(1)

n , h(2)
n , respectively.

The dependency on ✓ of the VSHs is described by the associated Legendre function of the
first kind Pm

n of degree n and order m and by the two functions ⌧nm and ⇡nm that are defined
as follows

⌧nm(cos ✓) =
d

d✓
Pm
n (cos ✓) ,

⇡nm(cos ✓) =
m

sin ✓
Pm
n (cos ✓) . (2.17)
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Field expansion for scattered and internal field
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2 Theoretical background 19

The VSHs N,M of Eq. 2.16 allow an expansion of the incident and scattered electromagnetic
fields according to Eq. 2.14 [148, 149]
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with Z =
p

µ0µ/"0" being the impedance of the surrounding, pnm, qnm the expansion co-
efficients of the incident field and anm, bnm the scattering coefficients. The prefactor Enm

is chosen variably in literature. Here, the historical motivated definition from Ref. [54] is
applied

Enm = |E0| in(2n+ 1)
(n�m)!

(n+m)!
, (2.19)

where |E0| is the magnitude of the incident electric field. It is worth to mention that only two
of the four spherical Bessel functions of the VSHs are used to expand the fields; namely the
spherical Bessel function and the spherical Hankel function of the first kind. The spherical
Bessel function has no singularity at r = 0 and is used to expand the incident field. The
spherical Hankel function of first kind takes the form of an outgoing spherical wave for
kr ! 1 and the chosen time dependency of Eq. 2.4 [150]. Therefore, this function is used
to expand the scattered field in Eq. 2.18. Applying the boundary conditions (cf. Eq. 2.13)
at the surface of the sphere yields the connection between the expansion coefficients of the
incident field (pnm, qnm) and the scattering coefficients (anm, bnm)

anm = anpnm , bnm = bnqnm , (2.20)

where an, bn are the well-known Mie coefficients that are defined as [54, 146]
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of the four spherical Bessel functions of the VSHs are used to expand the fields; namely the
spherical Bessel function and the spherical Hankel function of the first kind. The spherical
Bessel function has no singularity at r = 0 and is used to expand the incident field. The
spherical Hankel function of first kind takes the form of an outgoing spherical wave for
kr ! 1 and the chosen time dependency of Eq. 2.4 [150]. Therefore, this function is used
to expand the scattered field in Eq. 2.18. Applying the boundary conditions (cf. Eq. 2.13)
at the surface of the sphere yields the connection between the expansion coefficients of the
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Boundary conditions
tangential electric and magnetic fields continuous at interface

with the expansions and relying on the orthogonality

(the prime indicates a differentiation with respect to the argument in parentheses)

Einc,✓(R) + Esca,✓(R) = Eint,✓(R)

Einc,�(R) + Esca,�(R) = Eint,�(R)

Hinc,✓(R) +Hsca,✓(R) = Hint,✓(R)

Hinc,�(R) +Hsca,�(R) = Hint,�(R)

2 Theoretical background 19

The VSHs N,M of Eq. 2.16 allow an expansion of the incident and scattered electromagnetic
fields according to Eq. 2.14 [148, 149]

Einc(r,!) = �
1X

n=1

nX

m=�n

iEnm

⇥
pnm(!)N

(1)
nm(r,!) + qnm(!)M

(1)
nm(r,!)

⇤
,

Hinc(r,!) = � 1

Z

1X

n=1

nX

m=�n

Enm

⇥
qnm(!)N

(1)
nm(r,!) + pnm(!)M

(1)
nm(r,!)

⇤
,

Esca(r,!) =
1X

n=1

nX

m=�n

iEnm

⇥
anm(!)N

(3)
nm(r,!) + bnm(!)M

(3)
nm(r,!)

⇤
,

Hsca(r,!) =
1

Z

1X

n=1

nX

m=�n

Enm

⇥
bnm(!)N

(3)
nm(r,!) + anm(!)M

(3)
nm(r,!)

⇤
, (2.18)

with Z =
p

µ0µ/"0" being the impedance of the surrounding, pnm, qnm the expansion co-
efficients of the incident field and anm, bnm the scattering coefficients. The prefactor Enm

is chosen variably in literature. Here, the historical motivated definition from Ref. [54] is
applied

Enm = |E0| in(2n+ 1)
(n�m)!

(n+m)!
, (2.19)

where |E0| is the magnitude of the incident electric field. It is worth to mention that only two
of the four spherical Bessel functions of the VSHs are used to expand the fields; namely the
spherical Bessel function and the spherical Hankel function of the first kind. The spherical
Bessel function has no singularity at r = 0 and is used to expand the incident field. The
spherical Hankel function of first kind takes the form of an outgoing spherical wave for
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Mie coefficients for the scattered field
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The prime in Eq. 2.21 indicates a differentiation with respect to the argument in parenthesis.
The Mie coefficients depend on two dimensionless parameters
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!
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p
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s
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, (2.22)

that account for the radius of the sphere with respect to the wavelength in the surrounding
(termed the size parameter) and to the refractive index contrast between the sphere and
the surrounding. From Eq. 2.20 it is clear that the T-matrix takes a simple diagonal form
containing the Mie coefficients of a single sphere
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The T-matrix has to be diagonal since the used eigenfunctions N,M were obtained by
solving the Helmholtz equation in spherical coordinates. Nevertheless, the VSHs and the
application of the T-matrix concept are not restricted to spherical objects. Instead they can
be equally applied to scatterers of an arbitrary shape [143, 144]. However, in the general
case the T-matrix is no longer diagonal. The off-diagonal entries explain how a given VSH
of the illumination is scattered into different VSHs describing the scattered field.

The knowledge of the T-matrix and therefore of the scattering coefficients anm, bnm for
any given incident field (decomposed into its expansion coefficients pnm, qnm) allows for the
calculations of measurable quantities in the far-field. Namely these are the scattering cross
section Csca, the extinction cross section Cext, and the absorption cross section Cabs [149]
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The following remarks are in order. The field expansions of Eq. 2.18 have to be truncated
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(termed the size parameter) and to the refractive index contrast between the sphere and
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containing the Mie coefficients of a single sphere
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The T-matrix has to be diagonal since the used eigenfunctions N,M were obtained by
solving the Helmholtz equation in spherical coordinates. Nevertheless, the VSHs and the
application of the T-matrix concept are not restricted to spherical objects. Instead they can
be equally applied to scatterers of an arbitrary shape [143, 144]. However, in the general
case the T-matrix is no longer diagonal. The off-diagonal entries explain how a given VSH
of the illumination is scattered into different VSHs describing the scattered field.

The knowledge of the T-matrix and therefore of the scattering coefficients anm, bnm for
any given incident field (decomposed into its expansion coefficients pnm, qnm) allows for the
calculations of measurable quantities in the far-field. Namely these are the scattering cross
section Csca, the extinction cross section Cext, and the absorption cross section Cabs [149]
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the surrounding. From Eq. 2.20 it is clear that the T-matrix takes a simple diagonal form
containing the Mie coefficients of a single sphere
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The T-matrix has to be diagonal since the used eigenfunctions N,M were obtained by
solving the Helmholtz equation in spherical coordinates. Nevertheless, the VSHs and the
application of the T-matrix concept are not restricted to spherical objects. Instead they can
be equally applied to scatterers of an arbitrary shape [143, 144]. However, in the general
case the T-matrix is no longer diagonal. The off-diagonal entries explain how a given VSH
of the illumination is scattered into different VSHs describing the scattered field.

The knowledge of the T-matrix and therefore of the scattering coefficients anm, bnm for
any given incident field (decomposed into its expansion coefficients pnm, qnm) allows for the
calculations of measurable quantities in the far-field. Namely these are the scattering cross
section Csca, the extinction cross section Cext, and the absorption cross section Cabs [149]
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scattering cross section
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in numerical simulations at n = N depending on the size parameter x (cf. Eq. 2.22) of the
sphere. For a sphere the following truncation is usually considered to be valid [54]

N = x+ 4x1/3 + 2 . (2.25)

Furthermore, also the internal field of the sphere can be expanded into the VSHs analogous to
Eq. 2.18 [148, 149]. The unknown coefficients of this expansion can be related by two further
Mie coefficients to the expansion coefficients of the incident field. Anyhow, as discussed in the
previous section, the internal field carries no further information and it is of minor interest
for the field of MMs. Therefore, it is not explicitly discussed here.

The scattering of a single sphere appears to be a very special case. However, in the next
section it is shown, that on the base of the single sphere results the scattering problem of
a huge class of MMs can be accessed. Moreover, a formalism is developed that allows to
describe complex MMs by a few physical quantities that are beneficial to understand the
fundamental excitations in these MMs.

2.3 Multipole analysis of meta-atoms

In this section a formalism is introduced that allows the reliable description of the elec-
tromagnetic scattering by an arbitrarily shaped scatterer, or meta-atom, on the base of a
few dominating multipole moments. This allows for a deep physical insight into the excited
resonances of the meta-atom, as shown later. Thus, the meta-atom can be designed for a
desired response. Furthermore, it serves as a first step for a treatment of amorphous MMs by
effective medium theories. After the analytical description of the formalism a few examples
of meta-atoms are discussed and the advantage of the formalism is outlined.

2.3.1 Formal introduction

The formalism is based on the previously described scattering by a single sphere. The
expansion of the electrodynamic fields into the VSHs N,M of Eq. 2.18 is, except some
prefactors, identical to a multipole expansion in spherical coordinates [151]. The scattering
coefficients serve as the multipole moments. Please note, in this section a slightly different
formulation of the field expansion is used when compared to the historically established
one from Bohren and Huffman [54] of the last section. The only purpose is to derive more
symmetrical transformation rules when the Cartesian multipole moments are expressed in
terms of the spherical multipole moments, as will be shown later. The scattered electric field

extinction cross section

absorption cross section
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that account for the radius of the sphere with respect to the wavelength in the surrounding
(termed the size parameter) and to the refractive index contrast between the sphere and
the surrounding. From Eq. 2.20 it is clear that the T-matrix takes a simple diagonal form
containing the Mie coefficients of a single sphere
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The T-matrix has to be diagonal since the used eigenfunctions N,M were obtained by
solving the Helmholtz equation in spherical coordinates. Nevertheless, the VSHs and the
application of the T-matrix concept are not restricted to spherical objects. Instead they can
be equally applied to scatterers of an arbitrary shape [143, 144]. However, in the general
case the T-matrix is no longer diagonal. The off-diagonal entries explain how a given VSH
of the illumination is scattered into different VSHs describing the scattered field.

The knowledge of the T-matrix and therefore of the scattering coefficients anm, bnm for
any given incident field (decomposed into its expansion coefficients pnm, qnm) allows for the
calculations of measurable quantities in the far-field. Namely these are the scattering cross
section Csca, the extinction cross section Cext, and the absorption cross section Cabs [149]
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that account for the radius of the sphere with respect to the wavelength in the surrounding
(termed the size parameter) and to the refractive index contrast between the sphere and
the surrounding. From Eq. 2.20 it is clear that the T-matrix takes a simple diagonal form
containing the Mie coefficients of a single sphere
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The T-matrix has to be diagonal since the used eigenfunctions N,M were obtained by
solving the Helmholtz equation in spherical coordinates. Nevertheless, the VSHs and the
application of the T-matrix concept are not restricted to spherical objects. Instead they can
be equally applied to scatterers of an arbitrary shape [143, 144]. However, in the general
case the T-matrix is no longer diagonal. The off-diagonal entries explain how a given VSH
of the illumination is scattered into different VSHs describing the scattered field.

The knowledge of the T-matrix and therefore of the scattering coefficients anm, bnm for
any given incident field (decomposed into its expansion coefficients pnm, qnm) allows for the
calculations of measurable quantities in the far-field. Namely these are the scattering cross
section Csca, the extinction cross section Cext, and the absorption cross section Cabs [149]
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Metallic nanoparticles - size effects

silver sphere surrounded by air

abs sca

smaller spheres absorb stronger

larger spheres     resonance red-shift and higher 
order resonances
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Metallic nanoparticles - the dipolar resonance
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Metallic nanoparticles - the quadruoplar resonance
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RAg = 40nm
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Impact of a dielectric surrounding

� = 4⇤R3 ⇥1(⌅)� ⇥2
⇥1(⌅) + 2⇥2



|Ex| |Ez| |Ey|

in the x-z-plane at λ=633nm, rCore = 15 nm, nShell = 1.5, rShell = 30 nm 

analysing metallic nano particles in 3D with or without covering 
layers

Mie theory for spheres
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Computational Photonics
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Scattering theory: 
fully dynamic sphere


