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Scattering theory: 
extensions



For arbitrary shaped particles

“basically” exactly the same; but more multipoles are necessary 
for fulfilling the boundary conditions 


(multipoles = points around which the fields are expanded in spherical waves)


fields in homogenous domains are written as superposition of multipoles

fulfilment of the boundary conditions gives the amplitudes of each mode

multipoles outside describe the field inside

multipoles inside describe the field outside

problems in finding appropriate position for multipoles and the 
number of expansion orders

Multiple Multipole Method

For arbitrary shaped particles

Basically exactly the same; but more multipoles are necessary for 
fulfilling the boundary conditions 

(multipoles = points around which the fields are expanded in spherical waves)

Fields in homogenous domains are written as superposition of multipoles

Fulfillment of the boundary conditions gives the amplitudes of each mode

Multipoles outside describe the field inside

Multipoles inside describe the field outside

Problems in finding appropriate position for multipoles and the number 

of expansion orders

Single objects

Multiple Multipole Method
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useful for the simulation of a larger number of diffraction events on the same structure

time consuming finding appropriate position of the multipoles

(r=0.3λ, n=1.2, ω=λ, TE)

Multiple Multipole Method

investigation of the 
force on nano 

particles

particle in a Gaussian 
beam 
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(rRef=0.01λ, n=1.5, ω=λ, TE)

Multiple Multipole Method
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useful for the simulation of a larger number of diffraction events on the same structure

time consuming finding appropriate position of the multipoles

investigation of the 
force on nano 

particles

particle in a Gaussian 
beam 



Scattering problem solved by the Greens function
6 Scattering calculations with the Green’s tensor technique
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Figure 2.1. Typical geometry under study. Several scatterers with permittivity
ε(r) are embedded in a stratified background composed of L layers with
respective permittivity εl, l = 1, . . . , L. Note that the first and last layers
are semi–infinite media.

the Green’s tensor. We start with the general 3D case and then partic-
ularize the formalism for 2D geometries. The detailed derivation of the
Green’s tensors associated with a stratified medium (3D and 2D) will be
presented in chapter 3.

2.1 Electric field integral equation

When a scattering system is illuminated with an incident electric field
E0(r) propagating in the background, the total field E(r) is a solution
of the vectorial wave equation [37]:

∇×∇× E(r) − k2
0ε(r)E(r) = 0 , (2.1)

where k2
0 = ω2ε0µ0 is the vacuum wave number. The incident field E0(r)

must fulfill the vectorial wave equation for the bare stratified background:

∇×∇× E0(r) − k2
0εκE

0(r) = 0 , r ∈ layer κ . (2.2)

Introducing the dielectric contrast

∆ε(r) = ε(r) − εκ , r ∈ layer κ , (2.3)

Thesis of M. Paulus @ ETHZ 



Formulation of the scattering problem

electric field is a solution to the vectorial wave equation

⇤⇥⇤⇥E(r)� k2
0�(r)E(r) = 0 ⇥ · �(r)E(r) = 0

⇤⇥⇤⇥E(r)� k2
0�B(r)E(r) = k2

0 [�(r)� �B(r)]E(r)

medium decomposed into background and scatterer

�(r) = �B(r) + ��(r)

time harmonic oscillating field with a fixed frequency e�i�t
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Lippmann-Schwinger equation 

⇤⇥⇤⇥E(r)� k2
0�B(r)E(r) = k2

0��(r)E(r)



Basic idea of a Greens functions

⇤⇥⇤⇥E0(r)� k2
0�B(r)E0(r) = 0

E(r) = E0(r) + ES(r)

partial solution

(scattered field)

Green’s function 
of the system
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ES(r) = k2
0

�
��(r)G(r, r�) · E(r�)dr�

solution to inhomogenous differential equation is given 
by the sum of the homogenous and partial solution:

incident field

G(r, r0)

for inhomogenous 
background 

G(r, r0) 6= G(r� r0)



Properties of the Greens functions

solution to a wave equation with a point source term

k2
0 =

�2

c2
with:                   and 1 =

�

⇤
1 0 0
0 1 0
0 0 1

⇥

⌅

⇤⇥⇤⇥G(r, r�)� k2
0⇥(r)G(r, r�) = 1�(r� r�)

point source is represented by three orthogonal dipoles

G(r, r�) =

�

⇤
Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

⇥

⌅

⇤ · ⇥(r)G(r, r�) = �⇤ · �(r� r�)1
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Basic idea of a Greens functions

point like excitation of a field in space

9

Greens function describes the response of an 
environment to this singular excitation 

e.g. the field value in every point    upon excitation atr r�

2D Greens function 
free space



Basic idea of a Greens functions
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2D Greens function 
half space

(position 

dependent!) 

point like excitation of a field in space

Greens function describes the response of an 
environment to this singular excitation 

e.g. the field value in every point    upon excitation atr r�



Basic idea of a Greens functions
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2D Greens function 
half space + 

cylinder

(position 

dependent!) 

point like excitation of a field in space

Greens function describes the response of an 
environment to this singular excitation 

e.g. the field value in every point    upon excitation atr r�



Greens function of the homogenous (free) space

GH(r, r�) =
�
1 +

��
k2

B

⇥
eikBR

4�R

R =| R |=| r� r� |

P. M. Morse and H. Feshbach, Methods of Theoretical Physics  (McGraw–Hill, New York, 1953)

solution to the wave vector equation with a point source

k2
B =

⇥2

c2
�B

last term is called the free space scalar Greens function

G0(R) =
eikBR

4�R
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Greens function of the homogenous (free) space

GH(r, r0) = G(0)
H

(r, r0) +G(1)
H

(r, r0) +G(2)
H

(r, r0)

G(0)
H

(r, r0) =

✓
1� RR

| R |2

◆
G0(r, r

0)

G(1)
H

(r, r0) =

✓
1
ikB | R |
k2
B
| R |2 �RR

3ikB | R |
k2
B
| R |4

◆
G0(r, r

0)

G(2)
H

(r, r0) =

✓
1

�1

k2
B
| R |2 +RR

3i

k2
B
| R |4

◆
G0(r, r

0)

far-field term

near-field termsG(0)
H

(r, r0) =

✓
1� RR

| R |2

◆
G0(r, r

0)

G(1)
H

(r, r0) =

✓
1
ikB | R |
k2
B
| R |2 �RR

3ikB | R |
k2
B
| R |4

◆
G0(r, r

0)
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H

(r, r0) =

✓
1

�1

k2
B
| R |2 +RR
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B
| R |4

◆
G0(r, r

0)
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Lippmann-Schwinger equation

in general challenging to solve because           appears on both sidesE(r)

simplifications are possible, e.g. first order Born series

E(r) � E0(r)
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E(r) = E0(r) + k2
0

�
��(r)G(r, r�) · E(r�)dr�

E(r) = E0(r) + k20

Z
4✏(r)G(r, r0) ·E0(r

0)dr0

directly solvable, integral expresses the scattering from a 
polarisable medium where the magnitude of polarisation 
depends on permittivity contrast and incident field amplitude



Solving the scattering problem

numerical solution necessary beyond lowest order perturbation theory

numerical problem is the singularity of the Green’s function at

source (self-term) dyadic has to be taken explicitly into account

equation has to be discretized and solved
15

�V � 0
E(r) = E0(r) + lim

�

V ��V
k2
0��(r)G(r, r⇥) · E(r⇥)dr⇥ � L · ��(r)

�B
E(r)

E(r) = E0(r) + k2
0

�
��(r)G(r, r�) · E(r�)dr�

G(r, r)



actually necessary to use a smaller mesh when the dielec-
tric contrast is larger. To that extent, one can expect
that the convergence of this scheme will be similar to that
observed for scattering calculations in a homogeneous
background. We refer the reader to Ref. 37, where this
point was discussed in detail.

Keeping in mind that the discrete dielectric contrast
!" i ! " i " "# depends on the permittivity of the layer #
where mesh i is located, we can write the discretized sys-
tem of equations that correspond to Eq. (4):

Ei ! Ei
0 # $

j!1

N

Gi,j
I • k0

2!" jEjVj

# $
j!layer #

j%i

Gi,j
D • k0

2!" jEjVj # Mi • k0
2!" iEi

" L • !" i

"#
Ei , i ! 1 ,..., N. (5)

The self-term Mi is obtained in a similar manner as for an
infinite homogeneous background:30

Mi ! lim
&V→0

!
Vi"&V

dr!GD'ri , r!(

!
2

3k#
2 )'1 " ik# Ri

eff(exp'ik# Ri
eff( " 1*1, (6)

where Ri
eff is the effective radius of mesh i:

Ri
eff ! " 3

4+
Vi# 1/3

. (7)

For the integration in Eq. (6) we assumed a spherical ex-
clusion volume &V. The corresponding source dyadic is36

L !
1

3
1. (8)

Note in Eq. (6) the effective wave number k# ! k0!"# in
layer #.

The system of Eq. (5) represents the self-consistent in-
teraction of N dipoles. Unlike for the coupled dipole ap-
proximation in vacuum, each dipole is now a dipole em-
bedded in a stratified background, and the interaction
includes all possible reflections and refractions at the L
" 1 interfaces.

This system of equations is best solved numerically
with an iterative solver.29,38 Let us mention that, in a
stratified medium, the Green’s tensor does not have the
same symmetry properties as in an infinite homogeneous
background. In particular,

G'r, r!( % G'r " r!(. (9)

It is therefore not possible to rewrite Eq. (1) as a convolu-
tion and to use a 3D fast Fourier transform to perform the
integration.39 It is, however, possible to use reduced
symmetry properties in the x,y plane to expedite the
computation.33

One of the advantages of the technique presented in
this paper lies in the fact that only the scatterers must be
discretized, the background being accounted for in the

Green’s tensor. Similarly, the interaction of scatterers
located at large distances from one another does not re-
quire the discretization of the stratified background be-
tween them. Further, the complex boundary conditions
at the edges of the computational window are automati-
cally fulfilled, since they are included in the Green’s ten-
sor.

We mentioned that Eq. (1) is an implicit equation for
the field E(r). Actually, this is the case only when r is
located inside a scatterer. When r is located in the
stratified background, Eq. (1) gives the field explicitly by
integration on the scatterers’ volume [!"(r!) ! 0 when r!
is in the background]. From a physical point of view, this
means that knowledge of the field inside all the scatterers
allows one to compute the field at any point in the strati-
fied background. This can be used to expedite the calcu-
lation by first computing and storing the solution of Eq.
(5) only for the discretized points inside the scatterers and
then using this solution at a later stage to obtain the field
in the background. Note that the last step does not ne-
cessitate the solution of a system of equations but re-
quires only simple vector matrix multiplications.

Fig. 3. Solving the scattering problem numerically requires that
only the scatterers in the structure must be discretized. The
sole constraint on the discretization is that a mesh cannot sit
astride a boundary between two layers.

Fig. 4. The incident field must be a solution of the wave equa-
tion for the stratified background. It can correspond, for ex-
ample, (a) to a plane wave impinging on the system or (b) to a
waveguide mode propagating in the stratified background.

856 J. Opt. Soc. Am. A/Vol. 18, No. 4 /April 2001 M. Paulus and O. J. F. Martin

Discretising the scatterer

��i = ��i(r) |r�Vi� ��(ri)

Ei = Ei(r) |r�Vi� E(ri)

Thesis of M. Paulus @ ETHZ 



Discretizing the equation

Computer Physics Communication, 

144, 111 (2002)

Ei = E0
i

+
N�

j=1, j �=i

Gi,j · k2
0��jEjVj

+Mi · k2
0��iEi

�L · ��i

�B
Ei
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Calculating the self action terms 

finiteness of the exclusion volume requires to solve in principle for

Mi = lim
�

Vi��V
dr⇥G(ri, r⇥)

difficult to evaluate but detrimental for numerical precision

analytical expressions are available for certain shapes of volumes 

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region”, 

Proc. IEEE 68, 248 (1980)

for example assuming a sphere 

Mi =
2

3k2
f

⇤�
1� ikfRe�

i

⇥
eikf Reff

i � 1
⌅
1

Re�
i =

�
3
4�

Vi

⇥1/3
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Calculating the self action terms 

L =
1
3
1

19

one has to solve in principle for

Mi = lim
�

Vi��V
dr⇥G(ri, r⇥)

difficult to evaluate but detrimental for numerical precision

analytical expressions are available for certain shapes of volumes 

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region”, 

Proc. IEEE 68, 248 (1980)

for example assuming a sphere 



Solving the equation

�

⇧⇧⇧⇧⇧⇧⇤

Ex
1

Ey
1

Ez
1

Ex
2

Ey
2

Ez
2

⇥

⌃⌃⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇧⇧⇤

E0x
1

E0y
1

E0z
1

E0x
2

E0y
2

E0z
2

⇥

⌃⌃⌃⌃⌃⌃⌅

system of linear equations can be solved 
by standard matrix inversion techniques 

A
20



Solving the equation

�

⇧⇧⇧⇧⇧⇧⇧⇤

1�Mxx
1 k2

0�⇥1 + Lxx
1

�⇥1
⇥B

0 0 �Gxx
12 k2

0�⇥2V2 �Gxy
12k2

0�⇥2V2 �Gxz
12k2

0�⇥2V2

0 1�Myy
1 k2

0�⇥1 + Lyy
1

�⇥1
⇥B

0 �Gyx
12k2

0�⇥2V2 �Gyy
12k2

0�⇥2V2 �Gyz
12k2

0�⇥2V2

0 0 1�Mzz
1 k2

0�⇥1 + Lzz
1

�⇥1
⇥B

�Gzx
12k2

0�⇥2V2 �Gzy
12k2

0�⇥2V2 �Gzz
12k

2
0�⇥2V2

�Gxx
21 k2

0�⇥1V1 �Gxy
21k2

0�⇥1V1 �Gxz
21k2

0�⇥1V1 1�Mxx
2 k2

0�⇥2 + Lxx
2

�⇥2
⇥B

0 0
�Gyx

21k2
0�⇥1V1 �Gyy

21k2
0�⇥1V1 �Gyz

21k2
0�⇥1V1 0 1�Myy

2 k2
0�⇥2 + Lyy

2
�⇥2
⇥B

0
�Gzx

21k2
0�⇥1V1 �Gzy

21k2
0�⇥1V1 �Gzz

21k
2
0�⇥1V1 0 0 1�Mzz

2 k2
0�⇥2 + Lzz

2
�⇥2
⇥B

⇥

⌃⌃⌃⌃⌃⌃⌃⌅

A =
a fraction of the matrix is

21



Weak vs. strong formulation

neglecting the source terms simplifies the implementation: weak formulation  

22

approximating the object in terms of small spheres

numerical strategy called discrete dipole approximation

treating the spheres in the dipole limit and solve self-consistently the scattering 
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Weak vs. strong formulation

Vol. 11, No. 4/April 1994/J. Opt. Soc. Am. A 1493

field could be taken to be uniform over cubical regions
of volume d 3, and this assumption itself introduces errors
of O[(kd)2].26 Another approach was taken by Dungey
and Bohren,2 7 who arrived at a different O[(kd)2 ] correc-
tion by requiring that each point dipole have the same
polarizability as a finite sphere of diameter d, but with a
modified dielectric constant.

To clarify this issue Draine and Goodman2 6 considered
the following problem: for what polarizability a(Co)
will an infinite lattice of polarizable points have the
same dispersion relation as a continuum of refractive
index m(co)? The lattice dispersion relation (LDR) may
be found analytically; in the long-wavelength limit
kd << 1, the polarizability a(co) is given as a series
expansion in powers of kd and m2 = :

a LDR 

surface monolayer. As a result, when ml >> 1 the DDA
can seriously overestimate absorption cross sections, even
in the dc limit Imlkd << 1. For materials with ml >> 1 it
appears that other techniques (e.g., the method of Rouleau
and Martin29 ) may be superior to the DDA.

4. COMPUTATIONAL CONSIDERATIONS
A. Scattering Problem
The electromagnetic scattering problem must be solved
for the target array of point dipoles (j = 1, ... , N) with
polarizabilities aj, located at positions r. Each dipole
has a polarization Pj = aEj, where Ej is the electric
field at r that is due to the incident wave En =
Eo exp(ik r - it) plus the contribution of each of the

aCM
1 + (aCM/d3)[(bi + m2b2 + m2b3S)(kd)2 - (2/3)i(kd)3]' (2)

bi = -1.891531,

b3 = -1.7700004,

b2 = 0.1648469,
3

_ 1 (e)2
j=1

other N - 1 dipoles:

(3)
Ej = Eincj - AjkPk,

k~j
where and are unit vectors defining the incident
direction and the polarization state. The O[(kd)2] term
in the LDR expansion differs from previously proposed
corrections.16' 2 0' 21'27 The LDR prescription for a(w) is,
by construction, optimal for wave propagation on an infi-
nite lattice, and it is reasonable to assume that it will
also be a good choice for finite dipole arrays. Exten-
sive DDA calculations for spheres, comparing different
prescriptions for the dipole polarizability, confirm that
the LDR prescription appears to be best for mlkd < 1.26
The different prescriptions have also been compared in
calculations of scattering by two touching spheres2 8 (see
Fig. 9 below).

C. Validity Criteria
There are two obvious criteria for validity of the DDA:
(1) lmlkd ' 1 (so that the lattice spacing d is small com-
pared with the wavelength of a plane wave in the target
material), and (2) d must be small enough (N must be
large enough) to describe the target shape satisfactorily.

Define the effective radius aeff of a target of volume V
by aeff (3V/4v-)"3 . The first criterion is then equiva-
lent to

N > (47r/3)lml 3 (kaeff)3 . (4)

Thus targets with large values of ml or scattering prob-
lems with large values of kaeff will require that large
numbers of dipoles be used to represent the targets.

Unfortunately the second criterion has not yet been
formulated precisely. Draine6 shows that even in the
kd - 0 limit the polarizations are too large in the surface
monolayer of dipoles in a pseudosphere, and similar errors
must also occur for other target shapes. As a result the
rate of energy absorption by the dipoles in the surface
monolayer is too large, which leads to an error in the
overall absorption cross section in proportion to the frac-
tion -N- 3 of the total volume that is contributed by the

where -AjkPk is the electric field at r that is due to
dipole Pk at location rk, including retardation effects.
Each element Ajk is a 3 X 3 matrix:

= exp(ikrjk)A jk, = ~ 3 1
rjk

X Fk2 (jk r jk r13 ) + - (31Pk jk -13)

j k, (6)

where k coc, rjk rj - rk, rjk (rj - rk)/rjk, and
13 is the 3 X 3 identity matrix. Defining Ajj = aj- re-
duces the scattering problem to finding the polarizations
Pj that satisfy a system of 3N complex linear equations:

N
Y AjkPk = Emcj.

k=1
(7)

Once Eq. (7) has been solved for the unknown polariza-
tions Pj, the extinction and absorption cross sections Cext
and Cabs may be evaluated6 :

4irk NCext = Y Im(Ein * j)IEoJ2 _j (8)

Cabs = 4Jl- 1 { I [P * (aj-7)*Pj*1 - 2 k3IPi2}. (9)

The scattering cross section Csca = Cext - Cabs. Dif-
ferential scattering cross sections may also be directly
evaluated once the Pj are known.6 In the far field the

(5)

B. T. Draine and P. J. Flatau
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To clarify this issue Draine and Goodman2 6 considered
the following problem: for what polarizability a(Co)
will an infinite lattice of polarizable points have the
same dispersion relation as a continuum of refractive
index m(co)? The lattice dispersion relation (LDR) may
be found analytically; in the long-wavelength limit
kd << 1, the polarizability a(co) is given as a series
expansion in powers of kd and m2 = :

a LDR 

surface monolayer. As a result, when ml >> 1 the DDA
can seriously overestimate absorption cross sections, even
in the dc limit Imlkd << 1. For materials with ml >> 1 it
appears that other techniques (e.g., the method of Rouleau
and Martin29 ) may be superior to the DDA.

4. COMPUTATIONAL CONSIDERATIONS
A. Scattering Problem
The electromagnetic scattering problem must be solved
for the target array of point dipoles (j = 1, ... , N) with
polarizabilities aj, located at positions r. Each dipole
has a polarization Pj = aEj, where Ej is the electric
field at r that is due to the incident wave En =
Eo exp(ik r - it) plus the contribution of each of the

aCM
1 + (aCM/d3)[(bi + m2b2 + m2b3S)(kd)2 - (2/3)i(kd)3]' (2)

bi = -1.891531,

b3 = -1.7700004,

b2 = 0.1648469,
3

_ 1 (e)2
j=1

other N - 1 dipoles:

(3)
Ej = Eincj - AjkPk,

k~j
where and are unit vectors defining the incident
direction and the polarization state. The O[(kd)2] term
in the LDR expansion differs from previously proposed
corrections.16' 2 0' 21'27 The LDR prescription for a(w) is,
by construction, optimal for wave propagation on an infi-
nite lattice, and it is reasonable to assume that it will
also be a good choice for finite dipole arrays. Exten-
sive DDA calculations for spheres, comparing different
prescriptions for the dipole polarizability, confirm that
the LDR prescription appears to be best for mlkd < 1.26
The different prescriptions have also been compared in
calculations of scattering by two touching spheres2 8 (see
Fig. 9 below).

C. Validity Criteria
There are two obvious criteria for validity of the DDA:
(1) lmlkd ' 1 (so that the lattice spacing d is small com-
pared with the wavelength of a plane wave in the target
material), and (2) d must be small enough (N must be
large enough) to describe the target shape satisfactorily.

Define the effective radius aeff of a target of volume V
by aeff (3V/4v-)"3 . The first criterion is then equiva-
lent to

N > (47r/3)lml 3 (kaeff)3 . (4)

Thus targets with large values of ml or scattering prob-
lems with large values of kaeff will require that large
numbers of dipoles be used to represent the targets.

Unfortunately the second criterion has not yet been
formulated precisely. Draine6 shows that even in the
kd - 0 limit the polarizations are too large in the surface
monolayer of dipoles in a pseudosphere, and similar errors
must also occur for other target shapes. As a result the
rate of energy absorption by the dipoles in the surface
monolayer is too large, which leads to an error in the
overall absorption cross section in proportion to the frac-
tion -N- 3 of the total volume that is contributed by the

where -AjkPk is the electric field at r that is due to
dipole Pk at location rk, including retardation effects.
Each element Ajk is a 3 X 3 matrix:

= exp(ikrjk)A jk, = ~ 3 1
rjk

X Fk2 (jk r jk r13 ) + - (31Pk jk -13)

j k, (6)

where k coc, rjk rj - rk, rjk (rj - rk)/rjk, and
13 is the 3 X 3 identity matrix. Defining Ajj = aj- re-
duces the scattering problem to finding the polarizations
Pj that satisfy a system of 3N complex linear equations:

N
Y AjkPk = Emcj.

k=1
(7)

Once Eq. (7) has been solved for the unknown polariza-
tions Pj, the extinction and absorption cross sections Cext
and Cabs may be evaluated6 :

4irk NCext = Y Im(Ein * j)IEoJ2 _j (8)

Cabs = 4Jl- 1 { I [P * (aj-7)*Pj*1 - 2 k3IPi2}. (9)

The scattering cross section Csca = Cext - Cabs. Dif-
ferential scattering cross sections may also be directly
evaluated once the Pj are known.6 In the far field the

(5)
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scattered electric field is given by

Eca = exp(ikr) exp(-iki rj)(PP - 13 )Pj- (10)

The problem is that matrix A is large and full, i.e., a
matrix that in general has few zero elements. We would
like (1) to solve the linear system of Eq. (7) efficiently and
(2) to solve efficiently for multiple cases of the incident
plane wave Enc. LU decomposition3 0 is the method of
choice for small problems. It solves problem (2) because
once the LU decomposition has been obtained the so-
lution for a new right-hand side Einc requires just one
matrix-vector multiplication. However, it is not feasible
or efficient for large problems because of the need to store
A and the LU decomposition and because of computer
time that is proportional to N3 .

For homogeneous, rectangular targets the matrix A
has block-Toeplitz symmetry,3' and algorithms exist for
finding A-' in O(N2 ) operations rather than in the O(N 3)
operations that are required for general matrix inversion.
It seems possible that the fundamental symmetries of A
may permit efficient algorithms for finding A-' even for
targets that are inhomogeneous or nonrectangular.

B. Complex-Conjugate Gradient Method
Rather than direct methods for solving Eq. (7), CCG
methods for finding P iteratively have proven effective
and efficient. The particular CCG algorithm that is
used in DDSCAT is described by Draine.6 As P has 3N
unknown elements, CCG methods in general are only
guaranteed to converge in 3N iterations. In fact, how-
ever, _ 10_102 iterations are often found to be sufficient
to obtain a solution to high accuracy.63 2 The choice
of conjugate-gradient variant may influence the conver-
gence rate. 33 4 5

When N is large, CCG methods are much faster than
are direct methods for finding P. The fact that CCG
methods in practice converge relatively rapidly is presum-
ably a consequence of the basic symmetries of A.

As an iterative technique the CCG requires an ini-
tial guess for P. The simplest choice is P = 0. At-
tempts to improve on this by use of the scattering-order
approximation3 6 as a first estimate for P were found to
offer little, if any, advantage over starting with P = 0.6

The iterative method that is described here must
be repeated for each incident plane wave [cf. Eq. (7)].
Notice that if we had A-' then for each new incident wave
Einc the solution P = A-'Emc would be obtained from a
single matrix-vector multiplication. In principle we can
recover eigenvalues and eigenvectors from conjugate-
gradient iteration.3 7 38 Some attempts to improve the
efficiency of the conjugate-gradient method for multiple
incident electromagnetic fields have been reported.34 39 '
FORTRAN implementations of approximately 15 CCG
methods are available from us.42

C. Fast Fourier Transforms
The computational burden in the CCG method primar-
ily consists of matrix-vector multiplications of the form
A v. Goodman et al.3 2 show that the structure of the
matrix A implies that such multiplications are essen-
tially convolutions, so that FFT methods can be employed

to evaluate A v in O(N ln N) operations rather than
in the 0(N 2) operations that are required for general
matrix-vector multiplication. Since N is large this is
an important calculational breakthrough. As mentioned
above, FFT methods require that the dipoles be situated
on a periodic lattice, which is most simply taken to be
cubic.

FFT methods in effect require the computation of three-
dimensional FFT's over 8NXNYNZ points, where NXNyNz
is the number of sites in a rectangular region of the lattice
containing all the N occupied lattice sites. Therefore, in
the case of a fractal structure with a large volume-filling
factor for vacuum, FFT methods may lose some of their
advantage over conventional techniques for evaluating
A * v, since NX.NNZ may be much larger than the actual
number of dipoles N.

We note that CCG and FFT techniques are routinely
used for numerical solutions of electromagnetic problems
in engineering.3 44 3 ,4 4

D. Memory and CPU Requirements
If the N dipoles were located at arbitrary positions rj,
then the 9N2 elements of A would be nondegenerate.
Storage of these elements (with 8 bytes/complex number)
would require 72(N/103 )2 Mbytes. By locating the
dipoles on a lattice, the elements of A become highly
degenerate, since they depend only on the displacement
rj - r,. As a result the memory requirements depend
approximately linearly on N rather than on N 2 . The
program DDSCAT has a total memory requirement of
-0.58(N.NN./1000)'Mbytes, where N. X N, X N is
the rectangular volume containing all the N dipoles.
Thus for a target fitting into a 32 32 x 32 portion of
the lattice (e.g., an N = 17,904 pseudosphere), DDSCAT
requires -19 Mbytes of memory. We therefore see that
memory requirements begin to be a consideration for
targets that are much larger than -104 dipoles.

The CPU requirements also are significant for large
targets. On a Sun 4/50 (Sparcstation IPX), a single
CCG iteration requires 3.0(N.NyN,/10 3 ) CPU s; thus
one iteration for a N = 17,904 pseudosphere requires
-100 CPU s. Between 10 and 102 iterations are typi-
cally necessary to solve for a single incident direction
and polarization; thus orientational averaging with the
DDA can be time consuming if many target orientations
are required. It is for this reason that T-matrix
methods,4 5 46 which exploit efficient procedures for ori-
entational averaging,4 7 are competitive for some target
geometries as well as recursive T-matrix algorithms
currently being developed by Chew and Lu4 8 and Chew
et al. 4 9

5. ACCURACY OF THE DISCRETE-DIPOLE
APPROXIMATION
At this time there is no known way to predict precisely
the accuracy of DDA calculations. Instead we rely on ex-
amples to guide us. Spheres are most convenient since
exact solutions are readily available for comparison.
Note that the DDA does not give preferential treatment to
any geometry (with the possible exception of rectangular
targets), so spheres constitute a representative test of
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