Computational Photonics

Scattering theory:
extensions



Multiple Multipole Method

For arbitrary shaped particles

"basically” exactly the same; but more multipoles are necessary
for fulfilling the boundary conditions

(multipoles = points around which the fields are expanded in spherical waves)

fields in homogenous domains are written as superposition of multipoles
fultiiment of the boundary conditions gives the amplitudes of each mode

multipoles inside describe the field outside

problems in finding appropriate position for multipoles and the
number of expansion orders



Multiple Multipole Method

useful for the simulation of a larger number of diffraction events on the same structure
time consuming finding appropriate position of the multipoles
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Multiple Multipole Method

useful for the simulation of a larger number of diffraction events on the same structure
time consuming finding appropriate position of the multipoles
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Scattering problem solved by the Greens function

EO \%\kkkx / //E' €5

ZA €1

Thesis of M. Paulus @ ETHZ



Formulation of the scattering problem
O time harmonic oscillating tield with a tixed frequency e 1wt

O electric field is a solution to the vectorial wave equation
VxVxE(®r)—kie(r)E(r)=0 V-e(r)E(r)=0

O medium decomposed into background and scatterer

e(r) = eg(r) + Ae(r)

Lippmann-Schwinger equation



Basic idea of a Greens functions

O solution to inhomogenous differential equation is given
by the sum of the homogenous and partial solution:

E(r) = Eq(r) + Eg(r)

— incidentfield V x V x Eyg(r) — kjer(r)Eo(r) = 0

—> partial solution Eq(r) = k%/Ae(r)G(r,r’) E(r')dr’

(scattered field)

Green's function for inhomogenous
of the system background

G(r,r') G(r,r') # G(r — ')



Properties of the Greens tfunctions

O solution to a wave equation with a point source term

O point source is represented by three orthogonal dipoles

VXV x G(r,t') — ke(r)G(r,r') = 16(r — 1°)
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V- e(r)G(r,r') = -V -(r —r')1
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Basic idea of a Greens functions

O point like excitation of a field in space

—>  Greens function describes the response of an
environment to this singular excitation

. . . e /
= e.g. the field value in every point T'upon excitation atr

2D Greens function
free space




Basic idea of a Greens functions

O point like excitation of a field in space

—>  Greens function describes the response of an
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dependent!)
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Basic idea of a Greens functions

O point like excitation of a field in space

—>  Greens function describes the response of an
environment to this singular excitation

. . . e /
= e.g. the field value in every point T'upon excitation atr

2D Greens function
halt space +
cylinder
(position
dependent!)
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Greens function of the homogenous (free) space

—> solution to the wave vector equation with a point source

VYV efBi
k% A 5

Gg(r,r')= (11

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)
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—> last term is called the free space scalar Greens function
eikBR
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Greens function of the homogenous (free) space
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far-tfield term

R
G(HO)(r,r’) — (1 ‘RR P) Go(r,r’)

near-field terms
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Lippmann-Schwinger equation
E(r) = Eo(r) + k¢ / Ae(r)G(r,r") - E(r')dr’

O in general challenging to solve because E(I‘)appears on both sides

O simplifications are possible, e.qg. first order Born series

E(r) ~ Eq(r)

Eir - . rf £k / Ne(r)G(r,r’) - Eo(r')dr’

O directly solvable, integral expresses the scattering from a
polarisable medium where the magnitude of polarisation
depends on permittivity contrast and incident field amplitude 14



Solving the scattering problem
E(r) = Eq(r) + k§ / Ae(r)G(r,r’) - E(r')dr’

O numerical solution necessary beyond lowest order perturbation theory
O numerical problem is the singularity of the Green'’s function at G(r’ r)

O source (self-term) dyadic has to be taken explicitly into account

E(I') — EO(I') + lim ]C(Q)AE(I')G(I'7 I'/) : E(I")dr’ o E AE(I’)

E(r)
aVee R Al sy €EB

—> equation has to be discretized and solved
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Discretising the scatterer

e -

Ae; = A€ (1) |rev,~ Ae(r;)

E; = Ei(r) |rev,~ E(r;)
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Discretizing the equation
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Calculating the self action terms

finiteness of the exclusion volume requires to solve in principle for

. / /
M, = lim dr'G(r;, ")
V=8V
difficult to evaluate but detrimental for numerical precision

analytical expressions are available for certain shapes of volumes

A. D. Yaghjian, “Electric dyadic Green'’s functions in the source region”,
Proc. IEEE 68, 248 (1980)

for example assuming a sphere
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Calculating the self action terms

one has to solve in principle for

M, = lim dr'G(r;,r")
Vi—oV

difficult to evaluate but detrimental for numerical precision

analytical expressions are available for certain shapes of volumes

A. D. Yaghjian, “Electric dyadic Green'’s functions in the source region”,
Proc. IEEE 68, 248 (1980)

for example assuming a sphere
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Solving the equation

E: B
EY B
E: | | EY
Ez |7 | EY
E; B,
Ej EY?

system of linear equations can be solved

by standard matrix inversion techniques



Solving the equation

O 3 fraction of the matrix is

" 1 — M{"k§de; + Li™ 9 0 0 — G2 k25e, Vs
0 1 — M{Vk3dey + LYV 0 —GY5k26ex Vo
0 0 1 — M{*k§de; + L7792 —G%2k26e3 V3
—GEk25e Vi ~G5Vk26e1 V3 —G% k256 V) 1 — M3"k3dey + Lg" 22
—Ggfkgéelvl —Gg?fk%éélvl —Ggfkgéeﬂ/l 0
—G;gfk85€1‘/1 —G;%k85€1‘/1 —Gg’fk%éGlVl 0
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Weak vs. strong formulation

O neglecting the source terms simplifies the implementation: weak formulation

O approximating the object in terms of small spheres
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O treating the spheres in the dipole limit and solve self-consistently the scattering

O numerical strategy called discrete dipole approximation
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Weak vs. strong formulation

individual polarisability simplified scattering equation
P; = a;K; Ej = Einoj ~ > AP
J

quantities of interest

4-7Tk & %
CBXt = ‘E I2 Z Im(Emc,j : PJ)
0 j=1
dmk < | - 2 ]
Cops = ToNE Zl Im[Pj . (Q{j 1)*Pj*] = 5- k3|Pj|2\.
J=L L !
far-field expression
k? exp(ikr) < .
B - > exp(—ikf - r;)(*f — 13)P;
j=1
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