
Computational Photonics

1

Outro

A practical guide to Computational Photonics

BEM FDTD

DDA

FMM

BKK

C-method

RCWA
MMP

Mie

BIM

BPM
FDIMGreen’s

PWA

FMMSVEA

ABC

Strategies to solve Maxwell’s equations I

3

• frequency-domain eigenproblems

! = !(k) Ax = !2Bx

elementary solution to Maxwell’s equations without source

dispersion relation field profile

• frequency-domain responses
J(r)e�i!ttime harmonic current source

field all electric and magnetic fields

• time-domain responses
current source J(r, t)

field all electric and magnetic fields

Strategies to solve Maxwell’s equations II

4

• finite differences: represent functions in space at discrete
points and derivatives as differences

f(x) ! fn ⇡ f(n�x)
@f

@x
! @fn

@x
⇡ fn+1 � fn�1

2�x

• finite elements: divide space into finite regions and expand
solution in these regions

• spectral methods: represent functions as a series expansion in a
complete basis set, truncate this series

• boundary-element
method:

discretize space at interfaces,
analytical expressions in

homogenous space

exploiting symmetries in geometry in the solution strategy

Calculating a band structure

5

MIT Photonic-Bands (MPB)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

• photonic crystals, waveguides, integrated optics

• guile scheme for programming a task

• isotropic, anisotropic materials, no dispersion

• visualisation using different h5 utilities

• frequency domain

• plane wave expansion, eigenvalue solver

Example MPB

6

06/02/2017, 08*55MPB Data Analysis Tutorial - AbInitio

Page 1 of 11http://ab-initio.mit.edu/wiki/index.php/MPB_Data_Analysis_Tutorial

MIT Photonic Bands
Download

Release notes
MPB manual
Introduction
Installation

User Tutorial
Data Analysis Tutorial

User Reference
Developer Information

Acknowledgements
License and Copyright

MPB Data Analysis Tutorial
From AbInitio

In the previous section, we focused on how to perform a calculation in MPB.
Now, we'll give a brief tutorial on what you might do with the results of the
calculations, and in particular how you might visualize the results. We'll focus
on two systems, one two-dimensional and one three-dimensional.

Contents

1 Triangular Lattice of Rods
1.1 The tri-rods.ctl control file
1.2 The tri-rods dielectric function
1.3 Gaps and and band diagram for tri-rods
1.4 The source of the TM gap: examining the modes

2 Diamond Lattice of Spheres
2.1 Diamond control file
2.2 Important note on units for the diamond/fcc lattice
2.3 Gaps and and band diagram for the diamond lattice
2.4 Visualizing the diamond lattice structure and bands

Triangular Lattice of Rods
First, we'll return to the two-dimensional triangular lattice of rods in air from the tutorial (see also our online
textbook (http://ab-initio.mit.edu/book) , ch. 5). The control file for this calculation, which can also be found in
mpb-ctl/examples/tri-rods.ctl, will consist of:

The tri-rods.ctl control file

(set! num-bands 8)

(set! geometry-lattice (make lattice (size 1 1 no-size)
 (basis1 (/ (sqrt 3) 2) 0.5)
 (basis2 (/ (sqrt 3) 2) -0.5)))
(set! geometry (list (make cylinder
 (center 0 0 0) (radius 0.2) (height infinity)
 (material (make dielectric (epsilon 12))))))

(set! k-points (list (vector3 0 0 0) ; Gamma
 (vector3 0 0.5 0) ; M
 (vector3 (/ -3) (/ 3) 0) ; K
 (vector3 0 0 0))) ; Gamma
(set! k-points (interpolate 4 k-points))

(set! resolution 32)

(run-tm (output-at-kpoint (vector3 (/ -3) (/ 3) 0)
 fix-efield-phase output-efield-z))
(run-te)

06/02/2017, 08*55MPB Data Analysis Tutorial - AbInitio

Page 1 of 11http://ab-initio.mit.edu/wiki/index.php/MPB_Data_Analysis_Tutorial

MIT Photonic Bands
Download

Release notes
MPB manual
Introduction
Installation

User Tutorial
Data Analysis Tutorial

User Reference
Developer Information

Acknowledgements
License and Copyright

MPB Data Analysis Tutorial
From AbInitio

In the previous section, we focused on how to perform a calculation in MPB.
Now, we'll give a brief tutorial on what you might do with the results of the
calculations, and in particular how you might visualize the results. We'll focus
on two systems, one two-dimensional and one three-dimensional.

Contents

1 Triangular Lattice of Rods
1.1 The tri-rods.ctl control file
1.2 The tri-rods dielectric function
1.3 Gaps and and band diagram for tri-rods
1.4 The source of the TM gap: examining the modes

2 Diamond Lattice of Spheres
2.1 Diamond control file
2.2 Important note on units for the diamond/fcc lattice
2.3 Gaps and and band diagram for the diamond lattice
2.4 Visualizing the diamond lattice structure and bands

Triangular Lattice of Rods
First, we'll return to the two-dimensional triangular lattice of rods in air from the tutorial (see also our online
textbook (http://ab-initio.mit.edu/book) , ch. 5). The control file for this calculation, which can also be found in
mpb-ctl/examples/tri-rods.ctl, will consist of:

The tri-rods.ctl control file

(set! num-bands 8)

(set! geometry-lattice (make lattice (size 1 1 no-size)
 (basis1 (/ (sqrt 3) 2) 0.5)
 (basis2 (/ (sqrt 3) 2) -0.5)))
(set! geometry (list (make cylinder
 (center 0 0 0) (radius 0.2) (height infinity)
 (material (make dielectric (epsilon 12))))))

(set! k-points (list (vector3 0 0 0) ; Gamma
 (vector3 0 0.5 0) ; M
 (vector3 (/ -3) (/ 3) 0) ; K
 (vector3 0 0 0))) ; Gamma
(set! k-points (interpolate 4 k-points))

(set! resolution 32)

(run-tm (output-at-kpoint (vector3 (/ -3) (/ 3) 0)
 fix-efield-phase output-efield-z))
(run-te)

Example MPB

7

06/02/2017, 08*55MPB Data Analysis Tutorial - AbInitio

Page 3 of 11http://ab-initio.mit.edu/wiki/index.php/MPB_Data_Analysis_Tutorial

The new epsilon.png output image is shown at right. As you can see, the rods are now
circular as desired, and they clearly form a triangular lattice.

Gaps and and band diagram for tri-rods

At this point, let's check for band gaps by picking out lines with the word "Gap" in them:

unix% grep Gap tri-rods.out
Gap from band 1 (0.275065617068082) to band 2 (0.446289918847647), 47.4729292989213%
Gap from band 3 (0.563582903703468) to band 4 (0.593059066215511), 5.0968516236891%
Gap from band 4 (0.791161222813268) to band 5 (0.792042731370125), 0.111357548663006%
Gap from band 5 (0.838730315053238) to band 6 (0.840305955160638), 0.187683867865441%
Gap from band 6 (0.869285340346465) to band 7 (0.873496724070656), 0.483294361375001%
Gap from band 4 (0.821658212109559) to band 5 (0.864454087942874), 5.07627823271133%

The first five gaps are for the TM bands (which we ran first), and the last gap is for the TE bands. Note, however
that the < 1% gaps are probably false positives due to band crossings, as described in the user tutorial. There are no
complete (overlapping TE/TM) gaps, and the largest gap is the 47% TM gap as expected (see our online textbook
(http://ab-initio.mit.edu/book) , appendix C). (To be absolutely sure of this and other band gaps, we would also
check k-points within the interior of the Brillouin zone, but we'll omit that step here.)

Next, let's plot out the band structure. To do this, we'll first extract the TM and TE bands as comma-delimited text,
which can then be imported and plotted in our favorite spreadsheet/plotting program.

unix% grep tmfreqs tri-rods.out > tri-rods.tm.dat
unix% grep tefreqs tri-rods.out > tri-rods.te.dat

The TM and TE bands are both plotted below against the "k index" column of the data, with the special k-points
labelled. TM bands are shown in blue (filled circles) with the gaps shaded light blue, while TE bands are shown in
red (hollow circles) with the gaps shaded light red.

06/02/2017, 08*55MPB Data Analysis Tutorial - AbInitio

Page 4 of 11http://ab-initio.mit.edu/wiki/index.php/MPB_Data_Analysis_Tutorial

Note that we truncated the upper frequencies at a cutoff of 1.0 c/a. Although some of our bands go above that
frequency, we didn't compute enough bands to fill in all of the states in that range. Besides, we only really care
about the states around the gap(s), in most cases.

The source of the TM gap: examining the modes

Now, let's actually examine the electric-field distributions for some of the bands (which were saved at the K point,
remember). Besides looking neat, the field patterns will tell us about the characters of the modes and provide some
hints regarding the origin of the band gap.

As before, we'll run mpb-data on the field output files (named e.k11.b*.z.tm.h5), and then run h5topng
to view the results:

unix% mpb-data -r -m 3 -n 32 e.k11.b*.z.tm.h5
unix% h5topng -C epsilon.h5:data-new -c bluered -Z -d z.r-new e.k11.b*.z.tm.h5

Here, we've used the -C option to superimpose (crude) black contours of the dielectric function over the fields, -c
bluered to use a blue-white-red color table, -Z to center the color scale at zero (white), and -d to specify the
dataset name for all of the files at once. man h5topng for more information. (There are plenty of data-
visualization programs available if you want more sophisticated plotting capabilities than what h5topng offers, of
course; you can use h5totxt to convert the data to a format suitable for import into e.g. spreadsheets.)

Note that the dataset name is z.r-new, which is the real part of the z component of the output of mpb-data.
(Since these are TM fields, the z component is the only non-zero part of the electric field.) The real and imaginary
parts of the fields correspond to what the fields look like at half-period intervals in time, and in general they are

06/02/2017, 08*55MPB Data Analysis Tutorial - AbInitio

Page 5 of 11http://ab-initio.mit.edu/wiki/index.php/MPB_Data_Analysis_Tutorial

different. However, at K they are redundant, due to the inversion symmetry of that k-point (proof left as an exercise
for the reader). Usually, looking at the real parts alone gives you a pretty good picture of the state, especially if you
use fix-efield-phase (see below), which chooses the phase to maximize the field energy in the real part.
Sometimes, though, you have to be careful: if the real part happens to be zero, what you'll see is essentially
numerical noise and you should switch to the imaginary part.

The resulting field images are shown below:

TM band 1 TM band 2 TM band 3 TM band 4 TM band 5 TM band 6 TM band 7 TM band 8

Your images should look the same as the ones above. If we hadn't included fix-efield-phase before
output-efield-z in the ctl file, on the other hand, yours would have differed slightly (e.g. by a sign or a lattice
shift), because by default the phase is random.

When we look at the real parts of the fields, we are really looking at the fields of the modes at a particular instant in
time (and the imaginary part is half a period later). The point in time (relative to the periodic oscillation of the state)
is determined by the phase of the eigenstate. The fix-efield-phase band function picks a canonical phase for
the eigenstate, giving us a deterministic picture.

We can see several things from these plots:

First, the origin of the band gap is apparent. The lowest band is concentrated within the dielectric rods in order to
minimize its frequency. The next bands, in order to be orthogonal, are forced to have a node within the rods,
imposing a large "kinetic energy" (and/or "potential energy") cost and hence a gap (see our online textbook
(http://ab-initio.mit.edu/book) , ch. 5). Successive bands have more and more complex nodal structures in order to
maintain orthogonality. (The contrasting absence of a large TE gap has to do with boundary conditions. The
perpendicular component of the displacement field must be continuous across the dielectric boundary, but the
parallel component need not be.)

We can also see the deep impact of symmetry on the states. The K point has C3v symmetry (not quite the full C6v
symmetry of the dielectric structure). This symmetry group has only one two-dimensional representation--that is
what gives rise to the degenerate pairs of states (2/3, 4/5, and 7/8), all of which fall into this "p-like" category
(where the states transform like two orthogonal dipole field patterns, essentially). The other two bands, 1 and 6,
transform under the trivial "s-like" representation (with band 6 just a higher-order version of 1).

Diamond Lattice of Spheres
"Then were the entrances of this world made narrow, full of sorrow and travail: they are but few and
evil, full of perils, and very painful." (Ezra 4:7)

Now, let us turn to a three-dimensional structure, a diamond lattice of dielectric spheres in air (see our online
textbook (http://ab-initio.mit.edu/book) , ch. 6). The basic techniques to compute and analyze the modes of this
structure are the same as in two dimensions, but of course, everything becomes more complicated in 3d. It's harder
to find a structure with a complete gap, the modes are no longer polarized, the computations are far bigger, and
visualization is much more difficult, for starters.

Finite-difference time-domain

8

MEEP (also from MIT)

http://ab-initio.mit.edu/wiki/index.php/Meep

• basically everything when it comes to scattering and diffraction
(less efficient for grating structures)

• guile scheme for programming a task

• isotropic, anisotropic materials, dispersion, nonlinear materials

• periodic and PML absorbing boundaries

• time domain, 1d, 2d, 3d, cylindrical

• space and time discretisation and a leap-frog-algorithm

• parallelised using MPI standard

• visualisation using different h5 utilities

http://ab-initio.mit.edu/wiki/index.php/Meep

9

Example MEEP

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 2 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Scheme language. Thus, there are three sources of possible commands and syntax for a ctl file:

Scheme, a powerful and beautiful programming language developed at MIT, which has a particularly simple
syntax: all statements are of the form (function arguments...). We run Scheme under the GNU
Guile interpreter (designed to be plugged into programs as a scripting and extension language). You don't
need to know much Scheme for a basic ctl file, but it is always there if you need it; you can learn more about
it from these Guile and Scheme links.
libctl, a library that we built on top of Guile to simplify communication between Scheme and scientific
computation software. libctl sets the basic tone of the interface and defines a number of useful functions
(such as multi-variable optimization, numeric integration, and so on). See the libctl manual pages.
Meep itself, which defines all the interface features that are specific to FDTD calculations. This manual is
primarily focused on documenting these features.

At this point, please take a moment to leaf through the libctl tutorial to get a feel for the basic style of the interface,
before we get to the Meep-specific stuff below. (If you've used MPB, all of this stuff should already be familiar,
although Meep is somewhat more complex because it can perform a wider variety of computations.)

Okay, let's continue with our tutorial. The Meep program is normally invoked by running something like the
following at the Unix command-line (herein denoted by the unix% prompt):

unix% meep foo.ctl >& foo.out

which reads the ctl file foo.ctl and executes it, saving the output to the file foo.out. However, if you invoke
meep with no arguments, you are dropped into an interactive mode in which you can type commands and see their
results immediately. If you do that now, you can paste in the commands from the tutorial as you follow it and see
what they do.

Fields in a waveguide

For our first example, let's examine the field pattern excited by a localized CW source in a waveguide— first
straight, then bent. Our waveguide will have (non-dispersive) and width 1. That is, we pick units of
length so that the width is 1, and define everything in terms of that (see also units in meep).

A straight waveguide

Before we define the structure, however, we have to define the computational cell. We're going to put a source at
one end and watch it propagate down the waveguide in the x direction, so let's use a cell of length 16 in the x
direction to give it some distance to propagate. In the y direction, we just need enough room so that the boundaries
(below) don't affect the waveguide mode; let's give it a size of 8. We now specify these sizes in our ctl file via the
geometry-lattice variable:

(set! geometry-lattice (make lattice (size 16 8 no-size)))

(The name geometry-lattice comes from MPB, where it can be used to define a more general periodic
lattice. Although Meep supports periodic structures, it is less general than MPB in that affine grids are not
supported.) set! is a Scheme command to set the value of an input variable. The last no-size parameter says
that the computational cell has no size in the z direction, i.e. it is two-dimensional.

Now, we can add the waveguide. Most commonly, the structure is specified by a list of geometric objects, stored
in the geometry variable. Here, we do:

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 3 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Dielectric function (black = high,
white = air), for straight
waveguide simulation.

(set! geometry (list
 (make block (center 0 0) (size infinity 1 infinity)
 (material (make dielectric (epsilon 12))))))

The waveguide is specified by a block (parallelepiped) of size ,
with ε=12, centered at (0,0) (the center of the computational cell). By default,
any place where there are no objects there is air (ε=1), although this can be
changed by setting the default-material variable. The resulting structure
is shown at right.

Now that we have the structure, we need to specify the current sources, which is
specified as a list called sources of source objects. The simplest thing is to
add a point source Jz:

(set! sources (list
 (make source
 (src (make continuous-src (frequency 0.15)))
 (component Ez)
 (center -7 0))))

Here, we gave the source a frequency of 0.15, and specified a continuous-src which is just a fixed-frequency
sinusoid exp(− iωt) that (by default) is turned on at t = 0. Recall that, in Meep units, frequency is specified in units
of 2πc, which is equivalent to the inverse of vacuum wavelength. Thus, 0.15 corresponds to a vacuum wavelength
of about 1 / 0.15 = 6.67, or a wavelength of about 2 in the material—thus, our waveguide is half a
wavelength wide, which should hopefully make it single-mode. (In fact, the cutoff for single-mode behavior in this
waveguide is analytically solvable, and corresponds to a frequency of 1/2√11 or roughly 0.15076.) Note also that to
specify a Jz, we specify a component Ez (e.g. if we wanted a magnetic current, we would specify Hx, Hy, or Hz).
The current is located at (− 7,0), which is 1 unit to the right of the left edge of the cell—we always want to leave a
little space between sources and the cell boundaries, to keep the boundary conditions from interfering with them.

Speaking of boundary conditions, we want to add absorbing boundaries around our cell. Absorbing boundaries in
Meep are handled by perfectly matched layers (PML)— which aren't really a boundary condition at all, but rather a
fictitious absorbing material added around the edges of the cell. To add an absorbing layer of thickness 1 around all
sides of the cell, we do:

(set! pml-layers (list (make pml (thickness 1.0))))

pml-layers is a list of pml objects—you may have more than one pml object if you want PML layers only on
certain sides of the cell, e.g. (make pml (thickness 1.0) (direction X) (side High)) specifies
a PML layer on only the + x side. Now, we note an important point: the PML layer is inside the cell, overlapping
whatever objects you have there. So, in this case our PML overlaps our waveguide, which is what we want so that it
will properly absorb waveguide modes. The finite thickness of the PML is important to reduce numerical
reflections; see perfectly matched layers for more information.

Meep will discretize this structure in space and time, and that is specified by a single variable, resolution, that
gives the number of pixels per distance unit. We'll set this resolution to 10, which corresponds to around 67
pixels/wavelength, or around 20 pixels/wavelength in the high-dielectric material. (In general, at least 8
pixels/wavelength in the highest dielectric is a good idea.) This will give us a cell.

(set! resolution 10)

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 3 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Dielectric function (black = high,
white = air), for straight
waveguide simulation.

(set! geometry (list
 (make block (center 0 0) (size infinity 1 infinity)
 (material (make dielectric (epsilon 12))))))

The waveguide is specified by a block (parallelepiped) of size ,
with ε=12, centered at (0,0) (the center of the computational cell). By default,
any place where there are no objects there is air (ε=1), although this can be
changed by setting the default-material variable. The resulting structure
is shown at right.

Now that we have the structure, we need to specify the current sources, which is
specified as a list called sources of source objects. The simplest thing is to
add a point source Jz:

(set! sources (list
 (make source
 (src (make continuous-src (frequency 0.15)))
 (component Ez)
 (center -7 0))))

Here, we gave the source a frequency of 0.15, and specified a continuous-src which is just a fixed-frequency
sinusoid exp(− iωt) that (by default) is turned on at t = 0. Recall that, in Meep units, frequency is specified in units
of 2πc, which is equivalent to the inverse of vacuum wavelength. Thus, 0.15 corresponds to a vacuum wavelength
of about 1 / 0.15 = 6.67, or a wavelength of about 2 in the material—thus, our waveguide is half a
wavelength wide, which should hopefully make it single-mode. (In fact, the cutoff for single-mode behavior in this
waveguide is analytically solvable, and corresponds to a frequency of 1/2√11 or roughly 0.15076.) Note also that to
specify a Jz, we specify a component Ez (e.g. if we wanted a magnetic current, we would specify Hx, Hy, or Hz).
The current is located at (− 7,0), which is 1 unit to the right of the left edge of the cell—we always want to leave a
little space between sources and the cell boundaries, to keep the boundary conditions from interfering with them.

Speaking of boundary conditions, we want to add absorbing boundaries around our cell. Absorbing boundaries in
Meep are handled by perfectly matched layers (PML)— which aren't really a boundary condition at all, but rather a
fictitious absorbing material added around the edges of the cell. To add an absorbing layer of thickness 1 around all
sides of the cell, we do:

(set! pml-layers (list (make pml (thickness 1.0))))

pml-layers is a list of pml objects—you may have more than one pml object if you want PML layers only on
certain sides of the cell, e.g. (make pml (thickness 1.0) (direction X) (side High)) specifies
a PML layer on only the + x side. Now, we note an important point: the PML layer is inside the cell, overlapping
whatever objects you have there. So, in this case our PML overlaps our waveguide, which is what we want so that it
will properly absorb waveguide modes. The finite thickness of the PML is important to reduce numerical
reflections; see perfectly matched layers for more information.

Meep will discretize this structure in space and time, and that is specified by a single variable, resolution, that
gives the number of pixels per distance unit. We'll set this resolution to 10, which corresponds to around 67
pixels/wavelength, or around 20 pixels/wavelength in the high-dielectric material. (In general, at least 8
pixels/wavelength in the highest dielectric is a good idea.) This will give us a cell.

(set! resolution 10)

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 3 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Dielectric function (black = high,
white = air), for straight
waveguide simulation.

(set! geometry (list
 (make block (center 0 0) (size infinity 1 infinity)
 (material (make dielectric (epsilon 12))))))

The waveguide is specified by a block (parallelepiped) of size ,
with ε=12, centered at (0,0) (the center of the computational cell). By default,
any place where there are no objects there is air (ε=1), although this can be
changed by setting the default-material variable. The resulting structure
is shown at right.

Now that we have the structure, we need to specify the current sources, which is
specified as a list called sources of source objects. The simplest thing is to
add a point source Jz:

(set! sources (list
 (make source
 (src (make continuous-src (frequency 0.15)))
 (component Ez)
 (center -7 0))))

Here, we gave the source a frequency of 0.15, and specified a continuous-src which is just a fixed-frequency
sinusoid exp(− iωt) that (by default) is turned on at t = 0. Recall that, in Meep units, frequency is specified in units
of 2πc, which is equivalent to the inverse of vacuum wavelength. Thus, 0.15 corresponds to a vacuum wavelength
of about 1 / 0.15 = 6.67, or a wavelength of about 2 in the material—thus, our waveguide is half a
wavelength wide, which should hopefully make it single-mode. (In fact, the cutoff for single-mode behavior in this
waveguide is analytically solvable, and corresponds to a frequency of 1/2√11 or roughly 0.15076.) Note also that to
specify a Jz, we specify a component Ez (e.g. if we wanted a magnetic current, we would specify Hx, Hy, or Hz).
The current is located at (− 7,0), which is 1 unit to the right of the left edge of the cell—we always want to leave a
little space between sources and the cell boundaries, to keep the boundary conditions from interfering with them.

Speaking of boundary conditions, we want to add absorbing boundaries around our cell. Absorbing boundaries in
Meep are handled by perfectly matched layers (PML)— which aren't really a boundary condition at all, but rather a
fictitious absorbing material added around the edges of the cell. To add an absorbing layer of thickness 1 around all
sides of the cell, we do:

(set! pml-layers (list (make pml (thickness 1.0))))

pml-layers is a list of pml objects—you may have more than one pml object if you want PML layers only on
certain sides of the cell, e.g. (make pml (thickness 1.0) (direction X) (side High)) specifies
a PML layer on only the + x side. Now, we note an important point: the PML layer is inside the cell, overlapping
whatever objects you have there. So, in this case our PML overlaps our waveguide, which is what we want so that it
will properly absorb waveguide modes. The finite thickness of the PML is important to reduce numerical
reflections; see perfectly matched layers for more information.

Meep will discretize this structure in space and time, and that is specified by a single variable, resolution, that
gives the number of pixels per distance unit. We'll set this resolution to 10, which corresponds to around 67
pixels/wavelength, or around 20 pixels/wavelength in the high-dielectric material. (In general, at least 8
pixels/wavelength in the highest dielectric is a good idea.) This will give us a cell.

(set! resolution 10)

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 3 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Dielectric function (black = high,
white = air), for straight
waveguide simulation.

(set! geometry (list
 (make block (center 0 0) (size infinity 1 infinity)
 (material (make dielectric (epsilon 12))))))

The waveguide is specified by a block (parallelepiped) of size ,
with ε=12, centered at (0,0) (the center of the computational cell). By default,
any place where there are no objects there is air (ε=1), although this can be
changed by setting the default-material variable. The resulting structure
is shown at right.

Now that we have the structure, we need to specify the current sources, which is
specified as a list called sources of source objects. The simplest thing is to
add a point source Jz:

(set! sources (list
 (make source
 (src (make continuous-src (frequency 0.15)))
 (component Ez)
 (center -7 0))))

Here, we gave the source a frequency of 0.15, and specified a continuous-src which is just a fixed-frequency
sinusoid exp(− iωt) that (by default) is turned on at t = 0. Recall that, in Meep units, frequency is specified in units
of 2πc, which is equivalent to the inverse of vacuum wavelength. Thus, 0.15 corresponds to a vacuum wavelength
of about 1 / 0.15 = 6.67, or a wavelength of about 2 in the material—thus, our waveguide is half a
wavelength wide, which should hopefully make it single-mode. (In fact, the cutoff for single-mode behavior in this
waveguide is analytically solvable, and corresponds to a frequency of 1/2√11 or roughly 0.15076.) Note also that to
specify a Jz, we specify a component Ez (e.g. if we wanted a magnetic current, we would specify Hx, Hy, or Hz).
The current is located at (− 7,0), which is 1 unit to the right of the left edge of the cell—we always want to leave a
little space between sources and the cell boundaries, to keep the boundary conditions from interfering with them.

Speaking of boundary conditions, we want to add absorbing boundaries around our cell. Absorbing boundaries in
Meep are handled by perfectly matched layers (PML)— which aren't really a boundary condition at all, but rather a
fictitious absorbing material added around the edges of the cell. To add an absorbing layer of thickness 1 around all
sides of the cell, we do:

(set! pml-layers (list (make pml (thickness 1.0))))

pml-layers is a list of pml objects—you may have more than one pml object if you want PML layers only on
certain sides of the cell, e.g. (make pml (thickness 1.0) (direction X) (side High)) specifies
a PML layer on only the + x side. Now, we note an important point: the PML layer is inside the cell, overlapping
whatever objects you have there. So, in this case our PML overlaps our waveguide, which is what we want so that it
will properly absorb waveguide modes. The finite thickness of the PML is important to reduce numerical
reflections; see perfectly matched layers for more information.

Meep will discretize this structure in space and time, and that is specified by a single variable, resolution, that
gives the number of pixels per distance unit. We'll set this resolution to 10, which corresponds to around 67
pixels/wavelength, or around 20 pixels/wavelength in the high-dielectric material. (In general, at least 8
pixels/wavelength in the highest dielectric is a good idea.) This will give us a cell.

(set! resolution 10)

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 4 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Now, we are ready to run the simulation! We do this by calling the run-until function. The first argument to
run-until is the time to run for, and the subsequent arguments specify fields to output (or other kinds of
analyses at each time step):

(run-until 200
 (at-beginning output-epsilon)
 (at-end output-efield-z))

Here, we are outputting the dielectric function ε and the electric-field component Ez, but have wrapped the output
functions (which would otherwise run at every time step) in at-beginning and at-end, which do just what
they say. There are several other such functions to modify the output behavior—and you can, of course, write your
own, and in fact you can do any computation or output you want at any time during the time evolution (and even
modify the simulation while it is running).

It should complete in a few seconds. If you are running interactively, the two output files will be called eps-
000000.00.h5 and ez-000200.00.h5 (notice that the file names include the time at which they were
output). If we were running a tutorial.ctl file, then the outputs will be tutorial-eps-000000.00.h5
and tutorial-ez-000200.00.h5. In any case, we can now analyze and visualize these files with a wide
variety of programs that support the HDF5 format, including our own h5utils, and in particular the h5topng
program to convert them to PNG images.

unix% h5topng -S3 eps-000000.00.h5

This will create eps-000000.00.png, where the -S3 increases the image scale by 3 (so that it is around 450
pixels wide, in this case). In fact, precisely this command is what created the dielectric image above. Much more
interesting, however, are the fields:

unix% h5topng -S3 -Zc dkbluered -a yarg -A eps-000000.00.h5 ez-000200.00.h5

Briefly, the -Zc dkbluered makes the color scale go from dark blue (negative) to white (zero) to dark red
(positive), and the -a/-A options overlay the dielectric function as light gray contours. This results in the image:

Here, we see that the the source has excited the waveguide mode, but has also excited radiating fields propagating
away from the waveguide. At the boundaries, the field quickly goes to zero due to the PML layers. If we look
carefully (click on the image to see a larger view), we see somethinge else—the image is "speckled" towards the
right side. This is because, by turning on the current abruptly at t = 0, we have excited high-frequency components
(very high order modes), and we have not waited long enough for them to die away; we'll eliminate these in the
next section by turning on the source more smoothly.

A 90° bend

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 4 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Now, we are ready to run the simulation! We do this by calling the run-until function. The first argument to
run-until is the time to run for, and the subsequent arguments specify fields to output (or other kinds of
analyses at each time step):

(run-until 200
 (at-beginning output-epsilon)
 (at-end output-efield-z))

Here, we are outputting the dielectric function ε and the electric-field component Ez, but have wrapped the output
functions (which would otherwise run at every time step) in at-beginning and at-end, which do just what
they say. There are several other such functions to modify the output behavior—and you can, of course, write your
own, and in fact you can do any computation or output you want at any time during the time evolution (and even
modify the simulation while it is running).

It should complete in a few seconds. If you are running interactively, the two output files will be called eps-
000000.00.h5 and ez-000200.00.h5 (notice that the file names include the time at which they were
output). If we were running a tutorial.ctl file, then the outputs will be tutorial-eps-000000.00.h5
and tutorial-ez-000200.00.h5. In any case, we can now analyze and visualize these files with a wide
variety of programs that support the HDF5 format, including our own h5utils, and in particular the h5topng
program to convert them to PNG images.

unix% h5topng -S3 eps-000000.00.h5

This will create eps-000000.00.png, where the -S3 increases the image scale by 3 (so that it is around 450
pixels wide, in this case). In fact, precisely this command is what created the dielectric image above. Much more
interesting, however, are the fields:

unix% h5topng -S3 -Zc dkbluered -a yarg -A eps-000000.00.h5 ez-000200.00.h5

Briefly, the -Zc dkbluered makes the color scale go from dark blue (negative) to white (zero) to dark red
(positive), and the -a/-A options overlay the dielectric function as light gray contours. This results in the image:

Here, we see that the the source has excited the waveguide mode, but has also excited radiating fields propagating
away from the waveguide. At the boundaries, the field quickly goes to zero due to the PML layers. If we look
carefully (click on the image to see a larger view), we see somethinge else—the image is "speckled" towards the
right side. This is because, by turning on the current abruptly at t = 0, we have excited high-frequency components
(very high order modes), and we have not waited long enough for them to die away; we'll eliminate these in the
next section by turning on the source more smoothly.

A 90° bend

10

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 5 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Bent waveguide dielectric function and coordinate
system.

Now, we'll start a new simulation where we look at the fields in a bent waveguide, and we'll do a couple of other
things differently as well. If you are running Meep interactively, you will want to get rid of the old structure and
fields so that Meep will re-initialize them:

(reset-meep)

Then let's set up the bent waveguide, in a slightly bigger computational cell, via:

(set! geometry-lattice (make lattice (size 16 16 no-size)))

(set! geometry (list
 (make block (center -2 -3.5) (size 12 1 infinity)
 (material (make dielectric (epsilon 12))))
 (make block (center 3.5 2) (size 1 12 infinity)
 (material (make dielectric (epsilon 12))))))

(set! pml-layers (list (make pml (thickness 1.0))))
(set! resolution 10)

Note that we now have two blocks, both off-center to
produce the bent waveguide structure pictured at right. As
illustrated in the figure, the origin (0,0) of the coordinate
system is at the center of the computational cell, with
positive y being downwards in h5topng, and thus the block
of size 12×1 is centered at (− 2, − 3.5). Also shown in green
is the source plane at x = − 7 (see below).

We also need to shift our source to y = − 3.5 so that it is still
inside the waveguide. While we're at it, we'll make a couple
of other changes. First, a point source does not couple very
efficiently to the waveguide mode, so we'll expand this into a
line source the same width as the waveguide by adding a
size property to the source (Meep also has an eigenmode
source feature which can be used here and is covered in a
separate tutorial). Second, instead of turning the source on
suddenly at t = 0 (which excites many other frequencies
because of the discontinuity), we will ramp it on slowly
(technically, Meep uses a tanh turn-on function) over a time
proportional to the width of 20 time units (a little over
three periods). Finally, just for variety, we'll specify the
(vacuum) wavelength instead of the frequency; again,
we'll use a wavelength such that the waveguide is half a wavelength wide.

(set! sources (list
 (make source
 (src (make continuous-src
 (wavelength (* 2 (sqrt 12))) (width 20)))
 (component Ez)
 (center -7 -3.5) (size 0 1))))

Finally, we'll run the simulation. Instead of running output-efield-z only at the end of the simulation,
however, we'll run it at every 0.6 time units (about 10 times per period) via (at-every 0.6 output-
efield-z). By itself, this would output a separate file for every different output time, but instead we'll use
another feature of Meep to output to a single three-dimensional HDF5 file, where the third dimension is time:

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 5 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Bent waveguide dielectric function and coordinate
system.

Now, we'll start a new simulation where we look at the fields in a bent waveguide, and we'll do a couple of other
things differently as well. If you are running Meep interactively, you will want to get rid of the old structure and
fields so that Meep will re-initialize them:

(reset-meep)

Then let's set up the bent waveguide, in a slightly bigger computational cell, via:

(set! geometry-lattice (make lattice (size 16 16 no-size)))

(set! geometry (list
 (make block (center -2 -3.5) (size 12 1 infinity)
 (material (make dielectric (epsilon 12))))
 (make block (center 3.5 2) (size 1 12 infinity)
 (material (make dielectric (epsilon 12))))))

(set! pml-layers (list (make pml (thickness 1.0))))
(set! resolution 10)

Note that we now have two blocks, both off-center to
produce the bent waveguide structure pictured at right. As
illustrated in the figure, the origin (0,0) of the coordinate
system is at the center of the computational cell, with
positive y being downwards in h5topng, and thus the block
of size 12×1 is centered at (− 2, − 3.5). Also shown in green
is the source plane at x = − 7 (see below).

We also need to shift our source to y = − 3.5 so that it is still
inside the waveguide. While we're at it, we'll make a couple
of other changes. First, a point source does not couple very
efficiently to the waveguide mode, so we'll expand this into a
line source the same width as the waveguide by adding a
size property to the source (Meep also has an eigenmode
source feature which can be used here and is covered in a
separate tutorial). Second, instead of turning the source on
suddenly at t = 0 (which excites many other frequencies
because of the discontinuity), we will ramp it on slowly
(technically, Meep uses a tanh turn-on function) over a time
proportional to the width of 20 time units (a little over
three periods). Finally, just for variety, we'll specify the
(vacuum) wavelength instead of the frequency; again,
we'll use a wavelength such that the waveguide is half a wavelength wide.

(set! sources (list
 (make source
 (src (make continuous-src
 (wavelength (* 2 (sqrt 12))) (width 20)))
 (component Ez)
 (center -7 -3.5) (size 0 1))))

Finally, we'll run the simulation. Instead of running output-efield-z only at the end of the simulation,
however, we'll run it at every 0.6 time units (about 10 times per period) via (at-every 0.6 output-
efield-z). By itself, this would output a separate file for every different output time, but instead we'll use
another feature of Meep to output to a single three-dimensional HDF5 file, where the third dimension is time:

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 5 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

Bent waveguide dielectric function and coordinate
system.

Now, we'll start a new simulation where we look at the fields in a bent waveguide, and we'll do a couple of other
things differently as well. If you are running Meep interactively, you will want to get rid of the old structure and
fields so that Meep will re-initialize them:

(reset-meep)

Then let's set up the bent waveguide, in a slightly bigger computational cell, via:

(set! geometry-lattice (make lattice (size 16 16 no-size)))

(set! geometry (list
 (make block (center -2 -3.5) (size 12 1 infinity)
 (material (make dielectric (epsilon 12))))
 (make block (center 3.5 2) (size 1 12 infinity)
 (material (make dielectric (epsilon 12))))))

(set! pml-layers (list (make pml (thickness 1.0))))
(set! resolution 10)

Note that we now have two blocks, both off-center to
produce the bent waveguide structure pictured at right. As
illustrated in the figure, the origin (0,0) of the coordinate
system is at the center of the computational cell, with
positive y being downwards in h5topng, and thus the block
of size 12×1 is centered at (− 2, − 3.5). Also shown in green
is the source plane at x = − 7 (see below).

We also need to shift our source to y = − 3.5 so that it is still
inside the waveguide. While we're at it, we'll make a couple
of other changes. First, a point source does not couple very
efficiently to the waveguide mode, so we'll expand this into a
line source the same width as the waveguide by adding a
size property to the source (Meep also has an eigenmode
source feature which can be used here and is covered in a
separate tutorial). Second, instead of turning the source on
suddenly at t = 0 (which excites many other frequencies
because of the discontinuity), we will ramp it on slowly
(technically, Meep uses a tanh turn-on function) over a time
proportional to the width of 20 time units (a little over
three periods). Finally, just for variety, we'll specify the
(vacuum) wavelength instead of the frequency; again,
we'll use a wavelength such that the waveguide is half a wavelength wide.

(set! sources (list
 (make source
 (src (make continuous-src
 (wavelength (* 2 (sqrt 12))) (width 20)))
 (component Ez)
 (center -7 -3.5) (size 0 1))))

Finally, we'll run the simulation. Instead of running output-efield-z only at the end of the simulation,
however, we'll run it at every 0.6 time units (about 10 times per period) via (at-every 0.6 output-
efield-z). By itself, this would output a separate file for every different output time, but instead we'll use
another feature of Meep to output to a single three-dimensional HDF5 file, where the third dimension is time:

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 6 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

(run-until 200
 (at-beginning output-epsilon)
 (to-appended "ez" (at-every 0.6 output-efield-z)))

Here, "ez" determines the name of the output file, which will be called ez.h5 if you are running interactively or
will be prefixed with the name of the file name for a ctl file (e.g. tutorial-ez.h5 for tutorial.ctl). If we
run h5ls on this file (a standard utility, included with HDF5, that lists the contents of the HDF5 file), we get:

unix% h5ls ez.h5
ez Dataset {161, 161, 330/Inf}

That is, the file contains a single dataset ez that is a 162×162×330 array, where the last dimension is time. (This is
rather a large file, 69MB; later, we'll see ways to reduce this size if we only want images.) Now, we have a number
of choices of how to output the fields. To output a single time slice, we can use the same h5topng command as
before, but with an additional -t option to specify the time index: e.g. h5topng -t 229 will output the last
time slice, similar to before. Instead, let's create an animation of the fields as a function of time. First, we have to
create images for all of the time slices:

unix% h5topng -t 0:329 -R -Zc dkbluered -a yarg -A eps-000000.00.h5 ez.h5

This is similar to the command before, with two new options: -t 0:329 outputs images for all time indices from
0 to 329, i.e. all of the times, and the the -R flag tells h5topng to use a consistent color scale for every image
(instead of scaling each image independently). Then, we have to convert these images into an animation in some
format. For this, we'll use the free ImageMagick convert program (although there is other software that will do
the trick as well).

unix% convert ez.t*.png ez.gif

Here, we are using an animated GIF format for the output, which is not the most efficient animation format (e.g.
ez.mpg, for MPEG format, would be better), but it is unfortunately the only format supported by this Wiki
software. This results in the following animation :

It is clear that the transmission around the bend is rather low for this frequency and structure—both large reflection
and large radiation loss are clearly visible. Moreover, since we operating are just barely below the cutoff for single-
mode behavior, we are able to excite a second leaky mode after the waveguide bend, whose second-order mode
pattern (superimposed with the fundamental mode) is apparent in the animation. At right, we show a field snapshot
from a simulation with a larger cell along the y direction, in which you can see that the second-order leaky mode
decays away, leaving us with the fundamental mode propagating downward.

06/02/2017, 09*05Meep Tutorial - AbInitio

Page 6 of 17http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial

(run-until 200
 (at-beginning output-epsilon)
 (to-appended "ez" (at-every 0.6 output-efield-z)))

Here, "ez" determines the name of the output file, which will be called ez.h5 if you are running interactively or
will be prefixed with the name of the file name for a ctl file (e.g. tutorial-ez.h5 for tutorial.ctl). If we
run h5ls on this file (a standard utility, included with HDF5, that lists the contents of the HDF5 file), we get:

unix% h5ls ez.h5
ez Dataset {161, 161, 330/Inf}

That is, the file contains a single dataset ez that is a 162×162×330 array, where the last dimension is time. (This is
rather a large file, 69MB; later, we'll see ways to reduce this size if we only want images.) Now, we have a number
of choices of how to output the fields. To output a single time slice, we can use the same h5topng command as
before, but with an additional -t option to specify the time index: e.g. h5topng -t 229 will output the last
time slice, similar to before. Instead, let's create an animation of the fields as a function of time. First, we have to
create images for all of the time slices:

unix% h5topng -t 0:329 -R -Zc dkbluered -a yarg -A eps-000000.00.h5 ez.h5

This is similar to the command before, with two new options: -t 0:329 outputs images for all time indices from
0 to 329, i.e. all of the times, and the the -R flag tells h5topng to use a consistent color scale for every image
(instead of scaling each image independently). Then, we have to convert these images into an animation in some
format. For this, we'll use the free ImageMagick convert program (although there is other software that will do
the trick as well).

unix% convert ez.t*.png ez.gif

Here, we are using an animated GIF format for the output, which is not the most efficient animation format (e.g.
ez.mpg, for MPEG format, would be better), but it is unfortunately the only format supported by this Wiki
software. This results in the following animation :

It is clear that the transmission around the bend is rather low for this frequency and structure—both large reflection
and large radiation loss are clearly visible. Moreover, since we operating are just barely below the cutoff for single-
mode behavior, we are able to excite a second leaky mode after the waveguide bend, whose second-order mode
pattern (superimposed with the fundamental mode) is apparent in the animation. At right, we show a field snapshot
from a simulation with a larger cell along the y direction, in which you can see that the second-order leaky mode
decays away, leaving us with the fundamental mode propagating downward.

11

Grating algorithms

• frequency domain solver

• plane wave illumination

• many codes available, partially also free

• all linear materials usually considered, lossy and dispersive

• strictly periodic objects

• based on rigorous coupled wave analysis (or Fourier Modal Method)

• some provide also scattering matrices

12

EMUstack

http://www.physics.usyd.edu.au/emustack/

B.C.P. Sturmberg et al. / Computer Physics Communications 202 (2016) 276–286 277

References:

[1] P. Peterson, F2PY: A tool for connecting Fortran and Python programs, International Journal of
Computational Science and Engineering 4 (4) (2009) 296.

[2] LAPACK, http://www.netlib.org/lapack
[3] T.A. Davis, Algorithm 832: UMFPACK V4.3 - An Unsymmetric-Pattern Multifrontal Method, ACM

Transactions on Mathematical Software 30 (2) (2004) 165–195.
[4] Intel MKL, http://www.software.intel.com/intel-mkl
[5] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in

pre- and post-processing facilities, International Journal for Numerical Methods in Engineering 79
(2009) 1309–1331.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Solving Maxwell’s equations in structured media is no longer
the challenge it historically has been; there exist a wide range of
commercial and free software that can simulate the interaction
of light with a wide variety of structures. The real challenge
now in computational electromagnetism lies therefore not in
solving Maxwell’s equations, or even doing so most efficiently;
but rather it lies in doing so in a way that produces the most
physically insightful results. To this end, many specialized tools
have been developed that simulate a restricted subset of systems
with improved detail, exploiting additional knowledge about the
class of systems. If a tool is tailored to a restricted subset of systems,
it can apply physical constraints to reduce the dimensionality
of the problem. Examples of such methods include: photonic
band solvers [1], boundary element or multipole methods [2,3],
impedance methods [4], and beam propagation methods [5,6].

Here we present an approach that ploughs the middle ground;
it restricts itself somewhat in problems, in exchange for improved
physical insight. It allows us to calculate the propagation of light
through structured layeredmedia by solving for the eigenmodes of
each layer, and calculating the scatteringmatrices of the interfaces
that describe the coupling of light between the layers. Accelerated
numerical performance is a further reward of the restriction as
many calculation steps have closed-form matrix representations.

Our program, codenamed EMUstack (Electromagnetic MUlti-
layered stack) [7], is a type of Scattering Matrix Method (SMM)
where the eigenmodes of nanostructured layers are found using
the Finite Element Method (FEM). The use of the FEM endows
EMUstack with a greater generality than existing SMMs, in
particular when simulating structures that include fine high
index inclusions. Advantages of using the FEM include being able
to adaptively mesh geometries, faster convergence of the BM
expansion, and avoiding the Gibbs phenomenon that occurs in
Fourier based methods (these are discussed in detail in Section 3).

The program takes light of a chosen k-vector (wavelength
and angle of incidence) as the input and outputs the fields and
propagation constants of the modes of each layers, as well as the
reflection and transmission scattering matrices of the interfaces of
each layer with air and of the interfaces between adjacent layers.
With these quantities we can solve driven problems, such as the
transmission, reflection in each of the diffracted orders and the
absorption within each layer of the structure, as well as undriven
problems, such as the resonances of the structure. These results
allow us to extend the physical intuition of thin film optics to
complex structures as highlighted in Section 4.

Similarly to other SMMs, such as Rigorous Coupled Wave
Analysis (RCWA) [8] and the Fourier Modal Method (FMM) [9–11],
structures must meet two fundamental requirements to be

Fig. 1. Illustration of a multi-layered structure that is compatible with EMUstack.
The layers 0 through M all may be regarded as sharing a common period, and each
layer is invariant in the z-direction. The unit cell is marked with black lines. In this
example layers 0,M are semi-infinite layers of air and all 2D nanostructures are on
layerM-1.

compatible with EMUstack: they must be composed of a finite
number of z-invariant layers, and each layer must be able to be
regarded as sharing a common in-plane periodicity or be uniform
(see Fig. 1). We note that the differential method [12] and the
C-method [13], which are related to the SMM, can handle non-
planar layers.

EMUstack is specifically designed to study materials that are
lossy. In the current versionmaterials must be linear, isotropic and
non-magnetic. The top and bottom layers must be semi-infinite
in the z-direction but may still be lossy and/or nanostructured,
although in such cases EMUstack cannot solve the driven problems
(calculating energy fluxes).

A detailed description of the mathematical formalism has been
given by Dossou et al. [14], and in this article we outline the open-
source implementation of this method. A detailed user manual is
available online [15,16] so we here focus on the unique features of
EMUstack and the physical insights it enables.

The remainder of this paper is organized as follows: in Section 2
we outline the numerical method; in Section 3 we describe our
implementation and demonstrate how EMUstack is used; and in
Section 4 we present examples that illustrate the type of results
obtained with EMUstack.

2. Approach outline

The central idea of SMMs is to separate the scattering of light
at interfaces from the propagation of light through layers. The
electromagnetic field is described by a superposition of modes
that acquire phase and decay/grow while propagating in the
z-direction, but do not couple to one another, except at layer

Computer Physics Communications 202 (2016) 276–286

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

EMUstack: An open source route to insightful electromagnetic
computation via the Bloch mode scattering matrix method
Björn C.P. Sturmberg a,⇤, Kokou B. Dossoub, Felix J. Lawrenceb, Christopher G. Poultonb,
Ross C. McPhedrana, C. Martijn de Sterke a, Lindsay C. Bottenb,c

a
CUDOS and IPOS, School of Physics, University of Sydney, Sydney, 2006, Australia

b
CUDOS, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, 2007, Australia

c
National Computational Infrastructure, Australian National University, Canberra, Australia

a r t i c l e i n f o

Article history:

Received 6 June 2015
Received in revised form
13 October 2015
Accepted 26 December 2015
Available online 8 January 2016

Keywords:

Computational electromagnetism
Finite Element Method
Scattering matrix method
Maxwell solver

a b s t r a c t

We describe EMUstack, an open-source implementation of the Scattering Matrix Method (SMM) for
solving field problems in layered media. The fields inside nanostructured layers are described in terms
of Bloch modes that are found using the Finite Element Method (FEM). Direct access to these modes
allows the physical intuition of thin film optics to be extended to complex structures. The combination of
the SMM and the FEM makes EMUstack ideally suited for studying lossy, high-index contrast structures,
which challenge conventional SMMs.

Program summary

Program title: EMUstack

Catalogue identifier: AEZI_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEZI_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License, version 3

No. of lines in distributed program, including test data, etc.: 154301

No. of bytes in distributed program, including test data, etc.: 5308635

Distribution format: tar.gz

Programming language: Python, Fortran.

Computer: Any computer with a Unix-like system with Python, a Fortran compiler and F2Py [1]. Also
required are the following free libraries LAPACK and BLAS [2], UMFPACK [3]. Developed on 1.6 GHz Intel
Core i7.

Operating system: Any Unix-like system; developed on Ubuntu 14.04 (using Linux kernel 3.16).

RAM: Problem dependent; specifically on the resolution of the FEM mesh and the number of modes
included. The given example uses approximately 100 MB.

Classification: 10.

External routines: Required are the following free libraries LAPACK and BLAS [2], UMFPACK [3]. Optionally
exploits additional commercial software packages: Intel MKL [4], Gmsh [5].

Nature of problem: Time-harmonic electrodynamics in layered media.

Solution method: Finite element method and the scattering matrix method.

Running time: Problem dependent (typically about 3 s per wavelength including plane wave orders 3).

⇤ Corresponding author.
E-mail address: bjorn.sturmberg@sydney.edu.au (B.C.P. Sturmberg).

http://dx.doi.org/10.1016/j.cpc.2015.12.022
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://www.physics.usyd.edu.au/emustack/

13

S4
https://web.stanford.edu/group/fan/S4/

Victor Liu and Shanhui Fan, “S4: A free electromagnetic solver for layered periodic
structures,” Computer Physics Communications 183, 2233-2244 (2012)

https://web.stanford.edu/group/fan/S4/

14

Resources on Mie Scattering http://www.scattport.org

15

Resources on Mie Scattering

layered Korringa Kohn Rostoker method

16

Resources on Mie Scattering

cell increases steadily as expected. Current matching is achieved for a µc-Si cell thickness of
1.55 µm. By further increasing the thickness of the bottom cell the absorption tends to saturate.
But an increase of thickness beyond 1.55 µm would be pointless since the current of the solar
cell would be limited by the current of the top cell. The same procedure to adjust the thickness
of the bottom cell would apply for any other intermediate reflector.

0 1 2 30

2

4

6

8 x 1019

h
"c-Si ["m]N

um
be

r o
f a

bs
or

be
d

ph
ot

on
s

a-Si
"c-Si

N
um

be
ro

f a
bs

or
be

d
ph

ot
on

s

Fig. 3. Number of absorbed photons in the top and the bottom cell depending on the thick-
ness of the bottom cell. The parameters of the Bragg-type IRL correspond to those for
which absorption enhancement has its maximum [see Fig. 2(d)].

!
 ["

m
]

0.
4

0.
6

0.
8

0 0.1 0.2 0.3
1

1.1

1.2

1.3

1.4

1.5

Rsphere ["m]

A
bs

or
pt

io
n

en
ha

nc
em

en
t

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

! ["m]

Ef
fic

ie
nc

y
T
R

!
[μ

m
]

0.
4

0.
6

0.
8

(a)

(b) (d)

(c)

k

A
bs

or
pt

io
n

en
ha

nc
em

en
t

Number of absorbed photons

a-Si:H

μc-Siair spheres

R
ef

le
ct

an
ce

/ T
ra

ns
m

itt
an

ce

Fig. 4. (a) The number of absorbed photons in the a-Si:H cell weighted with the (AM1.5)
solar spectrum is shown in (a) as a function of wavelength and sphere radius R for an
inverted opal IRL. The enhancement of the number of absorbed photons as a function of R
is shown in (b). (c) shows the schematic opaline IRL geometry. The optical spectra in (d)
correspond to the sphere radius at the local maximum at R = 130nm in (b).

#107068 - $15.00 USD Received 9 Feb 2009; revised 12 Mar 2009; accepted 27 Mar 2009; published 5 May 2009
(C) 2009 OSA 11 May 2009 / Vol. 17, No. 10 / OPTICS EXPRESS 8445

17

Resources on Mie Scattering

discrete dipole approximation
http://www.ddscat.org

Draine, B.T., & Flatau, P.J., "Discrete dipole approximation for
scattering calculations", J. Opt. Soc. Am. A, 11, 1491-1499

(1994)

18

Resources on Mie Scattering

discrete dipole approximation

19

Resources on Mie Scattering

discrete dipole approximation

<latexit sha1_base64="YtGjQyIqNd26wYcHbQb0RxcHCyc=">AAACIHicbZDLSsNAFIYnXmu9RV26CRahbkoixboRim5cVugNmlAm00k7dDITZyZCCX0UN76KGxeK6E6fxkmbFm39YeDnO+cw5/x+RIlUtv1lrKyurW9s5rby2zu7e/vmwWFT8lgg3ECcctH2ocSUMNxQRFHcjgSGoU9xyx/epPXWAxaScFZXowh7IewzEhAElUZds+KGUA38IPHHRZeHuA/PrmaoPkczcj8nXbNgl+yJrGXjZKYAMtW65qfb4ygOMVOIQik7jh0pL4FCEUTxOO/GEkcQDWEfd7RlMMTSSyYHjq1TTXpWwIV+TFkT+nsigaGUo9DXnemmcrGWwv9qnVgFl15CWBQrzND0oyCmluJWmpbVIwIjRUfaQCSI3tVCAyggUjrTvA7BWTx52TTPS85FqXxXLlSvszhy4BicgCJwQAVUwS2ogQZA4BE8g1fwZjwZL8a78TFtXTGymSPwR8b3D1TRo7I=</latexit>

b(!) = T(!)q(!)

single particle

���� 5�NBUSJY NFUIPE

a1

a2

	B
 TRVBSF

a1

a2

	C
 SFDUBOHVMBS

a1

a2

	D
 PCMJRVF

a1

a2

	E
 SIPNCJD 	DFOUFSFE SFDUBOHVMBS

a1

a2

	F
 IFYBHPOBM

'JHVSF ����� य़F WF QPTTJCMF MB॒JDF UZQFT JO UXP EJNFOTJPOT� य़F MB॒JDF WFDUPST TQBOOJOH
B QPTTJCMF QSJNJUJWF DFMM BSF TIPXO� य़F CMVF BSFB TIPXT UIF 8JHOFS�4FJU[DFMM
ۗ JO DBTF PG UIF SFDJQSPDBM MB॒JDF DBMMFE UIF STU #SJMMPVJO [POF� य़F SFE BSFB
TIPXT B DFMM UIBU IJHIMJHIUT UIF GVMM TZNNFUSZ PG UIF MB॒JDF CVU XIJDI JT JO
HVSFT 	E
 BOE 	F
 OPU QSJNJUJWF�

XIFSF UIF TVN SVOT PWFS BMM MB॒JDF QPJOUT R = m1a1 +m2a2 XJUIm1,m2 2 PNJ॒JOH
UIF PSJHJO XIJDI JT JOEJDBUFE CZ UIF QSJNF� 8JUI pR UIF TDB॒FSFE FME PG UIF PCKFDU BU UIF
SFTQFDUJWF MB॒JDF QPJOU JT NFBOU� 4JODF UIF JMMVNJOBUJPO JT B QMBOF XBWF BOE BMM UIF MB॒JDF
QPJOUT BSF FRVJWBMFOU UIFTF FMET DBO CF FYQSFTTFE CZ UIF DPFਖ਼DJFOUT PG UIF TDB॒FSFE FME
BU UIF PSJHJO CZ pR = exp(ikkR)p� य़FO FRVBUJPO 	����
 DBO CF TPMWFE CZ

p =

� �

’0

R

�(3)(�R)eik kR

! �1
�a . 	����

8JUI UIJT GPSNVMB UIF TDB॒FSJOH QSPCMFN JT JO QSJODJQMF TPMWFE� 8JUI FRVBUJPO 	����
 UIF
JODJEFOU 18 DBO CF FYQBOEFE JO 748T UP PCUBJO a� य़F 5�NBUSJY DBO CF DPNQVUFE XJUI UIF
NFUIPET NFOUJPOFE JO TFDUJPO ����� BOE JT BTTVNFE UP CF LOPXO IFSF� य़F NBJO EJਖ਼DVMUZ
PG UIF FRVBUJPO JT JO UIF TVNNBUJPO PG UIF USBOTMBUJPO DPFਖ਼DJFOUT PWFS UIF MB॒JDF� य़JT JT
B RVJUF JOWPMWFE UBTL BOE JT EFTDSJCFE JO NPSF EFUBJM JO TFDUJPO ������ #VU XF FNQIBTJ[F
UIBU UIF RVBOUJUZ JT JOEFQFOEFOU PG UIF FYBDU PCKFDU UIBU TDB॒FST UIF MJHIU� *U JT B RVBOUJUZ
EFOFE CZ UIF MB॒JDF BOE UIF JODJEFOU 18 POMZ� य़FSFGPSF JU JT OPU OFDFTTBSZ UP DPNQVUF
JU NVMUJQMF UJNFT GPS EJFSFOU TDB॒FSFST� 'JOBMMZ UIFSF JT BMTP B NBUSJY JOWFSTJPO OFDFTTBSZ�
'PSUVOBUFMZ BOE JO DPOUSBTU UP UIF OJUF OVNCFS DBTF UIF MB॒JDF TJNQMJFT UIF TZTUFN PG
MJOFBS FRVBUJPOT TVDI UIBU UIF NBUSJY UP JOWFSU POMZ IBT UIF TJ[F PG UIF 5�NBUSJY� :FU UIF
OBM SFTVMU p PG UIJT FRVBUJPO JT TUJMM JO B MPDBM GPSNVMBUJPO� 4P JU JT OFDFTTBSZ UP TVN VQ UIF
DPOUSJCVUJPOT PG BMM TDB॒FSFST UP PCUBJO UIF SFTQPOTF PG UIF MB॒JDF BT B XIPMF� य़JT BHBJO
JT BO JOOJUF TVNNBUJPO PWFS BMM MB॒JDF QPJOUT XIJDI XJMM CF EJTDVTTFE JO UIF GPMMPXJOH
TFDUJPO�

��

<latexit sha1_base64="Eb81bz0jrvqeD6/QOxWVVXA6Qks=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhFkz75Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n88RTcmaVAQljZZ80ZK7+3shopPUkCuzkLKFe9mbif143NeG1n3GZpAYlW3wUpoKYmMzOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd88ippXVS9y2rtvlap3+R1FOEETuEcPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwB3rmRDw==</latexit>

b <latexit sha1_base64="A6iEY6Hyk1Ejs/L95hPR2QwuGcg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMmGaEM/Qs3LhRx69+4829M21lo64HA4Zx7ybknSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+W9GSfoR3QgecgZNVZ66EbUDIMwe5z0yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZokn5MQqfRLGyj5pyEz9vZHRSOtxFNjJaUK96E3F/7xOasIrP+MySQ1KNv8oTAUxMZmeT/pcITNibAllitushA2poszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucP9YSRHg==</latexit>q

particle in lattice

���� 5�NBUSJY NFUIPE

य़F FYQSFTTJPOT GPS UIF USBOTMBUJPO DPFਖ਼DJFOUT A(n)
�µlm(r) BOE B(n)

�µlm(r) JO FRVBUJPO 	����

BSF HJWFO JO FRVBUJPO 	"���
 BOE DBO CF GPVOE JO <��>� 8JUI FRVBUJPO 	����B
 JU JT QPTTJCMF
UP FYQBOE B TDB॒FSFE FME PG BO PCKFDU BU UIF QPTJUJPO R BT BO JODJEFOU FME BU UIF PSJHJO
PG UIF DPPSEJOBUF TZTUFN BOE FRVBUJPO 	����C
 BMMPXT UIF FYQBOTJPO PG B TDB॒FSFE FME
BSPVOE B EJFSFOU PSJHJO� 'JOBMMZ XJUI FRVBUJPO 	����D
 UIF JODJEFOU FME DBO CF USBOTMBUFE
UP B EJFSFOU PSJHJO� *G UIF USBOTMBUJPO DPFਖ਼DJFOUT BSF BSSBOHFE JO NBUSJDFT �(n)(R) XJUI B
TPSUJOH BOE USVODBUJPO NBUDIJOH UP UIF FYQBOTJPO DPFਖ਼DJFOUT UIF USBOTMBUJPO CFDPNFT
NFSFMZ B NBUSJY NVMUJQMJDBUJPO�
"TTVNJOH N PCKFDUT XJUI 5�NBUSJDFT �1 UP �N BSF JMMVNJOBUFE XJUI B QSJNBSZ FME

EFTDSJCFE CZ FYQBOTJPO DPFਖ਼DJFOUT aj JO UIF DPPSEJOBUF TZTUFN PG PCKFDU j UIF NVMUJ�
TDB॒FSJOH FRVBUJPO CFDPNFT

©≠≠≠≠
´

p1

p2
...

pN

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

�1
�2
. . .

�N

™ÆÆÆÆ
¨

2666666664

©≠≠≠≠
´

a1

a2
...
aN

™ÆÆÆÆ
¨
+

©≠≠≠≠≠
´

0 �(3)12 . . . �(3)1N

�(3)21
.

...
...

. �(3)N�1,N
�(3)N1 . . . �(3)N ,N�1 0

™ÆÆÆÆÆ
¨

©≠≠≠≠
´

p1

p2
...

pN

™ÆÆÆÆ
¨

3777777775
	����

XJUI �(3)ij = �
(3)(rij) BOE rij QPJOUJOH GSPN UIF PSJHJO PG PCKFDU j UP PCKFDU i � य़F SJHIU IBOE

TJEF EPFT OPU POMZ JODMVEF UIF TDB॒FSJOH PG UIF JODJEFOU FME CVU BMTP PG UIF FMET UIBU
XFSF BMSFBEZ TDB॒FSFE CZ PUIFS PCKFDUT BOE BSF USBOTMBUFE UP CF JODJEFOU FMET� #Z NBUSJY
JOWFSTJPO UIJT FRVBUJPO DBO CF TPMWFE� "T UIJT EFTDSJQUJPO JT SFGFSSFE UP BT MPDBM XF XSJUF
EPXO UIF TPMVUJPO BT

pMPDBM = (� � MPDBM�(3)MPDBM)�1� MPDBMaMPDBM , 	����

XIFSF UIF MPDBM RVBOUJUJFT SFGFS UP UIF SFTQFDUJWF NBUSJY JO FRVBUJPO 	����
� य़F UPUBM
TDB॒FSJOH SFTQPOTF JT PCUBJOFE CZ USBOTMBUJOH BMM TDB॒FSFE XBWF DPOUSJCVUJPOT UP B DPNNPO
PSJHJO r0 BOE TVNNJOH UIFN VQ BT

pHMPCBM =
⇣
�(1)01 . . . �(1)0N

⌘
pMPDBM 	����

BOE TJNJMBSMZ UIF JODJEFOU XBWFT DBO CF PCUBJOFE CZ USBOTMBUJOH UIF FYQBOTJPO BSPVOE
POF PSJHJO UP UIF JOEJWJEVBM POFT PG FBDI PCKFDU�

aMPDBM =
©≠≠
´

�(1)10
...

�(1)N0

™ÆÆ
¨
aHMPCBM . 	����

6TJOH UIFTF FYQSFTTJPOT JU JT QPTTJCMF UP HFU UP UIF HMPCBM EFTDSJQUJPO

pHMPCBM =
⇣
�(1)01 . . . �(1)0N

⌘
(1 � �(3)MPDBM� MPDBM)

�1� MPDBM
©≠≠
´

�(1)10
...

�(1)N0

™ÆÆ
¨| {z }

�HMPCBM

aHMPCBM 	����

PG UIF TDB॒FSJOH PCKFDUT XIFSF UIFZ BSF FFDUJWFMZ USFBUFE BT B TJOHMF DPNQPTFE PCKFDU�

��

<latexit sha1_base64="Eb81bz0jrvqeD6/QOxWVVXA6Qks=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae2Q8mkd9rQTGZIMkIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz02IuoGQVhFkz75Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n88RTcmaVAQljZZ80ZK7+3shopPUkCuzkLKFe9mbif143NeG1n3GZpAYlW3wUpoKYmMzOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd88ippXVS9y2rtvlap3+R1FOEETuEcPLiCOtxBA5rAQMIzvMKbo50X5935WIwWnHznGP7A+fwB3rmRDw==</latexit>

b <latexit sha1_base64="A6iEY6Hyk1Ejs/L95hPR2QwuGcg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMmGaEM/Qs3LhRx69+4829M21lo64HA4Zx7ybknSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+W9GSfoR3QgecgZNVZ66EbUDIMwe5z0yhW36s5AlomXkwrkqPfKX91+zNIIpWGCat3x3MT4GVWGM4GTUjfVmFA2ogPsWCpphNrPZokn5MQqfRLGyj5pyEz9vZHRSOtxFNjJaUK96E3F/7xOasIrP+MySQ1KNv8oTAUxMZmeT/pcITNibAllitushA2poszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucP9YSRHg==</latexit>q

���� 5�NBUSJY NFUIPE

य़F FYQSFTTJPOT GPS UIF USBOTMBUJPO DPFਖ਼DJFOUT A(n)
�µlm(r) BOE B(n)

�µlm(r) JO FRVBUJPO 	����

BSF HJWFO JO FRVBUJPO 	"���
 BOE DBO CF GPVOE JO <��>� 8JUI FRVBUJPO 	����B
 JU JT QPTTJCMF
UP FYQBOE B TDB॒FSFE FME PG BO PCKFDU BU UIF QPTJUJPO R BT BO JODJEFOU FME BU UIF PSJHJO
PG UIF DPPSEJOBUF TZTUFN BOE FRVBUJPO 	����C
 BMMPXT UIF FYQBOTJPO PG B TDB॒FSFE FME
BSPVOE B EJFSFOU PSJHJO� 'JOBMMZ XJUI FRVBUJPO 	����D
 UIF JODJEFOU FME DBO CF USBOTMBUFE
UP B EJFSFOU PSJHJO� *G UIF USBOTMBUJPO DPFਖ਼DJFOUT BSF BSSBOHFE JO NBUSJDFT �(n)(R) XJUI B
TPSUJOH BOE USVODBUJPO NBUDIJOH UP UIF FYQBOTJPO DPFਖ਼DJFOUT UIF USBOTMBUJPO CFDPNFT
NFSFMZ B NBUSJY NVMUJQMJDBUJPO�
"TTVNJOH N PCKFDUT XJUI 5�NBUSJDFT �1 UP �N BSF JMMVNJOBUFE XJUI B QSJNBSZ FME

EFTDSJCFE CZ FYQBOTJPO DPFਖ਼DJFOUT aj JO UIF DPPSEJOBUF TZTUFN PG PCKFDU j UIF NVMUJ�
TDB॒FSJOH FRVBUJPO CFDPNFT

©≠≠≠≠
´

p1

p2
...

pN

™ÆÆÆÆ
¨
=

©≠≠≠≠
´

�1
�2
. . .

�N

™ÆÆÆÆ
¨

2666666664

©≠≠≠≠
´

a1

a2
...
aN

™ÆÆÆÆ
¨
+

©≠≠≠≠≠
´

0 �(3)12 . . . �(3)1N

�(3)21
.

...
...

. �(3)N�1,N
�(3)N1 . . . �(3)N ,N�1 0

™ÆÆÆÆÆ
¨

©≠≠≠≠
´

p1

p2
...

pN

™ÆÆÆÆ
¨

3777777775
	����

XJUI �(3)ij = �
(3)(rij) BOE rij QPJOUJOH GSPN UIF PSJHJO PG PCKFDU j UP PCKFDU i � य़F SJHIU IBOE

TJEF EPFT OPU POMZ JODMVEF UIF TDB॒FSJOH PG UIF JODJEFOU FME CVU BMTP PG UIF FMET UIBU
XFSF BMSFBEZ TDB॒FSFE CZ PUIFS PCKFDUT BOE BSF USBOTMBUFE UP CF JODJEFOU FMET� #Z NBUSJY
JOWFSTJPO UIJT FRVBUJPO DBO CF TPMWFE� "T UIJT EFTDSJQUJPO JT SFGFSSFE UP BT MPDBM XF XSJUF
EPXO UIF TPMVUJPO BT

pMPDBM = (� � MPDBM�(3)MPDBM)�1� MPDBMaMPDBM , 	����

XIFSF UIF MPDBM RVBOUJUJFT SFGFS UP UIF SFTQFDUJWF NBUSJY JO FRVBUJPO 	����
� य़F UPUBM
TDB॒FSJOH SFTQPOTF JT PCUBJOFE CZ USBOTMBUJOH BMM TDB॒FSFE XBWF DPOUSJCVUJPOT UP B DPNNPO
PSJHJO r0 BOE TVNNJOH UIFN VQ BT

pHMPCBM =
⇣
�(1)01 . . . �(1)0N

⌘
pMPDBM 	����

BOE TJNJMBSMZ UIF JODJEFOU XBWFT DBO CF PCUBJOFE CZ USBOTMBUJOH UIF FYQBOTJPO BSPVOE
POF PSJHJO UP UIF JOEJWJEVBM POFT PG FBDI PCKFDU�

aMPDBM =
©≠≠
´

�(1)10
...

�(1)N0

™ÆÆ
¨
aHMPCBM . 	����

6TJOH UIFTF FYQSFTTJPOT JU JT QPTTJCMF UP HFU UP UIF HMPCBM EFTDSJQUJPO

pHMPCBM =
⇣
�(1)01 . . . �(1)0N

⌘
(1 � �(3)MPDBM� MPDBM)

�1� MPDBM
©≠≠
´

�(1)10
...

�(1)N0

™ÆÆ
¨| {z }

�HMPCBM

aHMPCBM 	����

PG UIF TDB॒FSJOH PCKFDUT XIFSF UIFZ BSF FFDUJWFMZ USFBUFE BT B TJOHMF DPNQPTFE PCKFDU�

��

disordered particles

Resources on Mie Scattering

our own T-matrix based scattering code

https://tfp-photonics.github.io/treams/

Finite Element Method

JCM suite

material taken from slides from S. Burger (JCM)

Finite Element Method

JCM suite

EUPROMETA Training 14.04.2016

Finite Element Meshes

• Complicated geometries can be resolved with sub-nm accuracy

• „Unstructured meshes“ (sidewalls etc can be resolved without extra effort)

• rough surfaces, corner roundings, etc. can be resolved

Finite Element Method

EUPROMETA Training 14.04.2016

Finite Element Method (FEM)
Goal:
• Compute solution to Maxwell‘s equations (linear, frequency-domain)

„Recipe“:
• Choose computational domain with

appropriate boundary condition and
sub-divide the geometry into patches

• Expand the electric/magnetic fields with
local ansatz functions which are defined
on the triangles and plug into weak
formulation of Maxwell‘s equations

• Solve sparse matrix equation with fast
numerics

Finite Element Method

EUPROMETA Training 14.04.2016

FEM Convergence

Intensity of the computed light distribution

Increasing numerical accuracy

Finite Element Method

EUPROMETA Training 14.04.2016

Product
FEM package “JCMsuite” (Version 2.20, 2016)

• Solvers for accurate computation of optical properties of

nano- (and micro-) devices

• Unique selling point: high accuracy and best available
accuracy-to-effort ratio

EUPROMETA Training 14.04.2016

Product
FEM package “JCMsuite” (Version 2.20, 2016)

• Solvers for accurate computation of optical properties of

nano- (and micro-) devices

• Unique selling point: high accuracy and best available
accuracy-to-effort ratio

EUPROMETA Training 14.04.2016

Product
FEM package “JCMsuite” (Version 2.20, 2016)

• Solvers for accurate computation of optical properties of

nano- (and micro-) devices

• Unique selling point: high accuracy and best available
accuracy-to-effort ratio

Finite Element Method

COMSOL multi physics

material taken from slides from Shulin Sun and Guang-yu Guo

10

Comparison of FEM and FDTD
FDTD

Conclusion: FEM has more freedom of mesh setup to define the complex
structure more accurately.

FEM

10

Comparison of FEM and FDTD
FDTD

Conclusion: FEM has more freedom of mesh setup to define the complex
structure more accurately.

FEM

Finite Element Method

28

Finite Integration Method

Computer Simulation Technology

29

Finite Integration Method

Computer Simulation Technology

30

Boundary Element Method
material taken from slides from U. Hohenester (Graz)

500 nm A Matlab® Toolbox

http://physik.uni-graz.at/mnpbem

http://physik.uni-graz.at/mnpbem

U. Hohenester and J. Krenn, Phys. Rev. B 72, 195429 (2005).
U. Hohenester and A. Trügler, Comp. Phys. Comm. 183, 370 (2012); ibid 185, 1177 (2014).

• perfect for scattering problems

• frequency domain

• nonlocal and nonlinear extensions

• assumes a homogenous scatterer

• discretises the problem on a surface instead of a bulk medium

http://physik.uni-graz.at/mnpbem

31

Boundary Element Method

Haberfehlner et al, Nano Lett. 15, 7726 (2015).

200 nm

32

Boundary Element Method

http://physik.uni-graz.at/mnpbem

U. Hohenester and J. Krenn, Phys. Rev. B 72, 195429 (2005).
U. Hohenester and A. Trügler, Comp. Phys. Comm. 183, 370 (2012); ibid 185, 1177 (2014).

33

Boundary Element MethodBoundary element method
The ingredients of the BEM approach :

Implementation within the MNPBEM toolbox

% table of dielectric functions
epstab = { epsconst(1), epstable(‘gold.dat') };
% nanosphere with a diameter of 50 nm
p = trisphere(256, 50);
% initialize dielectic environment
p = comparticle(epstab, { p }, [2, 1], 1);

% plot particle boundary with outer surface normals
plot(p, ‘EdgeColor’, ‘b’, ‘nvec’, 1);

closed particle boundary

Pointer to dielectric function at in- and outside of boundary

34

Boundary Element Method

Flow chart for MNPBEM simulation
A typical MNPBEM simulation

excitation measurement

comparticle

dielectric particle

BEM solver sig

Dielectric environment

E.g. incoming plane wave Solve BEM eqs. E.g. scattering cross section

Quasistatic BEM equations

The MNPBEM toolbox uses a collocation scheme for the quasistatic or
full Maxwell‘s equations (see below)

Computational Photonics

35

Outro

