Computational Photonics

Outro

1

Strategies to solve Maxwell's equations I

• frequency-domain eigenproblems

 \implies elementary solution to Maxwell's equations without source

$$\omega = \omega(\mathbf{k}) \qquad Ax = \omega^2 Bx$$

dispersion relation

field profile

frequency-domain responses

time harmonic current source

$$\mathbf{J}(\mathbf{r})e^{-i\omega t}$$

 \implies field all electric and magnetic fields

• time-domain responses

current source

$$\mathbf{J}(\mathbf{r},t)$$

 \Rightarrow field all electric and magnetic fields

Strategies to solve Maxwell's equations II

• finite differences:

represent functions in space at discrete points and derivatives as differences

$$f(x) \rightarrow f_n \approx f(n\Delta x)$$

$$\frac{\partial f}{\partial x} \to \frac{\partial f_n}{\partial x} \approx \frac{f_{n+1} - f_{n-1}}{2\Delta x}$$

• finite elements:

divide space into finite regions and expand solution in these regions

• spectral methods:

represent functions as a series expansion in a complete basis set, truncate this series

 boundary-element method: discretize space at interfaces, analytical expressions in homogenous space

exploiting symmetries in geometry in the solution strategy

Calculating a band structure

MIT Photonic-Bands (MPB)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

- frequency domain
- plane wave expansion, eigenvalue solver
- photonic crystals, waveguides, integrated optics
- guile scheme for programming a task
- isotropic, anisotropic materials, no dispersion
- visualisation using different h5 utilities

Example MPB

```
(set! num-bands 8)
(set! geometry-lattice (make lattice (size 1 1 no-size)
                        (basis1 (/ (sqrt 3) 2) 0.5)
                        (basis2 (/ (sqrt 3) 2) -0.5)))
(set! geometry (list (make cylinder
                      (center 0 0 0) (radius 0.2) (height infinity)
                      (material (make dielectric (epsilon 12)))))
(set! k-points (list (vector3 0 0 0) ; Gamma
                    (vector3 0 0.5 0) ; M
                    (vector3 (/ -3) (/ 3) 0) ; K
                    (vector3 0 0 0))) ; Gamma
'(set! k-points (interpolate 4 k-points))
(set! resolution 32)
(run-tm (output-at-kpoint (vector3 (/ -3) (/ 3) 0)
                         fix-efield-phase output-efield-z))
(run-te)
```


unix% mpb-data -r -m 3 -n 32 e.kl1.b*.z.tm.h5 unix% h5topng -C epsilon.h5:data-new -c bluered -Z -d z.r-new e.kl1.b*.z.tm.h5 7

Finite-difference time-domain **MEEP (also from MIT)**

http://ab-initio.mit.edu/wiki/index.php/Meep

- time domain, 1d, 2d, 3d, cylindrical
- parallelised using MPI standard
- space and time discretisation and a leap-frog-algorithm
- basically everything when it comes to scattering and diffraction (less efficient for grating structures)
- guile scheme for programming a task
- isotropic, anisotropic materials, dispersion, nonlinear materials
- periodic and PML absorbing boundaries
- visualisation using different h5 utilities

Example MEEP

```
Meep Tutorial - AbInitio
```

```
(set! geometry-lattice (make lattice (size 16 8 no-size)))
```

```
(make source
 (src (make continuous-src (frequency 0.15)))
 (component Ez)
 (center -7 0))))
```

(set! pml-hayers5t6phigsts3(makekpmlere(athigkness eps00)))))0.00.h5 ez-000200.00.h5

Grating algorithms

- based on rigorous coupled wave analysis (or Fourier Modal Method)
- frequency domain solver
- strictly periodic objects
- all linear materials usually considered, lossy and dispersive
- plane wave illumination
- many codes available, partially also free
- some provide also scattering matrices

EMUstack

http://www.physics.usyd.edu.au/emustack/ Computer Physics Communications 202 (2016) 276–286

S4

https://web.stanford.edu/group/fan/S4/

Victor Liu and Shanhui Fan, "S⁴: A free electromagnetic solver for layered periodic structures," Computer Physics Communications **183**, 2233-2244 (2012)

Resources on Mie Scattering http://www.scattport.org

Resources on Mie Scattering

layered Korringa Kohn Rostoker method

Computer Physics Communications 113 (1998) 49-77

Resources on Mie Scattering

Resources on Mie Scattering

discrete dipole approximation http://www.ddscat.org

Draine, B.T., & Flatau, P.J., "Discrete dipole approximation for scattering calculations", J. Opt. Soc. Am. A, 11, 1491-1499 (1994)

Resources on Mie Scattering discrete dipole approximation

$$\alpha_j^{\rm CM} = \frac{3d^3}{4\pi} \frac{\epsilon_j - 1}{\epsilon_j + 2}$$

$$\mathbf{E}_j = \mathbf{E}_{\text{inc},j} - \sum_{k \neq j} \mathbf{A}_{jk} \mathbf{P}_k$$

$$\mathbf{A}_{jk} = \frac{\exp(ikr_{jk})}{r_{jk}} \\ \times \left[k^2(\hat{r}_{jk}\hat{r}_{jk} - \mathbf{1}_3) + \frac{ikr_{jk} - 1}{r_{jk}^2} \left(3\hat{r}_{jk}\hat{r}_{jk} - \mathbf{1}_3 \right) \right]$$

Resources on Mie Scattering our own T-matrix based scattering code

single particle

$$\mathbf{b}(\omega) = \mathbf{T}(\omega)\mathbf{q}(\omega)$$

particle in lattice

$$\mathbf{b} = \left(\mathbbm{1} - \mathbf{T} \sum_{\mathbf{R}}' \mathbf{C}^{(3)}(-\mathbf{R}) \mathrm{e}^{\mathrm{i}\mathbf{k}_{\parallel}\mathbf{R}}\right)^{-1} \mathbf{T}\mathbf{q}$$

disordered particles

$$\mathbf{b}_{\text{local}} = (\mathbb{1} - \boldsymbol{T}_{\text{local}} \boldsymbol{C}^{(3)}_{\text{local}})^{-1} \boldsymbol{T}_{\text{local}} \mathbf{q}_{\text{local}}$$

https://tfp-photonics.github.io/treams

JCM suite

material taken from slides from S. Burger (JCM)

JCM suite

COMSOL multi physics

material taken from slides from Shulin Sun and Guang-yu Guo

File Model Definitions Geometry Materials Phy Parameters m Composition	ysics Mesh Study Resu	die.			thermal_actuator_tem.mph - COMSOL Multiphysics							
n Parameters 💼 🚍 Import		11.5										
Thermal Add Actuator • Component • Model Definitions • Geometry	Add Material Materials	Solid Mechanics • Physics Physic	Build Mesh M	Mesh 1.	Compute Study	Add Study	Stress Add Plot (solid) • Group • Results	Model More Libraries Windows Windows	The Reset Desktop			
Model Builder Set ← → ▼ • Ⅲ Ⅲ Ⅱ + .	ttings tromagnetic Heat Source			21	Graphics		• <u>by by by</u> [
 thermal_actuator_tem.mph (root) Global Thermal Actuator (comp1) Definitions A Geometry 1 Materials Solid Mechanics (solid) Linear Elastic Material 1 Free 1 Initial Values 1 Fixed Constraint 1 Fixed Cons	tromagnetic Heat Source Electromagnetic Heat Source : e: emh1 Domain Selection tion: All domains 1 2 3 4 5 6 7 Equation v equation assuming: dy 1. Stationary $\mathbf{a} \cdot \nabla \tau = \nabla \cdot (k \nabla T) + Q_{\mathbf{a}}$ Electromagnetic Heat Source romagnetic totric Currents (ec) transfer: at Transfer in Solids (ht)			•	A A SA O I	agress Lo	g Table	×10 ⁻⁴	ê ê	A 15	2	

Finite Integration Method

Computer Simulation Technology

Finite Integration Method CST **Computer Simulation Technology** Transmission Transmission 0.8 0.6 ⊢ 0.4 0.2 0 2000 3000 1000 4000 lambda [nm] BBBBBBBBBBBBBB

material taken from slides from U. Hohenester (Graz)

http://physik.uni-graz.at/mnpbem

U. Hohenester and J. Krenn, Phys. Rev. B 72, 195429 (2005). U. Hohenester and A. Trügler, Comp. Phys. Comm. <u>183</u>, 370 (2012); ibid <u>185</u>, 1177 (2014).

- perfect for scattering problems
- discretises the problem on a surface instead of a bulk medium
- assumes a homogenous scatterer
- frequency domain
- nonlocal and nonlinear extensions

Haberfehlner et al, Nano Lett. **15**, 7726 (2015).

U. Hohenester and J. Krenn, Phys. Rev. B 72, 195429 (2005).

U. Hohenester and A. Trügler, Comp. Phys. Comm. <u>183</u>, 370 (2012); ibid <u>185</u>, 1177 (2014).

http://physik.uni-graz.at/mnpbem

Implementation within the MNPBEM toolbox

```
% table of dielectric functions
epstab = { epsconst(1), epstable( 'gold.dat') };
% nanosphere with a diameter of 50 nm
p = trisphere(256, 50);
% initialize dielectic environment
p = comparticle( epstab, { p }, [2, 1], 1 , closed particle boundary
% plot particle boundary with outer surface normals
plot( p, 'EdgeColor', 'b', 'nvec', 1);
```

Pointer to dielectric function at in- and outside of boundary

Flow chart for MNPBEM simulation

A typical MNPBEM simulation

Quasistatic BEM equations

$$\sum_{j} \left[\Lambda \,\delta_{ij} + \left(\frac{\partial G}{\partial n} \right)_{ij} \right] \sigma_j = -\varepsilon_0 \left(\frac{\partial V^{\text{ext}}}{\partial n} \right)_i$$

The MNPBEM toolbox uses a collocation scheme for the quasistatic or full Maxwell's equations (see below)

Computational Photonics

Outro