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Exercises for everyone:

▶ Task I: 1D FD mode analysis

▶ Task II: 2D FD mode analysis

Extended exercises:

▶ Task III*: Group velocity and dispersion

▶ Task IV*: Periodic boundary conditions



Pitfalls (courtesy of last tutorial)

Real vs complex arrays

a = np.zeros(5)
b = np.array([0, 1+1j, 0, 0, 0])
a[1] = b[1]  # ComplexWarning
print(a) # array([0., 1., 0., 0., 0.])

Can use np.zeros(5, dtype=’complex128’) to ensure complex arrays.

Not copying an array

a = np.zeros(5)
b = np.linspace(0,4,5)
for i in range(5):
    if i == 0:
        a = b
    else:
        a[i] = a[i] + 1
print(a) # [0. 2. 3. 4. 5.]
print(b) # [0. 2. 3. 4. 5.]

Can use a = b.copy() to ensure that a will be a new array.



Sparse matrices in Python / scipy

from scipy.sparse import diags, dok_matrix
from scipy.sparse.linalg import eigs

### Filling individual elements
M = dok_matrix((5,5))  # dict of keys: easy to modify, slow to use
for i in range(5):
    M[i,i] = 2.0
for i in range(3):
    M[i,i+2] = 5.0
M = M.tocsr()  # compressed sparse row: hard to modify, fast to use
print(M.todense())

### Using diagonal filling
M = diags([2.0*np.ones(5), 5.0*np.ones(5)], [0, 2], shape=(5,5))
print(M.todense())

### The three eigenvalues and eigenvectors, with largest real parts
eigenvalues, eigenvectors = eigs(M, 3, which='LR')
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Computational Photonics

Implementation of a Finite-Difference Mode Solver

Seminar 04, May 15, 2020

• Implementation of 2nd order finite difference schemes 
in matrix notation

• Calculation of the guided modes in a slab waveguide 
system

• Calculation of the guided modes in a strip waveguide 
system
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Guided modes in 1+1 (=2D) systems (stratified media)

z

x

• no y-dependence
• phase evolution in the z-direction
 looking for beams without diffraction in x-direction

e

x
Substrate 

Cladding

Stratified medium
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Guided modes in 1+1D systems (TE modes)

Assuming weak guiding (                                ), we can use the

Helmholtz equation:

Ansatz for the fields:

For a 2D geometry & TE (                     ), inserting into Helmholtz eq. 
yields:
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Guided modes in 1+1D systems (TE modes)

This eigenvalue equation has to be solved for PEC, i.e. 
perfectly electric conducting boundaries ( E0(xmin) = E0(xmax) = 0 ).

The mode operator is defined as:

Numerical solution by discretizing functions and operators:

Discretizing transverse space:

Discretizing the E-fields:

Discretizing 2nd order derivative:

 matrix diagonal: -2/h2 (+k0
2ɛ)

adjacent diagonals: 1/h2
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Guided modes in 1+1D systems (matrix form)
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Task I: Calculate TE eigenmodes of a film waveguide

def guided_modes_1DTE(prm, k0, h):
"""Computes the effective permittivity of a TE polarized guided eigenmode.
All dimensions are in µm.
Note that modes are filtered to match the requirement that
their effective permittivity is larger than the substrate (cladding).

Parameters
----------
prm : 1d-array

Dielectric permittivity in the x-direction
k0 : float

Free space wavenumber
h : float

Spatial discretization

Returns
-------
eff_eps : 1d-array

Effective permittivity vector of calculated modes
guided : 2d-array

Field distributions of the guided eigenmodes
"""
pass
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Input variables: permittivity profile; h, k0

assume Gaussian waveguide profile

Please select the modes guided inside the dielectric waveguide according 
to their eigenvalue: 

Task I: Calculate TE eigenmodes of a film waveguide

 2/
Substrate( , ) e x Wx e   e  e

Substrate eff max( )xe  e  e

Use the following parameters for testing: 

ɛ = 2.25, ∆ɛ  = 0.015, W = 15 µm, λ = 780 nm
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scalar Helmholtz equation  eigenvalue problem for scalar fields

transform to standard notation

This eigenvalue problem is to be solved by a finite difference scheme using 
electric conducting boundaries.

Discretizing 2D 2nd order derivative:

 matrix diagonal: -4/h2 & adjacent diagonals: 1/h2

 2 more bands with 1/h2

Guided modes in 2+1 (=3D) systems (strip waveguide)
in scalar approximation
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U j,k
N

.
k
.

1 1           j          N
x index at first

Differentiation with respect to x (same as 1D)
Differentiation with respect to y

U 2,2U 3,2

U N-1,2U 2,3

…

U 3,3

U N-2,2

U 4,3

U N-2,3

…

U N-1,3U 2,4U 3,4U 4,4

-4  1  0  0 .. 0  1 0  0 0  0 …  
1  -4  1  0 .. 0  0  1  0 0  0 … 

1  0  0  0 .. 0 -4 1 0  0  0 .. 0 1 0 0 0 … 
0  1  0  0 .. 0 1 -4 1  0  0 .. 0 0 1 0 0 …
0  0  1  0 .. 0 0 1 -4  1  0 .. 0 0 0 1 0 …

…

Use the concept of sparse matrices since the matrix will be mainly filled 
with  zeros.

Numerical implementation of the 2D Laplace operator

discrete Laplace operator



Boundary conditions implementation examples
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Task II: Quasi-TE modes of a strip waveguide

def guided_modes_2D(prm, k0, h, numb):
"""Computes the effective permittivity of a quasi-TE polarized guided 
eigenmode. All dimensions are in µm.

Parameters
----------
prm : 2d-array

Dielectric permittivity in the xy-plane
k0 : float

Free space wavenumber
h : float

Spatial discretization
numb : int

Number of eigenmodes to be calculated

Returns
-------
eff_eps : 1d-array

Effective permittivity vector of calculated eigenmodes
guided : 3d-array

Field distributions of the guided eigenmodes
"""
pass



Task II 2D mode solver test parameters

Step index optical fiber (These fibers consist of a pure SiO2 cladding and a core

made of SiO2 doped with a small amount of GeO2. They are usually used around

wavelengths 1300 - 1600 nm where they only have a single mode. Here we will use a

shorter wavelength to see more guided modes.)

▶ ϵ(x , y) = ϵsilica + 0.01 if x2 + y2 ≤ r2core with ϵsilica = 2.11

▶ ϵ(x , y) = ϵsilica otherwise

▶ rcore = 6 µm
▶ λ0 = 780 nm

▶ Make domain large enough so the fields do not touch the edge.

▶ Grid step size: make it smaller until fields do not change.

▶ There should be six guided modes.



Task III*: Group velocity and dispersion

Study the group velocity vg = ∂ω/∂β of the step index optical fiber from
Task II. Pick the fundamental guided mode with the highest β and
calculate vg in the wavelength range 1.2 µm – 1.6 µm. Use realistic
dispersion for ϵsilica, given by the Sellmeier equation

def eps_SiO2(wl):
    # 'wl' wavelength in micrometers
    # Malitson J. Opt. Soc. Am. 55, 1205, 1965
    return (1 + 0.6961663*wl**2/(wl**2 - 0.0684043**2) +
           0.4079426*wl**2/(wl**2 - 0.1162414**2) +
           0.8974794*wl**2/(wl**2 - 9.896161**2))

Knowing that the dispersion parameter is defined as

D =
∂(1/vg )

∂λ0
= − ω2

2πc

∂2β

∂ω2
,

can you find the zero dispersion wavelength of this fiber?
Hint: if you want to avoid headaches, use equally-spaced frequencies to span

the given wavelength range and perform the derivatives numerically with

respect to angular frequency.



Task IV*: Periodic boundary conditions

Implement periodic boundary conditions for the 2D mode solver of Task
II, along one of the coordinate directions (either x or y but not both).
Check the result by reproducing the Task I result in this 2D geometry.


