Computational Photonics
Tutorial 3:
Finite difference time domain method

24 May 2023
Dr. Markus Nyman, markus.nyman@kit.edu
M.Sc. Nigar Asadova, nigar.asadova@kit.edu

Exercises for everyone:

> Task 1(1,2,3): FDTD implementation in one spatial dimension
Extended exercises:

> Task 11*(1,2,3): FDTD implementation in three spatial dimensions



Advice

» Do the arithmetic with numpy vectors. Avoid for-looping over the
space index / indices, because this is much slower in non-accelerated
Python.

» Indexing expressions like E[1:] and E[0:-1] and functions like
numpy . concatenate may be in useful in manipulating the arrays.

» The 1D case can be computed in a fraction of a second. The 3D
case may take a quite few seconds.
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1D FDTD: Yee — Grid for E, & H, Components

Changing of index notation to integer indices
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1D FDTD: Source

¢ Separable source:
Jolit = A(At(n + 1/2))e 2mI 8/, (£ = 0) |

« Spatial distribution: j, (t = 0)|;

o Carrier e—zrrifAt(n+1/2)

* Envelope: A(At(n + 1/2))
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1D FDTD: Layout of the field arrays

boundary values
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3D FDTD: Yee-Grid

Center of the cube is in the center of the coordinate system (i, j, k)

z(k)

y()

x(1)

Grid size is determined by the permittivity distribution:
size(g) = [Ny, Ny, N,]
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3D FDTD: Electric Field Components
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3D FDTD: Magnetic Field Components
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3D FDTD: Electric Field Components

Change Index Notation to Integer Indices
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3D FDTD: Magnetic Field Components
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Change Index Notation to Integer Indices
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3D FDTD: Array Sizes and Boundary Conditions

e Permittivity grid and output grid:
size(e) = [Ny, Ny, N,]
e Fields:
— Tangential E-fields and normal H-fields are stored at T 1:N
— N grid points
— Normal E-fields and tangential H-field are stored at fractional indices
1.5:N — 0.5 - N — 1 grid points
® Array sizes:
- Ee:(Ne—1,N,N,); Hy: (NN, —1,N, — 1);
- Eyt(No,Ny—1,N,);  Hy:(Nye—1,N,N, — 1);
- Ep(N,N,N,—1); Hp(N,—1,N,—1,N,);
¢ PEC boundary conditions: At the boundaries the tangential E-fields and the
normal H-fields are set to zero and are not updated
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3D FDTD: Array Sizes and Boundary Conditions

¢ PEC boundary conditions: At the boundaries the tangential E-fields and the
normal H-fields are set to zero and are not updated

Ex(,1:)=0 Ex(:,Ny,:) =0
Ex(,51)=0 Ex(,:,N,)=0
H.(1,:,:)=0 Hy(Ny,:,:) =0
Ey(1,:,:)=0 Ey(Ny,:,:) =0
Ey(G,51) =0 Ey(,:i,N;) =0
Hy(,1,:)=0 Hy(:,Ny,:) =0
E,(1,:,:)=0 E,(Ny:,:) =0
E,(:1,:)=0 E,(:,Ny,:) =0

H,(,:,1)=0 H,(:,:,N,) =0



Computational Photonics, Prof. Thomas Pertsch, Abbe School of Photonics, FSU Jena

3D FDTD: Time Stepping

Update of the Electric Field
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Tangential E-fields at boundary are not updated!
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3D FDTD: Time Stepping

Update of the Magnetic Field
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Normal H-fields at boundary are not updated!
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3D FDTD: Interpolation of Output

* For postprocessing purposes it is desirable to have all fields on a common grid
in space and time — fields must be interpolated (e.g. to the integer grid where

€ is given)
E, 2(k)
AR
. - e / 8
ok 47 / ()
x()
“ Interpolated Axes “ Interpolated Axes

12 x H ¥,z t
Ey y H, %)% (&

Ey z H, x,y,t



3D FDTD: Interpolation of Output

Computational Photonics, Prof. Thomas Pertsch, Abbe School of Photonics, FSU Jena

* For postprocessing purposes it is desirable to have all fields on a common grid
in space and time — fields must be interpolated (e.g. to &-grid)
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3D FDTD: Interpolation of Output

* What about missing values at the boundaries? E.g.:
— Interpolation of EQUt (1,:,:) requires E2"t (0,:,:)
— Interpolation of H2Ut (3, 1,:) requires H2Ut (:,0,:)
- Interpolation of H2"t (3, :,1) requires H2" (:,:, 0)
* At the PEC boundary the following mirror symmetries hold:
- Ey = —Ef,E] = +E]
- Hy = +H{,H] = -H{

* Missing values behind the boundary can be obtained by duplicating the values
in front of the boundary

Ef  Ef Hf Hf
1.5 —_— I —
1 PEC
o — [ — |

Ef  El Hy H]
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1.

2.

Tasks

Implement the FDTD method in 1D and 3D versions
(functions fdtd_1d and fdtd_3d)

Simulate the test problems:

Propagation of a subcycle pulse through a
homogeneous and inhomogeneous medium

Test the convergence and accuracy of obtained results
vs. parameters dx and dt
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Task I: Implementation of the 1D FDTD method

Physical problem:

«  Simulate the propagation of an ultrashort pulse in a dispersion-free dielectric medium &(x) = 1

« See what happens when the pulse hits the interface between two different dielectric media with
permittivities £, = 1 and &, = 4, the interface should be located at a distance of 4.5 um in positive
direction from the center of the computational domain

Excitation:
*  Pulsed source with frequency f = 500 THz (red light)
«  delta-shaped spatial profile j,(t = 0,x) = j§(x — x) with j, = 1 A/m? located at the center
of the computational domain atx, = 0
*  Gaussian temporal envelope A(t) = exp(—(t — ty)?/t?) witht = 1fsand t, = 37

Simulation grid:

« Spatial window size of W = 18 pm with discretization Ax = 15 nm and metallic walls (£, = 0 at the
boundaries)

« Simulation time span T' = 60 fs with discretization At = Ax/(2c)

Output:
*  E,(x,t)and H(x,t) at every time step interpolated to the integer grid both in space and time
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Task I: Implementation of the 1D FDTD method

Electric field, ct = 17.98 ym
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Please include relevant plots of the fields (e.g. snapshots at certain time steps, time
traces) in your report but do not include or submit video files!



Task | convergence and accuracy

Make Ax larger until you see numerical dispersion: due to bad
discretization the pulse will broaden and deform as it propagates through
the domain. How does the Ax &~ A/20/nnax rule of thumb fare? Does
adjusting the Courant factor cAt/Ax help?

Also study what happens if the Courant factor cAt/Ax exceeds 1.
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Task I: Implementation of the 1D FDTD method

def fdtd_1d(eps_rel, dx, time_span, source_frequency, source_position, source_pulse_length):

*'Computes the temporal evolution of a pulsed excitation using the 1D FDTD method. The temporal center of
the pulse is placed at a simulation time of 3*source_pulse_length. The origin x= is in the center of the
computational domain. All quantities have to be specified in SI units.

Arguments
eps_rel : 1d-array
Rel. permittivity distribution within the computational domain.
dx : float
Spacing of the simulation grid (please ensure dx <= lambda/20).
time_span : float
Time span of simulation.
source_frequency : float
Frequency of current source.
source_position : float
Spatial position of current source.
source_pulse_length :
Temporal width of Gaussian envelope of the source.

Returns
Ez : 2d-array
Z-component of E(x,t) (each row corresponds to one time step)
Hy : 2d-array
Y-component of H(x,t) (each row corresponds to one time step)
x : 1d-array
Spatial coordinates of the field output
t : 1d-array
Time of the field output
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Task I: Implementation of the 1D FDTD method

® You can use the provided animation function to watch a movie of the fields

class Fdtd1DAnimation(animation.TimedAnimation):
*''Animation of the 1D FDTD fields.
Based on https://matplotlib.org/examples/animation/subplots.html

Arguments

x : 1d-array
Spatial coordinates
t : 1d-array
Time
x_interface : float
Position of the interface (default: None)
step : float
Time step between frames (default: 2e-15/25)
fps : int
Frames per second (default: 25)
Ez: 2d-array
Ez field to animate (each row corresponds to one time step
Hy: 2d-array
Hy field to animate (each row corresponds to one time step)
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Task Il: Implementation of the 3D FDTD method

Physical problem:

* Investigate the radiation characteristics of a pulsed line current with a Gaussian spatial envelope
. , , (t—1p)? x?+y?
iCy,z,t) = jo exp(—2mift)exp (—T expl=— 2 )¢

Simulation grid:

«  Spatial domain size of 199x201x5 grid points with a step size of Ax = Ay = Az = 30 nm

*  PEC boundary conditions

*  Simulation time span T' = 10 fs with discretization At = Ax/(2c)

«  Specify all input quantities (¢(r), jvk(r),j},(r) and j,(r)) on the same centered integer grid and

interpolate the quantities to the required shifted grids within the implementation

Excitation:
«  Pulsed current source with amplitude j, = 1 A/m?, frequency f=500 THz (red light), temporal width
7 = 1fs and offset t, = 37 and spatial width w = 2Ax

Output:
* H,andE, in the xy-plane centered in the middle along the z-direction at every 4th time step
interpolated to the integer grid in space and time
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Task Il: Implementation of the 3D FDTD method

x-Component of Magnetic Field, ct = 3.00 ym
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Please include relevant plots of the fields (e.g. snapshots att = T) in your report
but do not include or submit video files!
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Task Il: Implementation of the 3D FDTD method

def fdtd_3d(eps_rel, dr, time_span, freq, tau, jx, jy, jz, field_component, z_ind, output_step):

*"'Computes the temporal evolution of a pulsed spatially extended current source using the 3D FDTD method.
Returns z-slices of the selected field at the given z-position every output_step time steps. The pulse is
centered at a simulation time of 3*tau. All quantities have to be specified in SI units.

Argunents

eps_rel: 3d-array

Rel. permittivity distribution within the computational domain.
dr: float

Grid spacing (please ensure dr<=lambda/20).

time_span: float
Time span of simulation.

freq: float
Center frequency of the current source.
tau: float

Temporal width of Gaussian envelope of the source.
%, jy, jz: 3d-array

Spatial density profile of the current source.
field_component : str

Field component which is stored (one of ‘ex’,’ey’,’ez’, ’hx’,’hy’,’hz’).
z_index: int

Z-position of the field output.
output_step: int
Number of time steps between field outputs.
Returns

3d-array
time steps (time varies along the first axis).
t: 1d-arra;

Z-slices of the selected field component at the z-position specified by z_ind stored every output_step
Time of the field output.
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Task Il: Implementation of the 3D FDTD method

® You can use the provided animation function to watch a movie of the fields

class Fdtd3DAnimation(animation.TimedAnimation):
'''Animation of a 3D FDTD field.
Based on https://matplotlib.org/examples/animation/subplots.html

Arguments
X, y : 1ld-array
Coordinate axes.
t : 1d-array
Time
field: 3d-array
Slices of the field to animate (the time axis is assumed to be the first axis of the array)
titlestr : str
Plot title.
cb_label : str
Colrbar label.
rel_color_range: float
Range of the colormap relative to the full scale of the field magnitude.
fps @ int
Frames per second (default: 25)



