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Exercises for everyone:

» Task 1: Eigenmodes of a grating layer

» Task 2: Multi-mode transfer matrix method, diffraction efficiencies
Extended exercises:

> Task 3*: Numerically stable formulation (S-matrix method)
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Fourier Modal Method (FMM)

* Implementation of the 1D version of the Fourier mode
solver in TE polarization

* Calculation of the diffraction efficiencies of a multi-
layer grating in reflection and transmission
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FMM fundamentals

® The grating is divided into

z-invariant layers l—>
z

 In each layer the Bloch modes are
calculated in a Fourier basis

* The boundary value problemis = “--zn22ar---
solved by matching the continuous”
transverse electric and magnetic
field components at the layer
interfaces

¢ In the homogeneous regions the
Bloch modes are plane waves and
correspond to the reflected and
transmitted diffraction orders



TE eigenmodes of a grating layer

e Each layer is z-invariant and periodic
e(x,z) = e(x) withe(x + A) = e(x)
» Maxwell’s equations for TE field components £, H, and H,

] A a . 0 9 ;
—a—zEy = iwpgHy, a—XEy = iwpoH,, 6_sz —aHZ = —iwgye(X)E,
¢ Combining yields Helmholtz equation
92 02
2 —
a—XEy +a—ZEy + kOS(X)Ey =0

¢ Bloch modes

Ey(x,2) = e, (x)e*x**1Fz with ey, (x + A) = e, (x)

¢ Expansion of periodic quantities into Fourier series
o

o

. . 21
e,(x) = Z éme'tm, e(x) = Z &peilm, Gy = m—-

m=-—oo m=-o



TE eigenmodes of a grating layer

¢ Inserting into Helmholtz equation yields
B? Z Emeltm* = k2 Z Z &80 Gmt X — Z(Gm + ky)?8,,00m*
m m n m

e For all x — has to hold for each grating vector G,,individually

Breyettn* = k3 Z EnnbnelCm—ntCX _ (G + k. )26, eilmX

n
e Truncating to m € [—N, N] yields an algebraic eigenvalue problem

Bz¢e = [kgé - l’{2]<"e = ﬁ‘be



¢ Algebraic eigenvalue problem
B*be = [k§E — K*|d = M,
* The Fourier components are stored in a column vector

€-N
b = j ]
en
 €is a Toeplitz matrix where £, = &,
B &y w Eay
e=| 1 fo v EaNm
&y &an1 B
o K =k, I + diag[G_y, -+, Gy is a diagonal matrix
G_y+ky 0 0
R = 0 G_ni1+ ks



TE eigenmodes of a grating layer

aitol If o™l

e M has 2N + 1 rows and columns — 2N + 1 eigenvalues and eigenvectors

¢ Each eigenvector 4’5,1‘ contains the Fourier components of the periodic part of
the electric field e}’,"i (x) of the i mode in layer k

¢ The total field is decomposed into a superposition of forwards (+) and
backwards (-) propagating eigenmodes with amplitudes a{‘* and a}‘_

* The Fourier components t])ﬁ%r of the periodic part of the normalized transverse

magnetic field —iwyoh';_i(x) of the forwards (+) and backwards (-) modes in
layer k are given by

. a
—iwpoHy = 5-Ey = &y = +Afdg;
z

. B,—" is the propagation constant of the ith forwards mode in layer k

¢ The electric Fourier components of the forwards and backwards modes are
k= _ gkt _ gk
the same ¢e,i - We,i — ¢e,i



¢ The Fourier components of the total electromagnetic field at position z in
layer k (starting at z = zy,) are given by

[ék(z) _ [ N HAH(Z—ZU “a’”]
h¥(2)| | pEBF —¢e B" p* (Z — zk)
* With
akt = [al*, o aly ]
= €N el—(N,ZN+1
Pt = [¢§.1"“'¢I&§,2N+1] = : : ,
Sk Sk
en1 E€N2N+1

B = diag|{’, -, flivsal

PX* (2) = diage#1%, - o tflrt]



TE eigenmodes of a grating layer

* The regions before and after the grating are homogeneous
£(x,z) = &€ = const
¢ The eigenmodes of the homogeneous regions are plane waves and correspond
to the reflected and transmitted diffraction orders:

d.=1, B= /kgen—RZ



1.

Tasks

Implement the function fmmld TE layer modes
that calculates the TE eigenmodes of a single grating
layer in the Fourier domain.

Solve the boundary value problem in order to calculate
the amplitudes and diffraction efficiencies of the
transmitted and reflected diffraction order (function
fmml1d_te).
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Task 1: Layer modes

e Implement a function that calculates the Bloch modes of a grating layer with a
binary permittivity distribution
* Handle homogeneous layers explicitly to ensure the expected ordering of the
modes (test if permittivity is a scalar or if all entries of the vector are equal)
A

ZH e
—>
w

e Test with the following parameters:

- A=1.064 um, k., =0

- A=3pmw=15pum

- g =Lleyg—4

— Use N = 25 for the Fourier expansion of the electric Field

— Sample the spatial permittivity distribution with N,, = 1001 points
e Calculate the spatial field distributions eyvl-(x) of the propagating modes



Task 1: Layer modes

def fmmld_te_layer_modes(perm, period, ke, kx, N):
'''Calculates the TE eigenmodes of a one-dimensional grating layer.

Arguments
perm: 1d-array
permittivity distribution
period: float
grating period

ko: float

vacuum wavenumber
kx: float

transverse wave vector
N: int

number of positive Fourier orders

Returns
beta: 1d-array
propagation constants of the eigenmodes
phie: 2d-array
Fourier coefficients of the eigenmodes (each column corresponds to one mode)

pass
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The spatial coordinatesare x = (©:Nx-1)/Nx*period
The Fourier expansion of the permittivity is given by
perm_ft = fft(perm)/Nx
assuming Nx = length(perm), dividing by Nx ensures that perm_ft is
scaled correctly, i.e. that its first element is equal to the average of perm
perm_ft(1) == mean(perm)
Keep in mind that in Numpy/Scipy the vector returned by fft() contains
first the positive, then negative frequencies:
Em = [é0, 81, Ept e 4]
nt =|(N, —1)/2]
n” =[(N, - 1)/2]
Make sure that n* = [(N,, — 1)/2] = 2N, otherwise you will not have
enough Fourier components to fill the Toeplitz matrix
Don’t use fftshift () unless you know exactly what you are doing
For the construction of the matrix, you can use the function toeplitz() in
scipy.linalg
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In Python block matrices can be assembled using either the function numpy . block()
or you have to combine numpy .hstack() and numpy.vstack()

When you take the square root of the eigenvalues B to calculate the
propagation constants f3; of the modes, make sure that the obtained
propagation constants belong to forward modes,

i.e. R{B;} + I{B;} > 0, otherwise reverse f3;
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Boundary value problem

e a0+ 1.1 200

fk+l a(""’)*n TGkr-
Zi+2 R

* Problem:
- N layers, incident wave a(®* is known
— Wanted: amplitudes of the reflected and transmitted modes R = a®-
and T = aWW+D+
¢ At the interface between two layers the transverse electric and magnetic fields
are continuous (dy, = Zp4q1 — 2Zi )

oY o ﬁ<*+”+<0> alk+i)
$£k+1)ﬁ(k+1) $(k+1)ﬁ(k+1) p(k+1) 0) [a(k+1)
_Iq,gk)f;ao q,(k)B(k) $O-(d,)] la®-

e pktDE(Q) =
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Boundary value problem

i a0+ ” 200
::: a(kuyn k-

e Interface transfer matrix

(k+1) =~ (k+1) ) 2 (k)
ek +1) = [ D) (Tm (k+1)] [A(qk))i o _a0n k]
b B -o. VB b BY - B®

e Layer transfer matrix

Tl k+1) = t(kk+1)[ P () ]
PO (dy)
* With
a(k+D+ ao+
[a<k+1> ] Tk +1) [ o
* Transfer matrices can be stacked (Pay attention to the correct multiplication
order! Matrix multiplicationis not commutative.)

T(0,k + 1) = T(k, k + 1)T(0, k)



Transfer matrix algorithm (T-matrix algorithm)

o Start in the homogeneous layer before the grating

- ‘T’g = Ion41s B°= /ktz)ginHZNJrl -K% dy=0

- T(0,0) = Iyions1)
e Foreachlayeri=1..N
— Calculate layer modes and propagation constants <T>g and ﬁi
— Calculate layer T-matrix T(i — 1,1) « (Bi1,pL~1, d;_1, BL, L)
— Update stack T-matrix T(0,i) = T(i — 1,i)T(0,i — 1)
¢ In the homogeneous layer after the grating

AN+ AN+1 — ’ 2 Q2 —
- e =y B = [kooutlonsr — K%, dyy1 =0

— Calculate layer T-matrix T(N, N + 1) « (BN, Y, dy, BV+1, oY1)
— Update stack T-matrix T(0, N + 1) = T(N,N + 1)T(0,N)



Reflection and transmission coefficients

a™ “ R
dli a0+ I a0-
dy} A+ ]:1‘ -

T

* Incident waves:
- al®* =a, ﬁ = Omn+1
- a(N+1)— =0

» Reflected and transmitted diffraction orders
R = EI(O)_, T = El(I\H—l)+

HELCEEE PR e [P
* Solving for R and T yields
= R=-"i}t;a™
- T = (), —t,t57,)a™



Diffraction efficiencies

a™ “ R

d, 1 a® Tf a0

dy} A+ ];1‘ o

T

o Reflection and transmission coefficients

- R= _fgzlfuam
- T = (f; — 5 t5a™
« Diffraction efficiencies of the m™® diffraction order

- z-component of Poynting vector in Fourier space: S‘Z_m & R{B }Eml?
“R/T /mi
- 7IR/Tm=5 e /Sm

MR = ‘R{/;nn ‘R{B(")}(R R%)

- Nr = m{ﬁ‘“ 9:{{ﬁ(nH-l)}(T T )

- (A o A) means elementwise product of A and B (Hadamard product)
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Task 2: Diffraction efficiencies of a multilayer grating

* Implement a function that calculates the TE diffraction efficiencies and
reflection and transmission coefficients of a multilayer grating with the T-
matrix algorithm

Ein A
dy e £ ‘:;1’
d; = & | ws
d,] P =SS
Sout

* Calculate the diffraction efficiencies for the following parameters
— A =1.064 ym, 8 € {-30° 0°30°
- A=3pumw; =i-A/4,d; =0.25 um
= &pn = &= 1'50ut =&y = 4
— Use N = 20 for the Fourier expansion of the electric Field
— Sample the spatial permittivity distribution with N, = 1001 points



Task 2: Diffraction efficiencies of a multilayer grating

Side questions to examine:

* What happens when
— the number of positive Fourier components is increased to N — 40
— the layer thicknesses are increased to d; = 0.5 pm

* Why does this happen?



Task 2: Diffraction efficiencies of a multilayer grating

def fmmld_te(lam, theta, period, perm_in, perm_out, layer_perm, layer_ticknesses, N):
*"'Calculates the TE diffraction efficiencies for a 1D layered grating using the T-matrix method.

Arguments
lam: float
vacuum wavelength
theta: float
angle of incidence in rad
period: float
grating period
perm_in: float
permittivity on the incidence side
perm_out: float
permittivity on the exit side
layer_perm: 2d-array
permittivity distribution within the grating layers (matrix, each row corresponds to one layer)
layer_thicknesses: 1d-array
thicknesses of the grating layers
N: int
number of positive Fourier orders

Returns
eta_r: 1d-array
diffraction efficiencies of the reflected diffraction orders
eta_t: 1d-array
diffraction efficiencies of the transmitted diffraction orders
r: 1d-array
amplitude reflection coefficients of the reflected diffraction orders
t: 1d-array
amplitude transmission coefficients of the transmitted diffraction orders
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Use plain numpy arrays, don‘t use numpy's matrix class

A™1B corresponds to numpy. linalg.solve(A, B)

BA™! corresponds to numpy . linalg.solve(A.T, B.T).T

AB corresponds to A@B

Changing an 1d-array to a 2d column: b_as_column = b[:, numpy.newaxis]
Changing an 1d-array to a 2d row: b_as_row = b[numpy.newaxis, :]
Matrix-vector multiplication of 2d-array A and 1d-array b corresponds to

A@b[:, numpy.newaxis]

The block matrix [g g] can be built with numpy .block([[A, B], [C, D]])or

numpy .vstack([numpy.hstack([A, B]),
numpy .hstack([C, D])1)



Task 3*: Numerically stable formulation (S-matrix
method)

The transfer matrix method implemented in the previous tasks has
exp(ZiSd) factors that blow up / diminish to nothing for large d, many
layers and highly evanescent waves. This leads to loss of precision and
large numerical errors for demanding grating structures.

The S-matrix method is more stable. Read the next couple of slides and
implement and test the method using the same test case as in Task 2.

If you're interested in a more detailed discussion, this method is explained
in Section 3 of the provided paper [1]. [1] Lifeng Li, “Formulation and
comparison of two recursive matrix algorithms for modeling layered
diffraction gratings”, J. Opt. Soc. Am. A 13, 1024, 1996.


https://opg.optica.org/josaa/fulltext.cfm?uri=josaa-13-5-1024&id=17535

S-matrix method

Definition of S-matrix: (outgoing fields) = S (incoming fields):

2+ e
AR )
Putting two S-matrices A and B together (B comes after A); unlike

transfer matrices, S-matrices cannot be stacked just by matrix
multiplication):

By (I — A12321)_1A11 By + Bi1Awa(l — 521A12)_1322
Az1 + ApBoi (I — A12Bo1) ~tAm A (I — B21A12) 1B
(2)

where A1, Ajp etc. are the upper left, upper right etc. blocks (see next
slide). To calculate the transmission and reflection, set alt = a;,c and
a’~ =0, and we immediately get

s:

t = S118inc (3)
r= S21‘9inc (4)



S-matrices

S-matrix of an interface between media 1 and 2:

_ ®, -, -t (O] -,
S_|:¢2/82 <blﬁl] {‘Dlﬁl ¢2ﬁ2:| (5)

where ® and 3 are blocks defined as in the T-matrix method.
S-matrix of propagation in a medium of thickness d

o o ©)

Note that the exp(—ifd) factor is not present, which helps explain why
this method is not as vulnerable to loss of precision.



