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Exercises for everyone:

▶ Task 1: 1D FEM for the scalar wave equation

Extended exercises:

▶ Task 2*: 2D FEM for the scalar wave equation
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Reminder: sparse matrices

For FEM it is convenient to construct the system matrices incrementally:

▶ create a dictionary-of-keys matrix with dok matrix

▶ fill it

▶ transform to compressed sparse column format with .tocsc()

▶ now linear algebra will be faster (for example eigs)

You can use .todense() to make a dense matrix for debugging purposes.
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1D equation to solve

∂2u(x)

∂x2
+ k2

0 ϵu(x) = β2u(x)

(S+W)u = β2Mu

where

Sm,n = −
∫

∂ϕm(x)

∂x

∂ϕn(x)

∂x
dx

Wm,n = k2
0

∫
ϕm(x)ϵ(x)ϕn(x)dx

Mm,n =

∫
ϕm(x)ϕn(x)dx

Generalized eigenvalue problem with system matrix S+W and mass
matrix M, solvable with scipy.sparse.linalg.eigs.
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Piecewise linear basis functions

Prototype element x ∈ [0, 1], only two prototype basis functions on it:

ϕ0(x) = 1− x

ϕ1(x) = x

Integrals needed for later∫ 1

0

ϕ0(x)ϕ0(x)dx =
1

3

∫ 1

0

∂ϕ0(x)

∂x

∂ϕ0(x)

∂x
dx = 1∫ 1

0

ϕ0(x)ϕ1(x)dx =
1

6

∫ 1

0

∂ϕ0(x)

∂x

∂ϕ1(x)

∂x
dx = −1∫ 1

0

ϕ1(x)ϕ1(x)dx =
1

3

∫ 1

0

∂ϕ1(x)

∂x

∂ϕ1(x)

∂x
dx = 1
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Integrals on an arbitrary element

Transformation from arbitrary element to prototype element (notation:
element’s untransformed basis functions ϕE , prototype basis functions ϕ)∫ xb

xa

ϕE ,m(x)ϕE ,n(x)dx = (xb − xa)

∫ 1

0

ϕm(x
′)ϕn(x

′)dx ′∫ xb

xa

∂ϕE ,m(x)

∂x

∂ϕE ,n(x)

∂x
dx =

xb − xa
(xb − xa)2

∫ 1

0

∂ϕm(x
′)

∂x ′
∂ϕn(x

′)

∂x ′
dx ′

On the RHS, the integrals are exactly the same as the ones on the
previous slide, and the prefactors reflect the fact that different elements
(intervals) can have different sizes.
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Practical implementation of 1D FEM
Defining the mesh and distribution of ϵ:

▶ Define nodes [x0, x1, x2, . . . ].

▶ Element n is an interval between nodes xn and xn+1.

▶ Let ϵ be constant on each element: [ϵ0, ϵ1, . . . ]

Constructing the system

▶ Create empty sparse matrices S, W and M.
▶ For each element n with length Ln = xn+1 − xn, and corresponding

field unknowns un and un+1:
▶ Add to second derivative operator:

▶ Sn,n+= −1/Ln, this is −1/Ln
∫
∂xϕ0(x ′)∂xϕ0(x ′)dx ′

▶ Sn+1,n+1+= −1/Ln, this is −1/Ln
∫
∂xϕ1(x ′)∂xϕ1(x ′)dx ′

▶ Sn,n+1+= 1/Ln, this is −1/Ln
∫
∂xϕ0(x ′)∂xϕ1(x ′)dx ′

▶ Sn+1,n+= 1/Ln, this is −1/Ln
∫
∂xϕ1(x ′)∂xϕ0(x ′)dx ′

▶ Add to wave number operator:
▶ Wn,n+= k2

0 ϵnLn
1
3
, this is k2

0 ϵnLn
∫
ϕ0(x ′)ϕ0(x ′)dx ′

▶ Wn+1,n+1+= k2
0 ϵnLn

1
3

▶ Wn,n+1+= k2
0 ϵnLn

1
6

▶ Wn+1,n+= k2
0 ϵnLn

1
6

▶ Add to mass matrix: same as wave number operator but without
k2
0 ϵn.
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Task 1: 1D FEM

Implement the FEM with linear basis functions for 1D wave equation as
outlined above.
Two test cases:

▶ Sanity check for matrix construction: λ0 = 1, nodes x = [0, 1, 2, 3],
ϵ = 1 everywhere. The resulting matrices are given on the next slide.

▶ 1D silicon waveguide:
▶ λ0 = 1 µm
▶ Domain width 4 µm, core width 0.8 µm
▶ ϵ = 2.25 in cladding, ϵ = 12 in core
▶ Mesh: use fine discretization (0.01 µm step) in the core and in its

immediate surroundings (x ∈ [−0.6, 0.6] um), coarse discretization
elsewhere (0.05 µm step)

▶ “Natural” boundary conditions (no need to separately implement):
du/dx = 0

▶ Plot the first six eigenmodes (five guided, one unguided) and their β
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Task 1 sanity check
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2D basis functions
Example: triangle elements, linear basis functions
Prototype element: a triangle with the vertices (0,0), (1,0), (0,1).

∫ 1

0

∫ 1−x

0

(1− x − y)(1− x − y)dydx =
1

12∫ 1

0

∫ 1−x

0

(1− x − y)xdydx =
1

24

. . .
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All required 2D integrals

Points of the triangle in scipy.spatial.Delaunay:
point 0: (1,0), point 1: (0,1), point 2: (0,0).

Indexing of basis functions that corresponds to this indexing:

ϕ0(x , y) = x , ϕ1(x , y) = y , ϕ2(x , y) = 1− x − y

Integrals over the prototype element∫∫
ϕ0ϕ0dydx =

∫∫
ϕ1ϕ1dydx =

∫∫
ϕ2ϕ2dydx =

1

12∫∫
ϕ0ϕ1dydx =

∫∫
ϕ0ϕ2dydx =

∫∫
ϕ1ϕ2dydx =

1

24∫∫
dydx =

1

2
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Transformation to/from prototype element in 2D
Mapping the triangle element E defined by points (x , y) = (x0, y0),
(x1, y1), (x2, y2) to (x ′, y ′) = (0, 0), (1, 0), (0, 1) can be done with an
affine transformation

[
x ′

y ′

]
= A(

[
x
y

]
− b)

A =

[
a b
c d

]
,b =

[
x0 y0

]
,A−1 =

[
x1 − x0 x2 − x0
y1 − y0 y2 − y0

]
Basis function on the arbitrary element defined from the prototype basis
function

ϕE (x , y) = ϕ(ax + by , cx + dy) = ϕ(x ′, y ′)

Gradients of the basis functions of an arbitrary element

∇ϕE (x , y) = AT∇′ϕ(x ′, y ′)

where ∇ = (∂/∂x , ∂/∂y), ∇′ = (∂/∂x ′, ∂/∂y ′).
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Transformation of integrals in 2D

All integrals pick up a prefactor from the change of dxdy :∫∫
E

ϕE ,m(x , y)ϕE ,n(x , y)dxdy = (detA−1)

∫∫
proto

ϕm(x
′, y ′)ϕn(x

′, y ′)dx ′dy ′

With linear elements (∇ϕE (x , y) constant) the gradient integrals are
simple:∫∫

E

∇ϕE ,m(x , y) · ∇ϕE ,n(x , y)dxdy = ∇ϕE ,m · ∇ϕE ,n(detA
−1)

∫∫
proto

dx ′dy ′

= (AT∇ϕm) · (AT∇ϕn)(detA
−1)

∫∫
proto

dx ′dy ′
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Practical implementation of 2D FEM

N points, Ne elements
Mesh is defined by:

▶ points array (Nx2): each row has the x and y coordinates of a
point

▶ simplices array (Nex3): each row has 3 indices to the points array,
defining the 3 point of the triangle element

The transformations A can be easily calculated from these.

For this exercise, code is provided for meshing and visualization, based on
scipy.spatial.Delaunay and matplotlib.tri.Triangulation; the
transformations A are automatically determined.
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Practical implementation of 2D FEM

Build the system and mass matrices element by element:

▶ Get this element’s indices of the three points (i1, i2 and i3) and the
transform A.

▶ Calculate gradients of the element’s basis functions:
∇ϕE (x , y) = AT∇ϕ(x , y)

▶ For the pair of points (i1, i2) in the triangle (and associated basis
functions):
▶ Add to Laplace operator Li1,i2− = 1/2(detA−1)(∇ϕE ,1 · ∇ϕE ,2)
▶ Add to wave number operator

Wi1,i2+ = k2
0 ϵE (detA

−1)(
∫
dx ′dy ′ϕ1ϕ2)

▶ Add to mass matrix Mi1,i2+ = (detA−1)(
∫
dx ′dy ′ϕ1ϕ2)

▶ Do the same for every other pair of basis functions (9 pairs in total).
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Task 2*: 2D FEM

Implement FEM with linear basis functions for 2D scalar wave equation.
Test case: silicon nanowire in air (just for testing; the scalar approximation is

actually pretty bad here)

▶ λ0 = 1 µm, core radius 0.3 µm
▶ ϵ = 12 in the nanowire, ϵ = 1 elsewhere

▶ Circular domain and mesh (you can use attached code for meshing
and plotting)

▶ “Natural boundary condition” ∂u/∂n = 0 (no special
implementation necessary)

▶ Plot the first five modes.
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