Computational Photonics
Tutorial 5:
Finite element method (for the scalar wave equation)

5 July 2023
Dr. Markus Nyman, markus.nyman@kit.edu
M.Sc. Nigar Asadova, nigar.asadova@kit.edu

Exercises for everyone:

» Task 1: 1D FEM for the scalar wave equation
Extended exercises:

> Task 2*%: 2D FEM for the scalar wave equation
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Reminder: sparse matrices

For FEM it is convenient to construct the system matrices incrementally:
> create a dictionary-of-keys matrix with dok_matrix
> fill it
» transform to compressed sparse column format with .tocsc()
» now linear algebra will be faster (for example eigs)

You can use .todense() to make a dense matrix for debugging purposes.
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1D equation to solve

0?u(x)
Ox?

+ Keu(x) = Bu(x)

(S +W)u = 5°Mu

where

[ 00m(x) 00n(x)
T i -

Woin =18 [ 6m(x)e(x)n(x)ce

mmz/%mew

Generalized eigenvalue problem with system matrix S + W and mass
matrix M, solvable with scipy.sparse.linalg.eigs.
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Piecewise linear basis functions

Prototype element x € [0, 1], only two prototype basis functions on it:

do(x) =1—x
d1(x) = x
Integrals needed for later
! 1 L 9go(x) Do(x) ,
/0 G0(x)on(x)ox = /O 00 90009 4 _ 4
! 1 L ogo(x) dn(x) ,
/0 Go(x)on () = ¢ /0 o) 0010) gy
! 1 Lagi(x) dn(x) ,
/0 S1()r ()b = + /O 20900109 4y
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Integrals on an arbitrary element

Transformation from arbitrary element to prototype element (notation:
element’s untransformed basis functions ¢g, prototype basis functions ¢)

Xp 1
/ OE,m(X)PE n(x)dx = (xp — xa)/0 Gm(X")pn(x")dx’
/Xb a(yZSE,m(X) aQSE,n(X) dx — Xp — Xa /1 8Qbm(xl) aQén(xl)dx/
X 0

Ox Ox (xp— x2)? ox' ox’

a

On the RHS, the integrals are exactly the same as the ones on the
previous slide, and the prefactors reflect the fact that different elements
(intervals) can have different sizes.
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Practical implementation of 1D FEM
Defining the mesh and distribution of ¢:
> Define nodes [xg, x1, X2, - . - |.
» Element n is an interval between nodes x, and x,;1.
> Let € be constant on each element: [eg, €, ... ]
Constructing the system

» Create empty sparse matrices S, W and M.
» For each element n with length L, = x,11 — x,, and corresponding
field unknowns u, and upy1:
» Add to second derivative operator:
» Spnt= —1/Ln, thisis —1/L [ Oxo(x")Oxpo(x")dx’
> Sn+1,n+1+: —1/Ln, this is —1/Ln faxgbl(xl)ax(ﬁl(xl)dxl
» Spnti1+=1/Ln, thisis —1/L, [ Oxpo(x")Oxd1(x")dx’
> Spi1,nt=1/Ln, thisis —1/L, [ Ox¢1(x")0xpo(x")dx’
»> Add to wave number operator:
> Wynt= kgEnLn%, this is k3enLn [ do(x")po(x")dx’
> Wn+1,n+1+: kg€nLn%
> Wn,n+1+: kg’fnLné
> Wn+1,n+: kgfnLné
»> Add to mass matrix: same as wave number operator but without
kien.
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Task 1: 1D FEM

Implement the FEM with linear basis functions for 1D wave equation as
outlined above.
Two test cases:

» Sanity check for matrix construction: Ag = 1, nodes x =[0,1,2, 3],
€ = 1 everywhere. The resulting matrices are given on the next slide.

» 1D silicon waveguide:

>

vvyy

Ao = 1lpm

Domain width 4 pm, core width 0.8 ym

€ = 2.25 in cladding, € = 12 in core

Mesh: use fine discretization (0.01 pm step) in the core and in its
immediate surroundings (x € [—0.6,0.6] um), coarse discretization
elsewhere (0.05 pm step)

“Natural” boundary conditions (no need to separately implement):
du/dx =0

Plot the first six eigenmodes (five guided, one unguided) and their 3
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Task 1 sanity check

diff2x.todense()

matrix([[-

[
[
[
[

i -1,
1. -1,
0. -1,
0 -11)
10]: wavenumop.todensel )

matrix([[13.15947253, 6.57973627, 0. , O,
[ 6.57973627, 26.31894507, 6.57973627, 0.
[ o. , 6.57973627, 26.31894507, 6.57973627],
[ o. , 0. , B6.57973627, 13.15947253]11)

11]: mass.todense()

matrix([[®.33333333, 0.16666667, 0. , B 1,
[0.16666667, B.66666667, 0.16666667, 0. 1,
[O. , D.16666667, 0.66666667, 0.16666667],
[O. , 8. .16666667, ©.33333333]])




2D basis functions

Example: triangle elements, linear basis functions
Prototype element: a triangle with the vertices (0,0), (1,0), (0,1).

1-x-y y X
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All required 2D integrals

Points of the triangle in scipy.spatial.Delaunay:
point 0: (1,0), point 1: (0,1), point 2: (0,0).

Indexing of basis functions that corresponds to this indexing:

do(x,y) =x, di(x,¥) =y, dax,y)=1—x—y

Integrals over the prototype element

[ [ owsodya = [ [ oronaya = [ [ oavadyx =
// ¢op1dydx = // Popodydx :/ Pp1e2dydx = 2*14
ffoo-

10/15



Transformation to/from prototype element in 2D

Mapping the triangle element E defined by points (x,y) = (xo, o),
(x1, 1), (x2,¥2) to (x',¥") = (0,0), (1,0), (0,1) can be done with an
affine transformation

a b -1 X1 —Xo X2 — Xp
A= b= AT =
L d} [XO yo} |;V1 —Yo Y2— )/o}

Basis function on the arbitrary element defined from the prototype basis
function

PE(x,y) = ¢(ax + by, cx + dy) = ¢(x', ')
Gradients of the basis functions of an arbitrary element
Voe(x,y) = ATV ¢(x',y')
where V = (0/0x,0/0y), V' = (9/0x’,0/9y").
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Transformation of integrals in 2D

All integrals pick up a prefactor from the change of dxdy:

[ oemcy)oentxyandy = (@etA ) [[ ooty o'y )y
E proto

With linear elements (V¢e(x, y) constant) the gradient integrals are
simple:

/ / Vo m(x, ) - Vo n(x,y)dxdy = Voe.m- Ve o(det A1) / / o' dy’
E

proto

= (ATV¢n)  (ATV¢,)(det A*l)// dx'dy’
proto
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Practical implementation of 2D FEM

N points, N, elements
Mesh is defined by:

> points array (Nx2): each row has the x and y coordinates of a
point

» simplices array (N.x3): each row has 3 indices to the points array,
defining the 3 point of the triangle element

The transformations A can be easily calculated from these.

For this exercise, code is provided for meshing and visualization, based on
scipy.spatial.Delaunay and matplotlib.tri.Triangulation; the
transformations A are automatically determined.
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Practical implementation of 2D FEM

Build the system and mass matrices element by element:

> Get this element’s indices of the three points (i1, i» and i3) and the
transform A.

» Calculate gradients of the element’s basis functions:
Y796E()<7)/) = 1\7_‘7qb()<a)/)
» For the pair of points (i1, i) in the triangle (and associated basis
functions):
> Add to Laplace operator L, ,— = 1/2(det A™*)(Vee1 - Voe2)
» Add to wave number operator
Wi i, + = kiee(det A1) ([ dx'dy’$1¢r2)
> Add to mass matrix M; ,+ = (det A=) ([ dx'dy’162)

» Do the same for every other pair of basis functions (9 pairs in total).
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Task 2*: 2D FEM

Implement FEM with linear basis functions for 2D scalar wave equation.

Test case: silicon nanowire in air (just for testing; the scalar approximation is
actually pretty bad here)

» )\o = 1pm, core radius 0.3 pm
» ¢ =12 in the nanowire, ¢ = 1 elsewhere

» Circular domain and mesh (you can use attached code for meshing
and plotting)

» “Natural boundary condition” du/0n = 0 (no special
implementation necessary)

» Plot the first five modes.
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