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Exercises for everyone:

▶ Task 1: Green’s function in homogeneous space

▶ Task 2: Discrete dipole approximation

Extended exercises:

▶ Task 3*: Scattering cross section
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Green’s function in a homogeneous medium

Source at r1, find the field at r2. Let R = r2 − r1. Then,
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where I is the identity matrix and RR is the outer product of R with
itself. In Cartesian coordinates,

RR =

x2 xy xz
xy y2 yz
xz yz z2


where x = x2 − x1 and so forth.
Now, the field created by a collection of point electric dipoles p1, p2, ...

E(r) =
∑
n

G(rn − r)pn
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Discrete dipole approximation for scattering
Consider polarizable electric dipoles, all with the same polarizability α,

pm = αE(rm)

where pn is located at rn. With many dipoles,

pm = αEinc(rm) + α
∑
n ̸=m

G(rn − rm)pn

where self-interaction / self-field is accounted for in the polarizability.
Now we have the equation system Ap = b where

A =


I −αG(r2 − r1) −αG(r3 − r1) . . .

−αG(r1 − r2) I −αG(r3 − r2) . . .
−αG(r1 − r3) −αG(r2 − r3) I . . .

. . . . . . . . . . . .


and

b =

αEinc(r1)
αEinc(r2)

. . .


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Discretization and material parameters

To represent a piece of homogeneous material with an array of
polarizable dipoles, calculate the required polarizability by using the
Clausius-Mossotti relation

nα

3ϵ0
=

ϵ− 1

ϵ+ 2

where n is the number density and ϵ the relative permittivity of the
material in question. For a cubic lattice n = 1/d3 where d is the distance
between adjacent dipoles.
Along one dimension, a cube of width w can be divided into m unit cells
with m + 1 boundaries at −w/2 + [0,w/m, ...] and m centers at
−w/2 + w/(2m) + [0,w/m, ...]. The dipoles should be located at the
centers of the unit cells.
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Implementation hints

▶ This time, all matrices are dense

▶ Outer products of vectors: numpy.outer()

▶ Block matrices: numpy.block()

▶ Useful for array manipulations: np.stack(),
numpy.ndarray.flatten()
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Task 1: Green’s function

Implement the Green’s function for a homogeneous medium
def green(r1, r2, k):

# Arguments:
# r1: length 3 vector containing (x1,y1,z1)
# r2: (x2,y2,z2)
# k: wave number
# Returns the 3-by-3 Green's tensor.
return G

Sanity check: let r1 = (0, 0, 0) and r2 = (1, 1, 1), k = 2π and ϵ0ϵr = 1.
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Task 2: Discrete dipole approximation

Implement the discrete dipole approximation.
def dda_dipole_moments(c, alpha, k, Ei):

# Calculate the electric dipole moments for N dipoles under a prescribed
# illumination.
# Arguments:
# c: coordinates, N-by-3 matrix, each row holds the (x,y,z) coordinates of
# a dipole
# alpha: polarizability, scalar
# k: wave number
# Ei: incident field, vector of length 3N such that Ei[0::3] = Ex for each
# dipole, Ei[1::3] = Ey for each dipole etc.
# Returns p, vector of length 3N with p[0::3] being the x-components, p[1::3]
# the y-components et cetera.
return p

def field_sc(X,Y,Z, c, p, k):
# Knowing N dipole moments, calculate the scattered field at given coordinates.
# Arguments:
# X,Y,Z: arrays containing the x,y,z coordinates of the points at which we
# want to calculate the scattered field
# c: coordinates of the dipoles, N-by-3 matrix
# p: dipole moments, as returned by 'dda_dipole_moments'
# k: wave number
# Returns E, vector of length 3N where E[0::3] are the x-components of the
# scattered field at each (x,y,z) point, E[1::3] are the y-components, etc.
return E

Use the test case specified on the next slide.
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Task 2 test case

Nearly zero backscattering from a silicon nanocube close to a Mie
resonance

▶ Silicon (ϵ = 12.8) nanocube of width 0.2 µm in vacuum

▶ Illuminated by a x-polarized plane wave propagating in the
z-direction, frequency 310 THz

▶ Discretize the cube with 9-by-9-by-9 dipoles

▶ Calculate the intensity distribution on a circle in the xz-plane, radius
100 µm, and plot it in polar coordinates
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Task 3*: Scattering cross section

Implement a function that takes the output of a DDA calculation and
calculates the scattering cross section. Use the task 2 test case to test
your function; the cross section should be on the order of 0.15 µm2 (but
as long as you’re within 20 % of this it’s good enough).
The scattering cross section can be calculated using the following
equations:

σsc =
Psc

Iinc

Psc =
1

2Z0

∫ 2π

0

∫ π

0

|Esc(r , θ, ϕ)|2r2 sin(θ)dθdϕ

Iinc =
1

2Z0
|Einc|2

where the incident wave is a plane wave with the amplitude Einc.
Either discretize the integral “manually” or use scipy methods if you
can.
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