(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 256566, 4795] NotebookOptionsPosition[ 254687, 4730] NotebookOutlinePosition[ 255024, 4745] CellTagsIndexPosition[ 254981, 4742] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Uebungsblatt 3", "Section", CellChangeTimes->{{3.560872407583149*^9, 3.5608724247869883`*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"lmaxVal", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"hmm", "[", RowBox[{"k_", ",", "V0_"}], "]"}], ":=", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"k", "-", RowBox[{"2", "*", "Pi", "*", "l"}]}], ")"}], "^", "2"}], "+", RowBox[{"V0", "/", "2"}]}], ")"}], "*", RowBox[{"KroneckerDelta", "[", RowBox[{"l", ",", "m"}], "]"}]}], "+", RowBox[{ RowBox[{"V0", "/", "4"}], "*", RowBox[{"(", RowBox[{ RowBox[{"KroneckerDelta", "[", RowBox[{"l", ",", RowBox[{"m", "+", "1"}]}], "]"}], "+", RowBox[{"KroneckerDelta", "[", RowBox[{ RowBox[{"l", "+", "1"}], ",", "m"}], "]"}]}], ")"}]}]}], ",", RowBox[{"{", RowBox[{"l", ",", RowBox[{"-", "lmaxVal"}], ",", "lmaxVal"}], "}"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"-", "lmaxVal"}], ",", "lmaxVal"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"hmm", "[", RowBox[{"k", ",", "V0"}], "]"}], "//", "MatrixForm"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{ 3.5608724429884167`*^9, {3.560872521681966*^9, 3.56087262764922*^9}, { 3.560927138986067*^9, 3.560927150020697*^9}}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "+", RowBox[{"2", " ", "\[Pi]"}]}], ")"}], "2"], "+", FractionBox["V0", "2"]}], FractionBox["V0", "4"], "0"}, { FractionBox["V0", "4"], RowBox[{ SuperscriptBox["k", "2"], "+", FractionBox["V0", "2"]}], FractionBox["V0", "4"]}, {"0", FractionBox["V0", "4"], RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "-", RowBox[{"2", " ", "\[Pi]"}]}], ")"}], "2"], "+", FractionBox["V0", "2"]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.560872624182886*^9, 3.5608726279275*^9}, { 3.5609271399671507`*^9, 3.56092715064629*^9}, 3.5612720849886513`*^9, 3.5613848147155848`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"NmaxVal", "=", "6"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"V0Val", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{"spectrum", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{ RowBox[{ RowBox[{"-", "Pi"}], "+", RowBox[{"idx", "*", "2", "*", RowBox[{"Pi", "/", "NmaxVal"}]}]}], ",", "V0Val"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"idx", ",", "0", ",", "NmaxVal"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"spectrum", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "Pi"}], "+", RowBox[{ RowBox[{"(", RowBox[{"idx", "-", "1"}], ")"}], "*", "2", "*", RowBox[{"Pi", "/", "NmaxVal"}]}]}], ",", RowBox[{"spectrum", "[", RowBox[{"[", RowBox[{"idx", ",", "jdx"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"jdx", ",", "1", ",", RowBox[{ RowBox[{"2", "*", "lmaxVal"}], "+", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"idx", ",", "1", ",", RowBox[{"NmaxVal", "+", "1"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"spectrum", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]}], "Input", CellChangeTimes->{{3.560872730699753*^9, 3.560872819523047*^9}, { 3.560872914610108*^9, 3.560872990932139*^9}, {3.5608730263056803`*^9, 3.5608731013498917`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "93.90559670512485`", ",", "17.329087054132838`", ",", "12.330964652725239`"}], "}"}], ",", RowBox[{"{", RowBox[{ "75.2788760654356`", ",", "23.001028153646164`", ",", "8.83640352441893`"}], "}"}], ",", RowBox[{"{", RowBox[{ "58.853514027938154`", ",", "32.64884793504672`", ",", "5.744341379426451`"}], "}"}], ",", RowBox[{"{", RowBox[{ "44.79254678207647`", ",", "44.47841760435743`", ",", "4.685870822280964`"}], "}"}], ",", RowBox[{"{", RowBox[{ "58.853514027938154`", ",", "32.64884793504672`", ",", "5.744341379426451`"}], "}"}], ",", RowBox[{"{", RowBox[{ "75.2788760654356`", ",", "23.001028153646164`", ",", "8.83640352441893`"}], "}"}], ",", RowBox[{"{", RowBox[{ "93.90559670512485`", ",", "17.329087054132838`", ",", "12.330964652725239`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.560872801865946*^9, 3.560872819844843*^9}, 3.560872921986867*^9, {3.560872972678235*^9, 3.560872992567254*^9}, { 3.560873029130431*^9, 3.560873101937051*^9}, 3.560927155175687*^9, 3.561272085799582*^9, 3.5613848152072363`*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "93.90559670512485`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"]}], ",", "75.2788760654356`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["\[Pi]", "3"]}], ",", "58.853514027938154`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "44.79254678207647`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "3"], ",", "58.853514027938154`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"], ",", "75.2788760654356`"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Pi]", ",", "93.90559670512485`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "17.329087054132838`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"]}], ",", "23.001028153646164`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["\[Pi]", "3"]}], ",", "32.64884793504672`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "44.47841760435743`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "3"], ",", "32.64884793504672`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"], ",", "23.001028153646164`"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Pi]", ",", "17.329087054132838`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "12.330964652725239`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"]}], ",", "8.83640352441893`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["\[Pi]", "3"]}], ",", "5.744341379426451`"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4.685870822280964`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["\[Pi]", "3"], ",", "5.744341379426451`"}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", " ", "\[Pi]"}], "3"], ",", "8.83640352441893`"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Pi]", ",", "12.330964652725239`"}], "}"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.560872801865946*^9, 3.560872819844843*^9}, 3.560872921986867*^9, {3.560872972678235*^9, 3.560872992567254*^9}, { 3.560873029130431*^9, 3.560873101937051*^9}, 3.560927155175687*^9, 3.561272085799582*^9, 3.561384815209983*^9}], Cell[BoxData[ GraphicsBox[{{}, {Hue[0.67, 0.6, 0.6], PointBox[{{-3.141592653589793, 93.90559670512485}, {-2.0943951023931953`, 75.2788760654356}, {-1.0471975511965976`, 58.853514027938154`}, {0., 44.79254678207647}, {1.0471975511965976`, 58.853514027938154`}, { 2.0943951023931953`, 75.2788760654356}, {3.141592653589793, 93.90559670512485}}]}, {Hue[0.9060679774997897, 0.6, 0.6], PointBox[{{-3.141592653589793, 17.329087054132838`}, {-2.0943951023931953`, 23.001028153646164`}, {-1.0471975511965976`, 32.64884793504672}, {0., 44.47841760435743}, {1.0471975511965976`, 32.64884793504672}, { 2.0943951023931953`, 23.001028153646164`}, {3.141592653589793, 17.329087054132838`}}]}, {Hue[0.1421359549995791, 0.6, 0.6], PointBox[{{-3.141592653589793, 12.330964652725239`}, {-2.0943951023931953`, 8.83640352441893}, {-1.0471975511965976`, 5.744341379426451}, {0., 4.685870822280964}, {1.0471975511965976`, 5.744341379426451}, { 2.0943951023931953`, 8.83640352441893}, {3.141592653589793, 12.330964652725239`}}]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.560872801865946*^9, 3.560872819844843*^9}, 3.560872921986867*^9, {3.560872972678235*^9, 3.560872992567254*^9}, { 3.560873029130431*^9, 3.560873101937051*^9}, 3.560927155175687*^9, 3.561272085799582*^9, 3.56138481527826*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"gapPi", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"V0", ",", RowBox[{ RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"Pi", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], " ", "-", " ", RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"Pi", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", "0", ",", "10", ",", "0.5"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"gapPi", ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\>\"", ",", "\"\\""}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"gapZero", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"V0", ",", RowBox[{ RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"0", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "3", "]"}], "]"}], " ", "-", " ", RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"0", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", "0", ",", "10", ",", "0.5"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"gapZero", ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\>\"", ",", "\"\\""}], "}"}]}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.560873124775858*^9, 3.5608734516730824`*^9}}], Cell[BoxData[ GraphicsBox[{{}, {Hue[0.67, 0.6, 0.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQBWIQjR08sHfIzmD/9/+8PYT/wT5BcZnsj//3ofwf9hPu imz69P85lM/gkLD/ftmD/++hfBaHHau9TB7+/wzlczhoPE08eer/dyifx8Gi YEbD6v+/oXwBh47Jn+43/v8P5Qs5bDh81mzZf0YHCF/E4UvT1+st/5mhfDEH gdytYjH/WaF8CYce8zwz7f/sUL6UQ4P+/KqP/zihfBmHFQwv1db944by5Rxy agTqE/7xQvkKDgsSGI+z/+OH8hUdNPozFl78JwDlKzm8O58gPfOfIJSv7NDF vuhz5D8hKF/FoeBs7Rnhf8IOAJiUX4o= "]]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{{ FormBox["\"\"", TraditionalForm], FormBox["\"\"", TraditionalForm]}, { FormBox["\"\"", TraditionalForm], FormBox[ "\"Gap between first and second band at k = \[Pi]\"", TraditionalForm]}}, PlotRange->{{0., 10.}, {0., 4.998122401407599}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.560873350601386*^9, 3.560873413917997*^9}, 3.560873452044808*^9, 3.5612720898634233`*^9, 3.561384816145007*^9}], Cell[BoxData[ GraphicsBox[{{}, {Hue[0.67, 0.6, 0.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQBWIQjR08sGdg+O3D+8HTHsL/YM9wYIvg8veZUP4Pe4aE lpA7OrVQPoMDw4H2ZL53nVA+iwNDgsNvbscpUD6HA0PDvCeXNOZC+TwODHve S764thjKF3BgKAmZtv75SihfyIGhYtYEg+QNUL6IA0NK6RUPyy1QvpgDQ1Ly jyelO6B8CQeGQ0VRhyX2QvlSDgzi0SbnBA5C+TIODDNdogVPHIby5RwY/LZ1 Mm46BuUrAO3bGlh07iSUr+jA0FJVYyJ7FspXcmAI5+Th9r8A5Ss7MDBfcyrU uATlqzgwFDu6bJS6Yg8AK0tLbQ== "]]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{{ FormBox["\"\"", TraditionalForm], FormBox["\"\"", TraditionalForm]}, { FormBox["\"\"", TraditionalForm], FormBox[ "\"Gap between second and third band at k = 0\"", TraditionalForm]}}, PlotRange->{{0., 10.}, {0., 0.3141291777190389}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.560873350601386*^9, 3.560873413917997*^9}, 3.560873452044808*^9, 3.5612720898634233`*^9, 3.56138481615761*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"gapPi", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"V0", ",", RowBox[{ RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"Pi", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], " ", "-", " ", RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"Pi", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", RowBox[{"{", RowBox[{"1", ",", "3", ",", "6", ",", "10"}], "}"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"gapPi", ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\>\"", ",", "\"\\""}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"gapZero", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"V0", ",", RowBox[{ RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"0", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "3", "]"}], "]"}], " ", "-", " ", RowBox[{ RowBox[{"Sort", "[", RowBox[{"Eigenvalues", "[", RowBox[{"N", "[", RowBox[{"hmm", "[", RowBox[{"0", ",", "V0"}], "]"}], "]"}], "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", RowBox[{"{", RowBox[{"1", ",", "3", ",", "6", ",", "10"}], "}"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"ListPlot", "[", RowBox[{"gapZero", ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\"\<\>\"", ",", "\"\<\>\""}], "}"}], ",", RowBox[{"{", RowBox[{ "\"\<\>\"", ",", "\"\\""}], "}"}]}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.560873469572461*^9, 3.560873513301794*^9}, { 3.561272076668563*^9, 3.561272078198279*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0.4999981202641006`"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1.4999492517948259`"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "2.9995941402802995`"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "4.998122401407599`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.560873483588488*^9, 3.5608735140912437`*^9}, { 3.561272079114024*^9, 3.561272091244676*^9}, 3.561384816950499*^9}], Cell[BoxData[ GraphicsBox[{{}, {Hue[0.67, 0.6, 0.6], PointBox[{{1., 0.4999981202641006}, {3., 1.4999492517948259`}, {6., 2.9995941402802995`}, {10., 4.998122401407599}}]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{{ FormBox["\"\"", TraditionalForm], FormBox["\"\"", TraditionalForm]}, { FormBox["\"\"", TraditionalForm], FormBox[ "\"Gap between first and second band at k = \[Pi]\"", TraditionalForm]}}, PlotRange->{{0., 10.}, {0., 4.998122401407599}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.560873483588488*^9, 3.5608735140912437`*^9}, { 3.561272079114024*^9, 3.561272091244676*^9}, 3.561384816952129*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0.003166033083878972`"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0.028476042941861124`"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "0.11365910490236075`"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "0.3141291777190389`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.560873483588488*^9, 3.5608735140912437`*^9}, { 3.561272079114024*^9, 3.561272091244676*^9}, 3.561384816963957*^9}], Cell[BoxData[ GraphicsBox[{{}, {Hue[0.67, 0.6, 0.6], PointBox[{{1., 0.003166033083878972}, {3., 0.028476042941861124`}, {6., 0.11365910490236075`}, {10., 0.3141291777190389}}]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, Frame->True, FrameLabel->{{ FormBox["\"\"", TraditionalForm], FormBox["\"\"", TraditionalForm]}, { FormBox["\"\"", TraditionalForm], FormBox[ "\"Gap between second and third band at k = 0\"", TraditionalForm]}}, PlotRange->{{0., 10.}, {0., 0.3141291777190389}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.560873483588488*^9, 3.5608735140912437`*^9}, { 3.561272079114024*^9, 3.561272091244676*^9}, 3.561384816965439*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"tVal", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tpVal", "=", "0.05"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"spectrumSq", "[", RowBox[{"kx_", ",", "ky_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "*", "tVal", "*", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", "kx", "]"}], "+", RowBox[{"Cos", "[", "ky", "]"}]}], ")"}]}], "-", RowBox[{"2", "*", "tpVal", "*", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"kx", "+", "ky"}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{"kx", "-", "ky"}], "]"}]}], ")"}]}]}]}], "\[IndentingNewLine]", RowBox[{"Plot3D", "[", RowBox[{ RowBox[{"spectrumSq", "[", RowBox[{"kx", ",", "ky"}], "]"}], ",", RowBox[{"{", RowBox[{"kx", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"ky", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"ContourPlot", "[", RowBox[{ RowBox[{ RowBox[{"spectrumSq", "[", RowBox[{"kx", ",", "ky"}], "]"}], "\[Equal]", "EF"}], ",", RowBox[{"{", RowBox[{"kx", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"ky", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"EF", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "0", ",", "3"}], "}"}]}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.561272113659608*^9, 3.561272197625637*^9}, { 3.5613849057941303`*^9, 3.561384915512487*^9}, {3.5613849814248323`*^9, 3.5613850423975773`*^9}, {3.561385134034926*^9, 3.561385175695162*^9}, { 3.561385524795229*^9, 3.561385613769681*^9}, {3.561385654534622*^9, 3.561385662162101*^9}, {3.561385727976329*^9, 3.561385750035616*^9}, { 3.561464883918298*^9, 3.561464885228938*^9}, {3.5614652374866447`*^9, 3.561465238254689*^9}}], Cell[BoxData[ Graphics3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJx1nXu811P2/0+XU51uMkN8MZghd2MmJlTaW5MQyiW3St+mkWZCMRjGNaQM 5V66KYw0Y1BGEuL9EVHjFKUSTiFFl9O9pJzqO78567k+v/fL2f1zHufVPnuv vfbaa6+19l7r/fPeA87vU7ukpGRWWUlJnf/8fP/B+vv+8POyAj9b/f6K//xr Ggc3OfrkT+4rdbxLvUlvdt3eOJ52f+duL2+u5XjtRz94sP+OBrHBT5Z/d+Br VRn4ref9YsnZJ9SxfrY6vmHHuX/q8/j2UN2+0vH7D5p+dYfmlYZXOL54zjGj L/nN4lBi/8CvunnUf/7Npn3Q9tZ/0P6NnlAzPVVB6bf5Rp2v8Scqf+z3qPzk d/hKe37n55uVu6a1u7eR8xl8bvu9Dtvn9vrOZ/CLjuj26ksTazmfwds2Wtt9 r27fOZ/BW7479rxHu61wPoNf+7MmNy96/13nM3ivxlOyVmc/ksFnbQ+ftX/4 XDM9VUHph886X/is/IHPyk/4DP9kvRynf37n53v9du97Rdc6zmfwQw9c1aXi yR3My/Fenz2xz/tDVzufwcc3eOzCU7592fkMfn7HeYtfvaAig8/gRx158ocn 7b/c+azt4bP2D59rpqcqKP3wWecLn5U/8Fn5CZ/hU36/lzou6+s49PA7Pxc8 NWZg/6N8nzre7aXuQ8afPsj5DF5v7c86Hv3eSvjm+JF/+WrA2D23Op+9/Xmt L5x/1PfOZ20Pn7V/+FwzPVVB6YfPOl/4rPyBz8rPvN7YmqGv8npja8b+yuuN rZnIA/Nw+vN6Y2vWe//mC/5VDn8rHT/u4TZDjh30g/MZ/MA180vWn1W7kNcb W7Pznxh+0eOr6xTyeqPYPq83iv3n9YbSUxWU/rzeKM43rzeK/MnrjSI/8/Jc meXPi1LH0W95ea7M8vu9yvkn8uN4np9Ffv8r7t/380fqFvLyXJnVH3vOoR07 lRXy8lyZvT5uzvEttzcs5OW52D4vz8X+8/Ks9FQFpT8vz8X55uW5yJ+8PBf5 medzRcZ5nedzRcb5kudzRZbXh1Uuj+zfPJ8rVN4cz/OnwvE6T1x0aeufNxU+ V2TZqSXlfT/fQ/hcbJ/nc7H/PJ+Vnqqg9Of5XJxvns9F/uT5XOQnfGYe2Evw GZzzHT6D58+jKtej6E/4DJ7f75WOi3w6Dj9L5N+c8v/3r5nzWdvDZ+0fPtdM T5Xj0A+fdb7wWfkDn5WfIs8hIc8hIc8hIc8hIc8hIc8hIc8hIc8hIc8hIc8h Ic8hIc8hIc8hIc8hIc9B5Rm6Evo5JPRzSOjnkNDPIaGfQ0I/h4R+Dgn9HBL6 OST0c0jo55DQzyGhn0NCPwfVz4yfsDdCwt4ICXsjJOyNkLA3QsLeCAl7IyTs Dd0vQfsXeyMk7I2QsDdCwt4ICXsj1GxvVIWE/RwS9nNI2M8hYT+HhP0cEvZz SNjPIWE/h4T9rPsr1EyP288hYT+HhP0cEvZzUPuZ/hL+YEz4gzHhD8aEPxgT /mBM+IMx4Q/GhD8YE/5gTPiDMeEPxoQ/GBP+YEz4g1H9Qf4uEd+IifhGTMQ3 YiK+ERPxjZiIb8REfCMm4hsxEd+IifhGTMQ3YiK+ERPxjZiIb0SNb/D/iXhd TMTrYiJeFxPxupiI18VEvC4m4nUxEa+LiXhdTMTrYiJeFxPxOt3vUfkj8Trn 57OdRx3xx4vqF/j55dCju3Z6oUm8onz6madldRw/Imv27V++bujt+X9w1ov/ /75h3/O3lzX1fvj/qY0uGXpo+0aO83Ny/d2v/b5hg3hopy/7/fyIEu/n2k6X Xdl6SanjtN+9z54HjV9Z28bdntF+dJuFV4xpuTuA077zyHUPzqi73fTARm/f ceFNjWc8t8lx2q+Ze936YdestHVZ4e0Pfm3e04PbfmXrUu74yMUtrmt+4Sxv Tz8P3bpt2xdnZd4ePrToN/jiP/b6EDxoP7Snn991mNj4mjVzMtprPzZuSNAZ tB/a08/Ov7cqXLVtmfej9Bt/QoJvQflm/A+JdQm6Lra+MbHuUdfdfo8J+YwJ eY4qb7SHD8gt+0TlmfYq/+gl8Pmn3Nn75PJifBwc+UefgM8ddMef56+b5ucj eKf1n/drvGae621tz35PjBt1XObDfoLPtAOHz8gz+Fllpcft3pfzutzxDQ/3 nHjlmvUun4ojV9oP66LjwmelE/rZ38hVXs9sz5Ar6Ad/9Nr993m37vYsvx+3 Z2df3GfY2Ja7ZX8V8fx+KfYD/TpuXq6KdEI/+oZ9BP3gqn+8/eG3tRu0C/u/ 3PGVk28Y8faJ9cGD4tCv/UC/jgv9Sif0Qxd6BvrB0Ru0h170W96OWpGhf+iH 9ugr5ID2yA847ZE3+E571guc9qwv86Q9/AGnvfDT2x9x+uYVv9hd5nSAd31n frcVFzTx9vw/OOul7WnHz/P/veK977o383VMjBtS7XVc9HZivkHni95O8DMo P9HbifWKul7IYUJ+YkLeospJ3p4syhX9qBzm/dDy7N5hXXtff9VYldugckt7 zl+R26ByC67yCa5yCJ7f1xUuD8Obn3v0DVfuoXIVWN+8P1ue/bXi/C7nPdZM 5SogJ3k/t9i/yFVIyFVQuVL6RU6CyonyJ+//FtdF1j3ouuu6yLqHxLoHXXfm h7zJugddd9ojt6KvAvIveimwj0T/hLye93UPuu60Rw/Iugddd9rn9Yyve9B1 1/aif3xc0SdOv+gNn6/oB+ePrHvQdVc+y7oHXXddx7yfviLUu/qFTnt3WKzn UUBv5P3rFaH/pSv/3LFJY4nLrQiXje8wc9yMIj+1fd7//dG4UccVOyEk7ISQ sBNCwk4ICTshJOyEkLATQsJOCGonsP4JOy0k7LSQsNNCwk4LCTstJOy0kLDT gtppyGnCTo4JOzkm7OSYsJNjwk6OCTs5JuzkqHYyf4efIn53FD8IvzviN4n/ EtV/pz39i5/udIpf73SKnx5ZF/HrI+sifnpEDsWvj8ih+ONR/XFw8Yu9n4Qf HcUf9/YSBwiJcUOqvY4r/rXON+h8xb9Wfgblp/jXul5R10v8aJWfmJC3qHIi /mkU/zSqHKK3wU++oV6Xr8c0Fn+wLIr/7u0T8aio/jjtN/RY9tyMVxaIXiqL 6Gf0P+0v+fSvPznivhka54n5OE9F0P4lnhM1nqPjco4oH/L6rTgviWNEjWMo 34SfHvcQ/heU//y/0OM4cYm8XVRa2HPS7+4c8EbdmLeLSgvr9nl42RsLqkLe LiottNy01+KRLTfouhT0vIYuXUf64fyVdSzoOtIeO0TWsaDrqO3z9lJx3Ly9 VJxX3l4q8iFvLxX5JuvucR6RE12XqOuSt5eK68jvrBvjwmfww4d90Stevsbj Vx63Gb+6/69e3+DxK20Pndp/Ps6/PYMP+Tj89mzco03bvrmg+G4DvPEL7dv/ 51e3x7R9Pk5e7D9/X7YxY13y91kbs2NPW9j8hR+K70vAD+61Iax82v21oO3z 903F/sUuzZCTvB9akSFveX+zIiMemPc3KzL4nPc3K5wPeX+zwukUuzfL27Er vH3CHs7y9nC5t8/7F24nez95f7NC/dyg4+b9zSL9eX+zON+8v1nkj9jnzv+8 v1nkc96vLK4L6wU/0CesFzhxXdYLnP3CeoEjz6wXOPIG3eDKf3DxB4Pi8Fn7 gc86LnxWOuGzzgt+Kh/gp/JN5D8k5D8k5D8k5D8k5D/k96nLeRD5dLzmOEmF +ulB+xG5DQm5DQm59XmJfIaEfIb8Oej6LST0W0jot5DQbyGh34LqN+aX0Och oc9DQp+HhD4Pqs/hX+L8ionzKybOr5g4v6KeX6yPnLPOp4S9FBP2UkzYSzFh L0VdX+jJ3x+5XRTVLqJ9/h7K7aKodpH2L3ZRTNhFMWEXxYRdFBN2kfI/Kv/F /tF1ibourQace3DLtg0K/Jx0Zevu9U5q6njzXy771ZPX1Cs8d8zJu04YiJ+y MOP/P+tx313te883/kx3vFutWpOvOZ13AtNDCseua3ttqHdT4w+CjefjM679 HpVOxv2u8rpTm06oWxhZcWnJ/OaFjP4VZz783diHvvl80l1Tg+ABnPFoD/3V 6/gV42TnH1P+crMPmhYED+C0g39rflk15szYzMdL4N7/S0Mev+DmyT/CA7j9 va8D/QgewI0vzj/4I3gAh//QybqDK38ED4I7XSI/QeeVj39OD8gJ4xm/lc9B cdYXukSuHFe5Qh6RB/pP4M4n5ss8wZVv9JOQc6eHfQK9I0646bqTuhT3KXr3 rnse/+T1TU2cft1f6Df+btgNpx51xNg5Sqfs6/Kg7aGP/qEHPUN76JH5/mhf K/20Q96OPrT7qpfmvif7tDzrtt/iu39/UqZypfLp7aGffUr7ITedetqktU1k /5ZnB91V+5ixNzb1fhP7y/v5x+9KD2n11B4FkefE/i3PThzZ5ZzjBjeT9kWc ddH+8/u6PPvJpFv+flzzZtDv44peCjpf5C+hD6PyX/Zjhlzl93uRz7KOgX5E r/5IPyB3ifUK0C/8D8If15OqV2mf0MM/ag89ifUKifVyeoT/QeTN9Yroq6h8 k/XScyqqXpV1Cbou9PfAgS91/N/3G/u+Yx9ve2dV1yGtm0TOUfob1/3qOv/+ n8aO0897Iw+Y8H3PRr7/kRfRD96P6IdCQh86PbRHHmjffNbJ5w17bpHLCf3f uW3WP0YNXxLEbnE9DE4/8Fnslih2i/sf97z6elXTXe94e8XpHz70WPX4pdlv P1Y9HFUPKz3g9H9Vm/J/nnbnh37O6XzBlT9id0U5F4LSgz2g6wuu8iD2m6+j 0yHy5u81rb2ca1HXnb/n7z66YueGIY830XNH2/u5CT0ihz86d/gJnSLnBeGD 9wMf6J/27CPa8XfCN8fpX+S5IOvr9izrK/JcEPnxuDHyI3ZOIWHnKO79JORf 8HLvn/Na5NzpFLktyL4OygfkVvsX+SyIvoq6jiKfBdGHvp6sI/Km60t7XUfk MrXuvp42X+gGZ755/3phputI+4Q97Dh/D855lPd/F7pdwXol2juOvZT3i4v9 wAedF3xTPuT91uJ84Q9+/GOHDFrXZcH7Ek+bniGHggdw1iPhB3l7cOhg3KED G/X+XWd9dzRd7DrHf2Q/0M+oS78Y/PRbxbhlop+g/bAv6Oflxe/+quTbov0A Hs88reEFI1+W90I/4k9U/oi8BeU/48s6Op4/d1yugsiV+3Eqh+AJudJ+gvYj 8uP0i7wF2XcxNS/0h9o54An973aUxCtiIl4huOvPiH4TvRfFD4pKj+glp1/0 WNRzSv07focfnL9i5xSwc5A/+mOfyjnu/Yg94OPSD/vykSGzutd66G0/V1TO 8+/Zin4K+kX3C78zj/y+nu7t2afIk+oB+AsOnfl3UAsz+MN6qR7Lv9daGJSf yAv05OPYXwXRAwW1lySeEJXPrA/8lHiC243Qp/Ytv9MP40rcwMeVfgqJflRO CsrPvN9X9IuFbxl8y/tfRX8/72cV4wwSfwjgIm9B5Y32NccTyoPSCT+QK/H3 Q83+frF/oV/pjCpX7Cv0Qe/y13b0+LiR7ndfR+ZF+yOvXLlty/bP1M50P0X0 QETOoV/7YR8pPWKPRbG7CqpPxJ8tqD8LTv/8zv+Dy3wL0Cn7pcB+EX+toP6a 9iPzVXqi0pN/P/lVpvSAowfkPHU5z79vLPbDeKrHZNxAe7EDQ6J/by989vUV PR9l3Kjt5z5R75U3dhbrblXMHbj08DmN4sJ/lp5/66e1He9S6NThiAkN4rTr ypb+pd9uP6ea/vvnA0f1LHWc9r3nfNF04Hd14nt2D0X7TXM7jdi9e3cAp32l 3dcs+O+4m7z9W8tK25a33xre/e/vqxyPl28fsXjwt+Ht//7+qeMjui/bfv90 zpVpbcGvtrzLOdXti+9wbh57e4e/FMK/q/t3vOebf/mh81tfhk+q6XH99I7R A077m75v+NqN0zeG2XYP5e+jbL7gtN9k832jmm/evpnxc1E1/11/XPbhng+c eWDD+GH1ejn+UKuLLu5/RhNfR/JcFxxz1k+ffqG+ryP4rCc79Jjfs66vF/jq 9i91WHRIcV3A/15asXb85s2+LuBfjpzZ+ePBX/m6gK+7o8NLj5Y/l7Eu4Av7 3rPnHh8tyVgX8CMtv5t1Af/I2rMu4DdZ//AffJXRA5/BXzT64TP4epsvfAaf bfyBz06/8RM+V+/XquyWY396wGmf1nI+g7+3esw+t5dXBfgMvrTJEYcNn73J +Qz+SLPXdg29pcL5DH7RxI0XtT5ufgafwXv8csjz/X+21vkM3uKxoce8c/1W 5zN4qdUrgM/gh1p7+Ax+ofUPn8HbGz3wGfw5ox8+gy+3+cJn8FnGH/is/Mzr pa1Zy7++dvtbb38X8nppa9Zn1fN3jG++PuT1z9as9S+7D/ih8wLRM1uzvz3/ /YWP3VKRwWfw2mHnlnvP2+x8Br/+F4sm/M/snc5nH/fU+xu9ewf1N6a1Baf+ Rl7PbM0ut/Z5PbM1u8b6z+uTrdnOdtX05PXG1myY0Q+fwc+1+cJn8H7GH/gM frzxMy/PldkTkw6+oazlNyEvz5VZv9OnnNdpXrnIc2V2+5DxFzfYb0mWl+fK 7PPfthj+1ObNWV6eK7O/Lawc2OvckkJeniuzez/p23xqobSQl+fKrOfYU549 ZGBZIS/PxXpfeXmuzC6z9nl5rswGW/95ea7MnjR68vJcmS00+vPyXJn1tfnm 5bkyu9X4k5fnymy88TPP54psWN0ffjVjw2zhc0U269GT2kw9fV6W53NF9qcr Rg7c9dP1wueK7El735LnQ0XW94cFTWZf11T4UJG9tmP0Oe/9s6HwoSKb+GLX h9/co1T4UJGNtv6hH/vi3KGTp9zXcJzTD77o4Il1s2ZLnH7H77995SUjNjn9 4E3s3Q70g7/yUekzDQ9s5vSDNzzor7euvKyx0w9+5aRRpQum1HP6vb31L/wP Cf6HBP9Dgv8hwf+Q4H9I8D8k+B+U/yZXIbFPQ2KfhsQ+DYl9GhL7NCT2aUjs 05DYpyGxT0Nin4bEPg2JfRoS+zQk9mnQfWp6MiTOnZA4d0Li3AmJcyckzp2Q OHdC4twJiXMnJM6dkDh3QuLcCYlzJyTOnZA4d0LN505VSNhRIWFHhYQdFRJ2 VEjYUSFhR4WEHRUSdlRI2FEhYUeFhB0VEnZUSNhRIWFHBbWjqAeT8Atiwi+I Cb8gJvyCmPALYsIviAm/ICb8gpjwC2LCL4gJvyAm/IKY8Atiwi+I6hfwPjDh R0f1o8HVXwbHLxa/NSb81qh+K7j6p+D4odBPfAu/EvrBu5sfKnGASBxA/P2I vy9+fcSvZ17g48x/Z17gZ5i/L/54xB8Xvzvid4t/HfGvmS8/ny1dvHvu4Y19 vsSjdgx8ZPCsX5X5fHu+9ebzg76uV1h9Z492iz+s6/P1+jyWN8e85lj/5QdP +XWHD2b6vPa2/v/Z7sQdQ8/62ud1mfU/c9mFT44YsdnnNcH6H2v9Q/ew/Y9a 9PgVtQvLf3fBogEXN3D6+dn65DtWXT6pGJ85sO1Xc3qdXafw7tYzv3rkrlpO fx97X3yW5QNC/1Drv8uSXy8/sWqx7zv6f3TGzGcfGPWa0/8z63/2ebefPHbb Sqef/rtY/9A/suWYdd+O25kt2dBt+U9fqe30H37B+d9MHrQrG/LxXX8bfECJ 08/PZ1pu2O/Bs7e5XuId9MCF2x64cvZql7erPnvjm9IxJYUOby2ZN7nVHJ/X CBv3oLULZj39780+L8Y96paHWw8f8I3rk1dt3EO7Xbh23L5P+7wYd7+3Digf 3X2NyxvjUl+O+VbL1XdZ130mHtjqoe+dj9Xysy2bPmNpk0dbbPbzrjre+302 v83bnS45ernPl58Dj+8y4L4zBrldcdHkt/Z4t/6O7F+nj24+4Jqi/tzbxj31 807zO46v5fbABBu3951Hf3hThx0+39/YuCUNP90VOq3xc2qmjUvdQuZ7oY3b 4Ma2r3V5cI3P94j/8nNdNmvntXd3ubQoN9V825Bt7nLY6BvWfubzndLv8d6r m2zMmpUtvf/UA97zeXawd+sLPj3mjHHd1/h8+bnvpWMGHNC/eC4fZuPGpz4p mTCzgc/3EBu36vjy+ZPOqOt25ss2LvUwme9vbdzj6+7XZMDs1W7/fGzjnmTy wHyr5/Vl1vfog09vO+Qjn+9vLT7cvu/Hn2UD33U5rn5v/nU27O4Txgwbs8rn O8je3Y+w/HTm9Qvrf2bDsz+8vn7Rv2hv/T9+7cH3THmmzOfV2/pvM/In65c+ XMft57us/4et/7w99nw2aNj2o59e/5TT//2e1fc+nXb0nr/XiM+z/Pk1M6tq +JMtVbX/P//O4uWdLe8e+hfvWd3/isN3FXY1L/p3G63/er8+9/37Dyv6dzdZ /7Wev63ejZcX/btqesqzM6z//Pn1aZhr+hb67+N++/pH1r/6zMIsb+fMC3UX vnHzpLYbnf5mFo9X+vl54e5j2530VZH/Q63/5497KNu7SyOn/2zr/7rdjTeW VxX9u32t/45C/8qPbqg/bO3q0L/W6hbNLlju9M+2cR4zfQv91Xrj29C6/Qcn dOqwwum/1/InHhP5WW39f7pi3cYXzm7o9PNzzW+HHLb7jPpO/3PW/+NdZn7x hwG1nf77rP+hIj/V9wtbwls795gV+m91+qvlfHN4dsG9dz93+yqnf5GNc5Tt I+jvaHkeJ9i+Y59Prd6nXreWeW2zcR8Y2+bZrwfX8Xn1tXErb2xy5zlflvi8 +NnE9AbzOt3GnW56hv3+qo1baFCtl5jvTRuP2X3hxz+EKaf1nLrvoUX/pXod d4STP18z4MP5232+l1TryVBmepL5zrLx0avM96RqPRx2l1XrYeb7Fxv3xWva 31gxapufX6ts3Hon7L2k8uVNrs8vtXFH27nAfPlZOLb6HGG+J9u439i5w3x3 7vjT0rkDa8VXB12x7Yu9i37EK//lT634+1MbjL3rwDp+Xl9dfQ56nVXm28Ly cjg3me/rNv4JJg/Md5eNu+DAwz4Po5f5fBm3xb3nD9pn7Dyfb38bd6Sd+8zz MBt3uNkJzJefL5pdwXzb3dblzU37lMYZM5pMGnNd0Z7nHi1MKLvmlHfr+3xf 7DFy5pEt68a9exwy8/cja7t9RV7ROWJfBev/Fw0Lk8taTfZ9uM36n//ymHP3 6PCpy+sk639xr2FPXX/nWp9XX+u/q9hXt+8+emzzSQ3irf+zZcm7bYv2/Il2 j7zXkf3bbFlXtG/XLb3+mXNm148nDJ1bf3fLoj0/kXoUYt/eYf33HN79gTln Fe12+u9W2fHePv/4xulfb/1PWbpuxeo+W5x++h9n/QudBegUf6SAPyLrUtB1 sXkVmJesV0HXa6LY87KOBdYRuaX/F21e4P9r9vwMs+fBX7BxZ9k6gmOfzzL7 GT+a9zznGT/B9zE/YqL5EeBbjQ9TTX7Aza8tjLVzBH/8lGo5LMwtq5ZD8AfM /u8g9j/rwvqKPBeQZ/z6jnaP1sL8evHvCvh3Iv8FlX+TnwLyI/uioPuCdUSu ZL8U2C/s/7XWfyuTE/Beto7rzO8Df97GbW7yA34Q62h+FvEEf6dv8gyOv1ll /ia4yjM469jW/DviEqzXN+YPoge8HumBE+4u+0nDyPqCr3161Pp+CwoehwE/ 0/I6WV/wpdaecbV/OS8KifOiwHmBfE4x/EzT5+BHml92uPll0F9l/S+zcwF8 tPl3+5t/x7w6mBweJ/ElO18KnC+0L7N7yToW95Nzp8C5w7pAf2+bFzj032f+ LHyD/qnGH3Do/8L8YrE3soS9kWFvwLdvDG9m9gD4383v62V+H3z7s/U/1ewK 8H3NfwzmP8KfesafMomLmn2SYZ/Q/l7uKy1eLXZLht0C376ReYFD/wzzl+Eb 9L9s/AGH/kvM7xZ7NUvYqxn2Kny73PCNZk+CHyZ+JXzbYv0/anYp+DHmn7Yz /xT+DDL+XCDxfLNvM+xb2jeye8Zpds8idm+G3QvfoH+CzQsc+hudW+2Pwzfo n278AT/W6J9vfr34L1nCf8nwX8Qvy9QvM78mw68Rfy1Tf838nQx/R/w490M5 Z5+x/seaXwP+B/OXTzF/GTzauDeaHwf+kPmndc0/RR74ud78KX4/w/z0kean Iw/LjW8V5pfRfqDxZ5L5leAH2TvMBuYvIw+lJg9vyL2b+X1Zwu/L8PvEn83U nzV/MMMfFD83Uz/X/MQMP1H83wz/l3PzSeu/la27x9NsXW62OIn7KTZuickD +Dhbly0Wl0DOZ9p8x5gcgp9u67KfxWeQ86+Nb1eaPNP+LuNPO5Nb8H1tXdpY nCQfVynPlo5r1blw5MsaVwmJuEpIxFWCyrPJYUAORW4Dcpu/5yrPLnv9kHar P9hD5SogVyKHATnM34sV68fm78XKsx7Wv8R5QiLOExJxnnCGyImtb2B9RR4C 8pC/FyvPthv/Zb0C6yXrG1hfWceg62jxvZCI74VEfC8Q3xP9E1T/mL4K6CtZ x6DraHomoGdELwX0kqyj14MVvRTQS7K+gfUV/RPekPPI4pMhEZ8MifhkID4p eiCoHjC9EdAbsu5B1932e2C/i34I6AfRAwE9kL/vWxG6rut35gXzPgv5+/oV YeXmZcet61nUz+DUTcrf660I31r7/L35itDN+pe4ekjE1QNxdbFPAvaJ2DMB e0bsk4B9IvZMeLRmOyRMk3PH4vAh1mznhAvEDjxE6BT7JGCfiD0TsGfEPgnY J2LPBOwZuZcJiXuZwL2M2M8B+1ns7YC9LfZzwH4WeztMrdlODueKHWj3OOHU mu3wUCZ+it3vBO53xH4O2M9ib3vcUuzngP0s9nbA3pZ7vZC41wvc64l/F/Dv xB+M+IPi3wX8O/EH47Ka/bhQR/wUuwcMB9XsJ8bjJF4B/dwPin8X8O/EH4z4 g+LfBfw78Qcj/qDc88bEPW/knlfur6PeX1t8KXL/K/faUe+17d42ci8s990e D5T4VSR+JfGuqPEui49FjY8RhySeJvGrSPxK4l2ReJfEryLxK4l3ReJdEk+L Gk8j74b4m8S1YguJJ9i9eUzcm0fuzeU9QNT3AHafHrlPl3cCUd8JsF7cs8v7 gcj7AYlTReJUEteKGteyOFjUOJjFzSJxM4lTReJUEtfy+LnEryLxK4mPRY2P eV0ci6f5ew7k84Dvz/vNmsYe7wLvcsrlhZZt5mteSSSvhPWl/aVWb5D1Bb/Y +oF+8FE2ruRxRPI4hM4CdObfB5YW/mTvdoT+gtJP+4vt/Y/QX4D+vH1SWrjZ 3hHJvArMK2+3lBbOtu/E5d8Blhb62Psl4UNB+UD78+wdVN7OKS0ssXdT+fv0 ksKq4V+2WVan1NcRvHvnO1o2GlzpelvryjIv8IutPeOCr7b+8/fI27NPD376 neOv2il5Rtuz+zpc3uw3V+30cbWubP5d0/bsr9Y+n7+zPfvM+s+/09uYbVt9 bIu/fbQh5N/LbcwO6PVmq391qufnvtaVzb+X25jtb+3z79Y2Zt9b/2LHZtix +feTFdlz9j5Z7NsM+zb/rrIim27vnMXu9bqvef+lIvuDvZcWezj7Vuxn2vPd 3vw7yYrsCnunLfZzhv2cfz9Zkb1p773z/kJFNtLeh8OHEvvX396ZM1/wJvYu HXrAP7J374wLPsveyQufA3wWfgb4KXwL8E34ExL8CfBH+BASfAjwQeQzJOQz JOQzJOQzJOQzqHxS3zGxH0NiP4bEfgyJ/Rh0P1I/MqF/YkL/xIT+iQn9E1X/ eJ18u0+RcyHquUB77nHkXIh6LtCe+x05F6KeC7RfKvdEtE+cC1HPBZ2XnAsx cS5EzgXotHvtQle7dwbnfvDrHlNH1B76sc+32m4tK/D9TXDuB3va+ci4t1n/ t9m9OTj9b/po/GGNmzaJ9HOPnV/TjQ/g3DO2Nz7n9e3MbNfLt2wpf+IFeQ// fOD9lbQPtKf/2qavCrnvyE9ru1ciLveIjfub1s/8uu53ezhu77IC77KkfaA9 /fOT79Tze9We+TgSeFPTJ28JnXdbfKOnnQvMF/tf+TzE5KFU+Ix9e77Yadil 35o8yLuFAu8WpH2B9vKuLONdWV4fzssqXplwQ+zxusvhSfaO7hvjJ/jNxv9W xk9wfl5s78r4/Szr/6DpR028cPCP+D89wf8frbv9zHi35vf10j9yfqbR/7bJ ofv7Rv/BU6rlEDyz/j8y/oCfY/3Xn1rNH+FbUL7Zz5DgQ4BO4XNI8Dm0Erm1 /RIS+yUo34KMK/MNifkG5iv8DAl+Bvgp79Ij79LB8dOXz/6801MvNVZ9GBP6 MKIPwRkf+sHxK2/Z9v6Hw5p+pPozJvRn7Cn+hdcnsff88h4+8h4enDjAfTIu /ZC/L/o5JvSz6w1wfk40fvL7ZcJPya+Pml/PucN7KtFXfi7IehXoX96VFXhX Bs57pLPXzK0zanjxnYbRVUisV0HXy/RkIaEnC6oneacE/4VvhQTfCso33hG9 bfMC531OZ5tX3s75Ontg9OZzzrvxE6ffzosscV5kPcWPOELeRYPz/rlq5V5L b97Z2Pc197zbDYfOI62fG+z9NvjvrP1Qo5P+S+zfVMtXzevnkhL0M/2AT7f8 WXk3Hng3LvwJD8i4Nt+QmG/Q+f5C2gsfQoIPIcGHAB9EbiNyK3ZRTNhFEbtI 5Ccm5Cd2lv55TzXc6uGA827qYat/Aq71qcBrrgeF/1KsBwVOPKq91auRPKbC OKlDonWThJ6g9BDXYl6Sn+V1P4SeAvQI/ZnST/zt4Xx9Lbe/6J/6F+DkD1Kv AZx8Q+oLgJM/Sz48OPnL5N8qTr5ozf0U89UYl3w8pZN5ERfnvajX9TCc/Efm BU7+KfMCJ//X6wUYTv615ycLzrxq7qcq6LieZyh0Mi/i9+TfMS9w8jeZFzj5 s8wLnPxl5gVO/jjzUpx51dxPMX+XcZmX0sm5q/Nivtw/kFfIfMHJS/U6LIaT F8x8wcnLZr7g5MUzX8WZb839VAUdl/kqncxX50U8FL8ffx8+gJNH6XV/DCcP Fz54fpjlHcMHcPLQ4QM4dQCIi4ETp+I8Ayc+RvxI28NP7R9+1kxPsS4U9Hs+ s8yXeEGCb1H5Bp+JlxAngZ/g5C/DT3Dyx+EnOPn78BOc+gnwEzwfLy0pASeu CD+1PfzU/uFnzfRUBaUffup84afyB36Cc28CP90PszgS/AQn7xt+gpN3Dz/B qXsAP8GpOwE/wfNx0ZIScOw0+Knt4af2Dz9rpqcqKP3wU+cLP5U/8BMcvwl+ cm4TZ0MPYHdgb8Bn2pNHD077j4T/tKe+AbjHL2VdaE/dCXDaXy7rRXvqgYDT /jJZR9pnOfuff8W4E+uo7VnHxLhBx2V9E/MKNc+rytsL34LyDXlIrEvUdUFO EuvuOH4x8sB9MvkUrDv4TaLHwC8UPQZ+jegxrzeQ02OVQXH4VnM/VUHHhQ9K J/Pi3vsdOe/AV8l5B95ezjtw6pwwL/Anc+ddZVCcedXcT1XQcZmX0sk66ryY r79/FDsH/EWxc8CfEzsHfJjYOeALxc5RnPnW3E9V0HG9XobQyXx1Xug37g24 L4AP4M3EvgVfL/Yt+HKxb8HPFfsWvG/Ovi3WueG+DM0Dzr0e+kfbw0/tH37W TE+xHuRysZN1vuiHBN+i8g0+c9/CPQv8BJ8tfhD4LPGDwPuJHwR+a84PqnCc e0b46f3bfSj81PbwU/uHnzXTUxWUfvip84Wfyh/4Cc77DfhJfIL7KfgJvlD8 ZXD1l8GPF38ZfHzOX65wnPtZ+AlOfAl+anv4qf3Dz5rpKdYZUr9b5ws/lT/w E5w4A3VM8N9550Z9EHDeE1JHA/wCe5dIvQlw3sdSlwGcOBv1DsC5d/vW3vuC X23vfslvBydviDxwcPKzyJcGJw+OvGJw4sDE8cGJM1OXhDgA7yepGwL+lr3n pL4GOO+BqUMBznt16juAk49A/ry/h7V3tuS3e50Zey9KPjY4+X3Em8B590We MDh5vtQ9IQ4wz/LQqQ8C3tzqhBBHBue9Pfes4ORTkA/vdcUsH598dXDy1olv gpMvzD0lOPnF1CvBr6duCXU9wHn/T70McPI7yJMHJ1+ee3Rw8pG5jwH3fG2T J+xM7l+o7wPOe0Xq44DzPpY6MuC8Q6beCjjvvalXAk78mTog4Nw7U58CnHwl 6juAkwdHHQRw8g2pFwBOXif59h4Xtzxl8tjBuRdGLrFLH7F3m4fZfgQ/2t4D U08HnHfX1J0B5307dVvAyY+gHgo4+TLsR3Dy+6j74O3t/Tn7EZx8VeoLgJNn zX4EJ7+b+kfYqy2sPgN1grwep9ULop4OOPU6uI8BJ++DOi/g5AGxT8GpX0F9 B3DqPHBPAE4+OPeC4OSPU88Iu5T6G9T9Aaf+D3VzwMlPoR4NOPlK1JsAf8zq TnD/Ad5V9i84eevUG/I8J+M/efiqP7n/UH1LPraeR+Qzq94m31jPNfKNaU++ APmcXl/Q8qe2WN4X+Nl2vpA3pecR+S01n+Mbgp5r5G/QnjwO8jdoTx4H9zfg vJPHrgOnXh92l8fhxY4FXyR2rLbHLtL+sYv0noJ7ZT1fuCfW84i8WY/DWz5U R3uHAV5q+XFD7P0B+A92PnLvqOcp7/vBySPgXYLH8+19OO+r9DyiXoCeX/fK +Ug+b7PE+Ug+pOLk1+k520fOTfIank2cm/CfuDH5CNyXg5O/QF0PcPIdqOvh uL3nJw8ZnPw+7qfByQckDxmcvE7ykMHJA33Q1ldx8kK1H+6DdVzyD5VO5EHn Rb6H8oF3Hso37CjlM/e7xJnJv6DuCTj5GtQ9AScfhHoZ4OSPEGfQOLa/Y7B4 LHki1HegPXlJ1HGgPflH1C+gPXlh1CnwuLTZLeTh0x47gXoBtCcvj3xy2pPv eafpYXDydskb9/fFZlf83O6/Fbd+gvZDfqmOS34p+AbLMyV/LzGvoPMiP432 5NmRh0Z78unIs0qsS9R1wZ+n/RMmD+QRqfyQF6Tyxj29yqe/YxD5oT6O2p8d JG5P3hl1SdSOpe4G7cn7o+6G2sPUiaA9eZrkbSpO3qba8+Ql0p78RPIS1S/o IHFv5sU5S3vq2WLPqP1JPSC1V7Fb1L6lnojaw5zjjEud9mG2X2hP3QPOcW2/ wewZtc/Jc1Z7nrxWtf/Jz1R/ATtB+UOeGO3JF4Of4NQBZr7gr8k9I3hDuWfU 9tCj/WO36L0D76TV3uYdmNrn1JUAp74EdSXAqS9xo51r6i/w/kn9C/LowMmn 4/0fOPl02C1qh/OeW+32+8QvoN4FdS7AqXdBXQP1F8h7V/+ij/gL5PdNEH+B /D7eMeMvkJdHHStw8vioYwVO3h91rMDJE6ROh/dvdiZ1OsDJ029t6+j5MWZ/ UqcDnHoO4219FT/J7Bbth7oAOu5TZrconeQ96rzIe1Q+kPeofON9ufIZu8Xz F80vw24BJ58Rfw1c6n05forlUWK3aFwa+wScvGPsE+Ku5Bdjn9AePw77hPbk d2Of0J58fOoB0Z68e+qq0J56C9RPAafOBvVTwKnLsZfZJ84Hw+8w+8TbWz/U d9Bx3zM9BT6KeI7p58S8gs4L+4T25NFjn9CefHnsk8S6RF0X4qUqD9ghKj/Y ISpvnAv4xdSlJz/T8/UtTxO/zOtMWJ4OeZLg5EORxwhOfhZ5huDki3EeeV67 3UeQp+f+u+XrUbcFnLornFPaD/U+tD11NLR/8s2UTvLBdF7kaykfOB+Vz8Rp lZ/4m8p/1gs/mu8CwDfwP8m9pNfTlXtJbQ+d2j/j4v/y3QHGBed7N4wLznd8 GFfbM672jxxiJ5PXjByCk9eGHIKTf4ccgpMPiByCk5+IvIGTx4q8+ft6q2+D XCmOXGk/yJWOi1wpnciVzgv5UT4gP8o3+Im9Td43/AQn7w9+gpO3CD/ByaOE n+DkdcJPcPJ84Sc4+TXwU3H4qf3ATx0Xfiqd8FPnBT+VD/BT+QY/scMvFvkE Xyry6e1FPsH/KvIJvr/IJ/i3Ip/gPUQ+FYef2g/81HHhp9IJP3Ve8FP5AD+V b+gZr/tl7zPRM+AT5X0p+JXyvlTbo2e0f8bFTt4k+g18tOg38Iai37Q942r/ yA/n+yg5Z8H1nAVfLecs+GdyzoKTN438gHeT8xR8e+48LX4Xa7ucm9oP8qPj Ij9KJ/Kj80J+lA/Ij/KN/Cu9HydOC04e1gTRh+Q9kV8ETp7R3aLHyDMinxN9 S74h+Zzg5BueSL5fze2DtrfxpjMu7xvJ51Q9uVdCf5JvA07eTV/Re+Td8N4A esgf5L4MnPxB8gDph3zAiaI/yQckz1bvVfFPXS9Z/+QP67zIR0UeyKMkHxWc PMpo/Aeflm8ftD35hJ5faHIFH8CRK+LVKm/ky8E38vXIlwMnXw95TvC/oPwn zw2c+3TuVb0OluVzkT8MLvmzLoeXWL4tebbannyzxLhBxyWuovPl3oR1J9+Q /PyEXBVUrrgfoR/y18hn9ncLRv9eCTuEfHjak+dOPry+TyAfXtuTJ6zjknen 7x+4Z1H6yZNP6CXH0Uvcpyg/J8h+RO8Rr9B9h9xqnixyC06+J/cjvh/t/RLx PXDy9ainkNhfBd1f5GGCk4dIHiY4eYjkmYOTf/2mzRN8nu1H8rS1PXmPiXGD jkucP8GHqHxgXyg/yRP292+Gkyes78S4/wUn75J3UODkjVKnwP1Ty7vnfRS4 15cw/Ql+m+lP6lBoe/L5tX/yWvXdHffLSifvrHRe3C8rf4izIefkS1KPI3EO Os45SF4oOPmY5IWCk79JXig4+ZW8K/D+LR+T/EzFyc/UfsgX1XHJF1U6iReB k9dJXEj5Q9xe8z2JK2oeyvuin6/O1QEoKUGf8N1e+tf8FPrR95/0Az18X5i4 qM5rpvXr9RJsX8NnfdcxxPjm70wsTsi+03cL3NfrO4cOJufg1CGfaHFmfXfB 943Aj7R3O88m3kX0kXcRvE/ALwC/094R8Z0qff/A95/0HQXfVQLn+0p8fwic d1B8x457eb6jx3fmwF+yd1l8nwmcd198xwic7xnxvR/w440/fB9R77n4zpbe 03FO6T0O3yPUex++y6X3SnzvSu+hJsh90FhZL72XYb3A97d3m3z3S++D+J6W 3h/xPSpwvkvFunDvwDtVvsPndb/sXSvrAr7AvmPFuoB/Ze9s+S4C+yuzd858 F6Hm98CrvT31/6vlapW3H2HxdurD+nlh77qpr6rvnKkLSfsV+Tqo/m7qZLsf 4Tso6DHqf/IdDu7rqTfL9zZoT11ZvjOReIfg7XmHwPcVaE9dZb6jQPtH7P3q CuMbOHW2qbutOPWOE/0H7Z96von3J96e9yfUsU3wJyh/WBflc0d5z0B9VL6n Ak49Xr4LAs67gkGCUy+a72Hoe2C+f0B76pDz/QOvd2X8pF65tqc+tY5LnWVw 3l2UCc68qC+s76g7yrsI+EPdWNqfa/zkex767pfvN4Cv5r2NraO+T2a/gFOH lv3CuUz9VfYL90rUN2a/0J46xuwXf1+Tvxfz9tyLsV9oTx1v9gvt3zT9w3cy wKnHTn12xfvYfkn07+2pB85+SdyHenvuQ9kvCf4E5c+Dtr7g3xqfh4i9St2e 2uIPUrfK/Q3bdx/m6ym5nHc1v762xLvoh3pMmhcwROJI0DPb+le7i3pV+j1l znXwEzceUu+ubptcv7gfcdviHWvrLvNzCPyUKT1nb2pXvAf1/p/s3+f71cXv aKP/d/3ymadKlxTzJdwO7Lyi3a9v/c7tDPAb/7hm+Iu3Fr+nBn6tfNcY/HZr 73mSjGv9Qz94reOq6Vkk51QbO6egk3m0rL3nWXc9W3xnCT5w+OoZpy5+3McF /8fkymkt9lrp44J/0ql24823bfN+GOe7aV/GI/da6fYB+D+tH9ojDyNnt31p Rs9ifQSPewwfXq//zoZuf4B/8NMD/rF8v+L7AI9v3N1n7xP//LHzF/3zhHzP 1N9BXX1jRcv6Xzvd4FO7Hbyo5a3fud0Jvumw2/a+4vXiu0zXk/I9U/D11h5+ gk+2/pkX+MVGzyLRn7OEfsbpJd8zBZ828pEF9zxbfO8L3vma9XdMa1v8Din4 Ulkv8CNGVssD/fN35/8r//1Q8FdtXPrx752KvPH//Y1+p9vmx7z4nfGRW9q7 XNu4jAfey+ikH8Z/cnh+XuBbjQ/0D95F+Aau8wW/RuhHXvqJvIG/LvIGvsXk B3rcHhO58u8YiFyB97Rx2Rfo80aDqvcLdIJ/bPsLOsGH2T0dcgl+vO1T6HS/ 3vY1dHr9V+sHetD/Cy2vAXrAeW/g3ycynPcA0APOO0PPFzKcez3o8fbWD+Py /8+bvnK/znD2C+3h92LTh9AJ/k/px/O7H8/rW/DTTM7z3y+uHXfLuePvc+Tc 8fxlO0cYF3yQnC/gtbrkzxfw2na+sF7YBRPkfARvY+cpdIIvtns61gu87Pbq cxk6wdvZOQ6d4EulfjJ0QQ/ngcuXybnXSTG8seEuf7yDMzn0fGPpn3E9DmPz pR04dgL7EBw9AJ2ef2r7Dv6AXy7nAjjyAD1+Dhh/vM6X4dtNTqAHHP0DPeD3 y34H53yEHnDkkHGRxz+L/QOOfmNdwEeb3mBdtO4T9IBzLkMP+C02Luvo37s2 uYJO6LpCvlfr3+Uw/QY9WjcJesDXmj2g7/8fke89gdcy+Wcdvb6p1C8Fv8js bdr7+3Drh/bgLY1+/h78eJmXvtOGTvAyoZP92lb4CT5Q1h2c8ws6wYfbujOe f49X1hd8sPUPPeiJJSL/4LtE/sGniPyD3yPyDz5Z5B8c/cm46FHsc8YF51xm XdzONT3g8QKpBwI94JeIfgBHb7OO4O1EX/m7VvMXoMe/JyB60u1T05PQ4/U0 RM7BJ4r+1HtA+A/+tck/dPJ3z8i5A95azh2XUzl3wOvJueP+oJw7XhdCvgvA +B/Leuk7SX8fYDjnI/1A71D5voC+e6Qf8MVyDqLf8H89n8dw/CzaI4/4xbSD rlHil/l7EtMb9M//q79G+znir3ldW5MrjTPMt3XPfxdjWtuav4vxHzuwxu9i TGtb83cxprV93+QWPri9IPIGXlfsZPB5YieD67kJ3lLsZPDhYieDD7J+4Ivf F8j5CN7P+AM/wZFn+mGcwSJv+g6NftzuFXmD38RPoNv9WuMP7VkH4iqsL+Oc JHEbr2cs5xr9bDF/n/HcbpR4jusZ0T/Mu5vdA/K71vFjXP7/FanDTP+vWj8u 9/Z3nNe0A/9S6mz7vpRzH3yx1IHXOFi+XvS0ttCfrwv9H70i82UcrS/t9+PW /v8Ab+Wu4w== "], {{ {EdgeForm[None], GraphicsGroup3DBox[{Polygon3DBox[CompressedData[" 1:eJw1nHkcF9P3xj+zz9i3SNaUytaObFEqJPkWsiSSUqKyi2ylRCkkO0WSUlJk S9nJkl12EZU1+57l97x77u+Ped0zZ+7cuTNz59xznvPcqd9nSPfBca1W+z6v 1RKV32W12qNRrdZTZRMp5ungs9r/WftPquyl8ldtT0s+XuXCslbbUuftoPMf lryJ5IaSH5O8heQmkodUtVqLtFa7W7qdilrtCsmHSbdA+zuqTgvVaSz95pIb Sd5Bcj3JjSVfpm2U5P9UDtN2keQ/VT6qc+tI3l7y9qp/vtrsrjYbSj5XcjfJ 81Wnoeo0VZ0dpd9BcnPJ50oeIfkSyU0kN5HcTPJ5ki+VPELyH7q3l3WPfVXu K31H6Zer3FrbNpJ3VJ1GkhtzLjpt20reWWVLbU0lt1KdvSS3lbxM5VHqU6S+ 3aR+3aJ2x6j9FipX6hmPlzxW2/aSb1G5WOecrXMOlPyHyj+1/Sp5Z56r6lwp +TnVeYjnrnKejk9SWzdIv5/KnxP35yCVQ3RsX+l/Uvmw6j/CeZIHattb+h9V nqW+7aG+zVD7Q1VnsOq8KXlXHZso/UQdL1TuJ/3JanMP6W/V/vXS7yl5H+n3 0XmldO0kD1SdttLfpf0bVWcfyVMk3yD5Hx1roTrHqNxN+hukv076s3T+qdKf Lt3u2naT/InKVtqaSf5IZay6bST30bmPqv58rqv7ra9j9SXvxP2p3w0k7yL5 OLW7ts6ZLF0vyWtJniT5GB3rpjrPav8fnb9Cz+F8lSepzsPS/U/travyQNU5 Q9f6QsdbaztR++tp/1S9g0O0f6ra6SvdSap/jM7NdM4tar+n5FzyrZI3oj3V OU/nbZz6uudLPkPX20ZtzJFuU209GJPSH6k2u0o+ijEj+VCeleQPVbe+tsO1 f6bO3VbyAzrvFF1rCaXqnCr5XcmDJG+Y+tyhavNF1T9Y9T/nnnK/r/aq007b PYxJnfeejm+l7RAdG6Q6/VQO0PHBkk+S/IrupZ/qPaj6XaU/TfKukqdLfxLP WnV68o4kr1I7F+ua/ST3kv5o6V/VM2svfRNtfSTvqa2D5HXUxgG8d/XzbMaT 9u9Rm7117pHSL5b8OLZDckvpztE2iGfAt676bVV/Ju9c+9vxDdIXbUdI7idd f8nHS35OdU5U/bmq35n+YzekH6ZyiOr0l/yq6vRRnft4TnwX6uOB2o5WP1/R /Rym8msdO0F17lXZiTraLtC553Kd3O+xv3QDJPeW/LzafE7nHqRzP9U5Z+jY ML5vxiq2TPJK1emhY09JfkfP4QjJT0pegqxj56oPw1XeoHOnSX+rzrsFe6R2 71df9taxg1RnhMpbpZ+tOnUZ89oukv5SlZdoe03yBJX7qf07sANq/1rV30Dt 3Kd2JjDuJc+WfL3kOpLnSO6s+nN4hqp/s/RbSD9X+hsl3y19HbU5XH06i/Em 3aaqd6Gu1YdxIP2Z0p/Dc9J2ueQrpHtfbQzQ8f/U9ijeq/Qfqp1LJZ8t+X3J HbFJkheqvYk6d7LkjaU/WPq5PFvpL2fMqa0z1Z+rJd8o/Qaqs53kjSU3UHvb St5I8naSG+icu2LPc8eU7mdPlU+W/l745vZX/Zm6xs1q8wltC5kHdPzYwt8v 9mMf6uvctir3LD1O9lLZV+WJsd93J9U7WPV/UTlAun1if4dD1F5dlVN1jePU Zne+HdV5U/rjmG+lX0/bHtL3DXYDu3qK5O66xplq5yKVT5e2LUcz9njH0o/k +ajN+7FF6vuhkjurzuGqc5jkR7FL0h9Yhn6qPED6/VXnENV5V9evp20v7bfT scP4blV2K3wvR6jOQZI7SO4q+R31ubfq/6Z2L2R+5/2qvEjbGMljVOdVba9L /kHtvCz5FclP6/hijmGHJX+lduapnaNV3qlrNtX2iPanqVypOp9rO1L9rjGn qJ3PGbM6fqTKV9TOa/gx0m+tZ3S9zpmrY6drf77Kl9X+ETr3bx27QbpPdM69 0h+h8nGd+4TOfYbvgPGhc2+X/u7c39pkxjPPVfUf4jmmrv82DpPa+lv6XXkP qb/lV6Q/NPU8u1jy+bxfxjljU+1eJnkHfCe1/7jqPCX9Tdofzfyucqj6ua/O n6U2N9d1L5d+YXjHvOtnpT9cdVZzn4zb3HbjUJ07Um1dLflKfBn8BuyN6n6s eleiZz6p7B9MlO551bkTv0NyI20763pDVI6S/hrVH6/6F0seK3ms5KU6Nk7y OHwz6SdIvkryp9JPlHyN5E8kXyv5avqra/2ua12HfVD939Wf06U7H7+QZyj9 o9Jfpz5sLXmMrt9V20ztP5HbBn4n/TZ8z9IPYD6VfifJd+l+N1fboyTPUP1F 0r+o+l+qziS12UDHH9C1rsLHkH6Cjj+r7XnJD0r3vOQXJH+BfZa8SPLD0vcq bLex3x/zbLQdi9+jtl7E9hceP+N03aUqr40t34x91/5LqnsHvoTavUL6fqXH KGP18cz3d7m2eyLfL3XGSd5C93Kl5Bslz44sv1/z8THhmXQNMvWXZz5OH7rF 7gd9uErlNdpulTxJfV6Ueg66TfLTqedBvi2+sc9q9vmnSF7FmNc53/JsVQ5U vRXcp867KXa7tMm1ro59P/1L3+8LuW3h1aEPW+au/5nO31L3NT7ox4V+zpH8 jcqJoc1bVd6h7WF8msjf720qBzHnST5V5VGZv+knMn/jN4Q6g3XsDfXhNV3z OfX1LWIUxrbkDyT/XtqPx5+/N7RB+x/y7rX/Qc39pL/c5/063j3I9O1Nve9n VJ7NONR1b5F+Gn6YysnaHorcd+5hOv5B5v7cnfn+rgvtYN+o8yW+m9q5LdSn nUnalumc2+l/al/rW9X7tOb6D0a+LvuHh2fFuVNU/1X8/WCnJwd9L5WPEdhJ bqxrPSD5J+yj5Loq98P/1DkbSn6p8Pu/M9jb7XRsahgb3ySus5vKDXStlupb XNieYld3UBuF9P/p+Jd6/nN03mxt39dss7HddIM5FxkbTtt3h/ZpY7rkDSRv pHZaq/0U31VyK8lJ4dhzFv1XeZauN1PyEl1rLdWpUseuvUJ8OkNlKX0i/TfS V5JTyd/mbuPe0Lc8XHc5fpva/EXnvUCsUHne/Un17499DvV/1PEZkn8Ic9OU 0P+H+A7Cs2V8PSx5vZpjY2LkmSpbxH4utDM7yBy7Stdapefypq51teTvJL8l +RrJP0h+V/IEyT9Kfk/y+aXf3Vt6Jrn0/xKX5G7z/tD+eOm/lf6N3P2aG/p2 rfQ/Sf++9L9j/6RnKiXGR/6VcRD6/1/N4+WhcO7but5zOjZU199B9R8JdS4o LX+oNv+V/KuOfQyOoIb/kvx5iKMfVZ3fVf6nOr9Jv1T6lhyXfu3Yx+eHsfpY 2Ef+UNd9ReWFOu8xtdk9s/9wB7FKal+9MfZA9XvqlJ0Syw2lO0Hlk9oaSW6r cpG2XSWvVJtLVXbUuaskfym5C/Y5sm/cUeW+Kt/Q1kpyor6expyb2W+mzsX4 zzr2guS2KjdPPT+M0vV31LZQ+lT6tSPLW+vYSSqfDW0+z/vX1hKfQO0+I/lf ld+qPyula1r6OPXo33NBpv5WqWPQKxLHrE9J3zxyXEV8dUqIK4gvflO5Te62 /s7cNvX76NhfutZv2m8ZYos3tXXRfr9w7xz7QMdGqu5ItdFGusXheX5UGpMB mwErATP5J3c96v+b+74+Z8xkniPGxp67B+jdPa97OL5w/EebP2BbVa+Bykd0 rK62o9TOCN3jZqljwOGSd0n8rLhfsJsR0v+dO+4i/vpd5ffhvZyMz1247R11 3R/D8yH2fAufX8fPU/2mxMbhPS4pjS+BMxHDoo9y9/NlbQNr9rtf0bZ/5PNp 5w+VPxe+9u5qY4iOv6StnfZTHTud+VH31066t8M47B/k3yX/y1iXfB7+h57P Xpl9kkFBf5TK5urnR0EeqvLj8L5K1UslH65yqcpPtJ0gfaT9f1TugX3OfW6u 8gyVH4T+l/h2uublul5cuh/EL6sL96uV5AuYc7R11f4s9a1Z6nc9XfKOqcfY I5LbZfa75ks+JLMfPkPyTqnfyz2Sd079rGZKbpr63d0teQfJv0qeKnlZap/w XsnNU4+lOyUvTY1H3SX5y9Sx4TTJ36SOGfnusQV8+8TBS0KfM8YHfrj61Cox 1gbOhk/1RWw/alud3zB2HAcOR51nGXPYeG09pGuhc5dJPlHyOvi++NJq8wz8 MOlHa/9/sX0a5nrsG/pTJK9f2s4dh51Jjdu9HzCkd7Sdof36+N/UD+VX2m7S uZ1UvhfG0uAg816J894PfTs4vHfGQaXzM8aJyj/Vv62wPSrXzt3/tYiFc7e/ fm6/7OvYvlk9nbMl9iE8jy8Z9zXHQ8hgi9snnn+/Y77LjIEt1z29WBovAjfa X/oFkt9Q3Z6pscyPJT9ZGNt8orBvi4+Lr4s/iE+JT7ivzn1M9V9X/Xap44vp kjfS8Qt1/DbtH5s6flwq/dGp/fYPE/exYejnyeEetg1xw/WR/VSwQjDD1xJj I39I/7f6c3R4bjw/sBTGP99BH7X/ruovx//hG5X+Ou1vK3li5HhjK+KdyLHD Car/DrGq6veVfivV24Lnqu2ayHHHBPVhmORNVR6TOgb5SPUPIF6XPId5hPhU 8tPE+6njvzclzyk8fu8rjOEQo90tfXNiHckvSu4t/RJ8WsmHpI5ZX5K8Xxhb jDX86saStys9ThnHjFW+kRWxx8GE2P4672WrxO8In79u7rFOLNNa/VgP3xZ/ qTAuPVflA9oerLmfjVRvpuQn1UYTfDliXsn3FI5tZ6jsBNZCfemnFI6171DZ NTW+/bL0h6WOl99KHD8dEjuGOip1TPdB4piLvjOWm4KNYXulb586Jp0huYf0 70lur7K5rrGz5BXgadruklwHrEj19o6NxdyUGnvsQSwv3X6x8Q6w/N2lPyHg 4RtL953auE76RtiDxHgw+H//gAOAcYF1gQ3vS4wp/cOZcbI/pAPbAPfuTZyR um9HSm5Dn1Rnlc4dnTrn0k/nnVM6NiFGOTK2r/ljzbkD4mvi7KOYM4Me//kp 1X8D/DN1vuZY4pXSmD/Y/7Gq21pbHBk77yT9aerDKbl9j0NU9wzpc74n6c8r 7R/iJ94t/Z70LTHWTt5kiOQ7Je+KXyz5ndJ4ILhgT+bDcK13S+OH4IhNCz/D ZZI30bY7Yy8z5kEu4KjE+ALvtFLd0/nmI9tlfLAFsX3HFjq2C7FIbuynueSj E+MU4BVr6fgftBHZt14rceyUaH8XHdteuk9Vd28wIOl+kDxZ99JK+l6J8xqb Sf+j9HdI31r64xLnTdaX/mvsYem+4M9em7rNQxPHH8QhxD7kxfAZ6ecX2s8i x13XpM5hdSUGKI2Lgo9iP8GviP+JvbFtYA/1Es9tYAVrZcZqpkj3n/aPiYx3 b5jYjwHTJi8HXnebdKfFnm+OCP4Gvgc+wfHBl8CnAJu/SfXvTYyb0x5zd+8w xzHXnZHbD8VPXg+sSufWCueXwGZn6dx/tP+/yJhwpPOOjezDraM+j1d5p+rk 0veVfrj2CSJ7RvZrxxW2wWuDVZcBW+M5x8bnme//BaeNjEWDBY2QvKXK8dqu 5zqMf50zoObYmeucFq41uvA4os+1zL7uWJWbZL7uzICBX4Tvr7Je5nnpfulv KjxP1cUugilIP1X60cEPAYsAYz+H9wvGpu1sxoDKuol9joH0VedOUv0HpBtT +Jnkhd/hqeE98n7wEfEbycOA+92l+gemxv+fAWPQOcNVZwueWeH5axOw3tS4 /WOJcf7zI9s9cMfbpX+QOTfzN3JP4hwL2Ps8fHLdSxdd+zFwDOJh6R+Vfmzh +y1UHqT690l+VvoO5IgkLwB7AAORPDexT0U7zLu7hblsmnSF9vtF9u+PS43r fir9ODB+/NbM+Ac4CHhRQ2LCyBjySaq/VPW/Uv1+kj+W/CXfdGqc+RPJe6XG pScTT+T2x05k3k+Nc94ufQPtT46MUfeV/iPpv2Be1jWnRMaywYfAicCLjlGf PpHuMJU3xsaS0L+U2/8BvwKnnIWdrBl/AucCgwJ/4Vv/JmAk5CVU1OonxhnA ZMC2wJTAlkbHxgGZ+8CEwMw/pd+x8SWeyaTwfMCmzkqdKz9O5+6TGge+IzHO B973pvZ/TB3LXKY6F4SYFwztksIxwl/SNQw2C8wGLJc4g3c9ovB3s4vauCi3 P3tsacyI+wIz+SV1bDVa8j+p48QxYDVq76TIMeQRsXHJFTXfF5gXOBu+7dLg 326SOP5h/u0GxqK672Fvw/3sou200mVjlVerzrn44Jnx8adU/93EOPfUyM90 vdjfI2N33djfI9/bprljiUd13nbapko3X+cOSM2V6M+3As4eOUewqHQumJzw a9r/VvLbkjvEznNhB8HJGjCHqnwtsu/EfPB65PmCOQ9cZzuVXRLnyutLPljl 6WqnY7DPr5XOlZMzn1XY93sgdw6RvNgicJrCvi558vszYxyrdLy/5HW4X8lr YdcjxwlgFWAWzEPkWfF5lqscXtmHu1PtvR15HmSeezOyT4KPAsYGl+OIxNgb XIvD8aGYO2v2iwaqjQ1U/3rsk9qahz3JzRmAD9CTmAg7i5+fGttryViS/rPS +RT4C/jALVXvIfVruuSdwEcr4+djw7zYMLU/c7V0X+HjRc5Nf8a8Hhnf3zJ1 Xvhy3knqnPJV1C8dX5CnWlXa/pBfAts+NPjA35S2J+Svtkid+x5NDKJr7Bg5 3w2vhWcCDvZSeHfEcQsKx0ePYUd17hTJj+jcqYV941nSTyvs/9+bO9d5B/eu Onflfm7MZXVi23bGJeOwoZ7DPD2H10vfC3nylQHvBjufXzi2mi99N7V5j+Qn iFNL563IRcOHIL85TPoRlf31uwrzY5pI/we+dxXiNOlfKJ3vJu/dW/uH8b4k X1E5DlxIDKXtJeYP6V4qjeeQ2x/MfIbtlbwksh+Fj3hyYfznBOlPJTaT3Efy M5lxrg/Iv5XmFcAv2KV0XhXcbKfSfvtlKl8uzVuAvwDXpX/NeX74MMz7zP9N VKdZbBy7delv9QpsV+n3BZ7TRtsBksfgO5d+1/AdesQ+F3u1UPf2gPrXDH+8 9LiCd9CidLwwujT3iO/is9w8Fb7rXxJjy/h7Y1LzmeoEuzGs8tw5u3Temvw1 uO75lefve0tzrfDhwY2Jze+JjYPDnYJDBW48J8QFYM7kwsmJgzmPqhwjzSzM u4J/Beb8VGbO1wkqL60ci96Nv1N5Xp9bmtcFvws8eWxlW/xCYe4Ftgsc+Ljg 26/xpXPbPbBf+Fj4tJ+oHAeGJPk84h7VLVX3Z+ahyjHtvfhTlX2aOaV5ZsQ+ H6gs8Mex0zXj0mDXYPDk6BiHFybGTcFPwVE7l8ZAwVkPLY3XgdutjsyDIjb7 VuVekccK3JgtIufulwRM8lK1OSN1bvwkfGBsqOShKq9Tfy/Glmb+TvheutOH yDHGmrxL4dz6z2rzO5X7RB6LcHYY5yMT+7HklOFsbZMaVxkr/bapx/OVkj/O nPM8XGWj1PHUBOlfVPvPSH46N74I5giW0VX3+5XK7wpjnmCk3D+52caq303l osLz6VM69wfw2cj8nyap446JqrNxbL8X35SYjLiP91fp2NHa/6XmfDC4Tcn3 LV3LoD8n9bvqnTmvjL+H3wc2he+dYy+wrTWP0QWSv6p53P8S5sHOifMOi7ED 2LPI8RJ+BjgnvnGidkbE/mbxpRunjiuvTcwPZHwRV4KbDYnsxyzS9lfN3wA5 cnwk8lDkRsiXkB8h/41/SE7q0tTj/8TM/Ab8SfJio6RfV/IButZgtXl8ZP/p BZV/1/xNkjsnLstU/z1t/4TxPFznriO5k879Xvo2kXllvCvyDWDa74UYjXis Y2G+VgdizdS8rXMS85La44dIPqQwZ6wL80VqTtTFiTlcB+E/SK6X2pZeljiH 8njsHMkGqXlo50p3ROE8+OEqDyh9nFwK+D25AXB2uCXgr90L8wrwkeF9wLfq gB1OjOGTg+A73Cs2p7EF35i2ppExC3KYhwXfdbm2ZryjmvMG8GQuwD9K7f+M T5yTvTn4wZuk5sddlJjDtb/kQZK/KIz9H6myh7YuNfdzcLomxKvtnZiHAJ4H j2BFaVwOjsDXpfke8ER6BLwd3B1eFnkScil1cueZ5qmxdRPnkOD5HKY6ieSi 9P3CCcK3hl+0ZWQOXl6a5wmvdVlpLAuewsl5uG+1+Vxh3xWuB/xE+Dxn4/OW 5kjAlYAXxHsg77F1al90jOr0LQJ3sXBuh77R7+al7SJ5sM9L46jwIH7TfqfI PMzfed+RuXZ9c+e5eIaPa+tAbo+caeJ8G1w+OGbkWn4lvg85BXILxA7kT5fz neicPxPPg09EnrPAk18vbB/I7ZLnwm4DMsFpww9/JHNdziE0hwN8puqtVrl/ 4m/rotTc4xEq/1b5aWFbDW62If5+ZHu3tLCvAT7TMfG3fInO+azwmAHnIT9C 3FGp3CvxPDsodb6Pb2R1ZowdrOmvzDn1umEua5fYllwgeRVjJ/K8vnFue0he mLkLLI57hjs9RHX/UrlHYvt3SurcNHlccq+NEud6mcfraHsrMhb2cWF/HAx2 Xelejcz93bA0LgG2ABfua77Hwly4LyW/ovIs1V0nNgZ0geQNY2M0cLBXMy+p XFJ4DhtWOif4lfq1nt5hf+mq2PjIrYljur9Tc7n/lPwO77O0TwsesklpXxX8 YSjxTmzM4v3C8ceaPLLKFyPP8czn5KTJp8Mzv0xt/1M6TgFPI6/6Z+nc8rOV 45jFIZZZHOaGM0vna8g1r4sPVXruAnu5JPM8/47a3ay0vw2eQ37zW+nWV5t9 VGezmvkBzAX4ReTN8fGeAAesbCva6PjB5KMK2yw4dT1y22RsJpwi7NvXhXNV 2E9y1tjUTyJ/V/i0jxELkROT7tPIdhmfcyGxUOUcM3WfJibV8Y8i+w23ZbZX e2bmmpLHJWddL3eukfwj/gAy+ceBKk8J8jqJ89Otgk3uG+wU33Sf8F3DFcQW YZOwIf1CfWwT+mGZuYSciz3fM5xLvvjQ3Dgwc9CKwrYL/2dzHXsnMt6Njf88 2PleuW049urCzPlq8tfnZY7bnkud/z5R8kvS7RzmFPLhnxeea8Bj/yjNGXm6 sm8JTs67nIBfFdveDQv9J/9+UWb/6s3Uftmq4JuRT7lKcmsd31rl+5HnIbjb H0T2NQ/IjfMzF+8k3bLIccK5mWOBp9TG7rz/yHYZrGAxeHHlOOV1/N/K+UHy L+upvT3whSL7f9hv/DfumVzbq+DplXNv5OAeBFfLvDaAc+Fqkk+Hxz4xd25l 3cKxATYU+3lp5vn2BXzX3Lmn9Qrj8yuk2xMOcG68bv3CGDF2AvytWeJ8Orae 3PiewQcYkTnufkbnT0rsF1XS7ZmbywonB7/mz8g+K/lP8qDk4fbKnTuAq3NL YkxotdoZxXuLHbuCb2IzwHPIF6zEF1c/b06MF/6l/dfD+GSOu1x12sfOZb8V xj/+8GUhTmQ9xegQo8GFGIX9jc0Z6B58+BtT85yxj8Ri8K7x84lHpuSOzYnR wee/ULl3ZQ72JZFjJfJP5KHqg1vmxlfvl356blz0gdJ4N5gT/EgwX2wUnOyJ wVbCBb0h+Mzk/fDN/4rs14I3/BTZHyL/BxbUIOR0PlbdPSrjRR8yBiXflhvD v680n5xcJLEkGC5Y7saZcS5sNfxvsJOfI2MK5COxk/DOwYLBhIl3yOdh5+GF gz98pGu1qZzzI/e3eWYeMjaLtQPgyzyHbcCVcmNWPEMwBPgd8EPgRWMXwCTA EOC/wL2Ee8y3Bz8fPw9bAb4Ah5nvE07+frn50mBLD+bOgZKXHJ75m4bX0S63 nwx/rEtu3AOeNbkl5lUwKHxlfOaXU2MXr6lsVjlnSr5jdM3+MX7y/NT+NzYf jvVvqv8ez6YyT/tx6XaunKdaK3aOgbxaJ5XzUmMpr6hsWpmLvkDyTpXzZ9hP +Nzwuln3wfoF8ljksyalzhdiR+GTw18gB/qs9m/KjS9tFMbjJrHfGfkbxsBm 6t/NeXjvhXMzzP/kpsHiGW8bSp6cGy/aVHWm5c4dkJ+dmnts15N8e+53vZnk G8N3wVjdvPSYJAcxO3dugpwv+A+8G9aqwIcAh/8oc06U3Ois1LlVcqzTUueW yadTj3wq9haOPr7rbjqvM/x//ILYPjTYEXacdTFwruvGxt065o59fgr+Nnb9 IJ17herUix0Dk7MBD4Y/vVbpXBRrBOCRDQzz5p2Z+RHwKOA3gPPDl62fOiaa I3lW5lwqvNPZmWNm8pn3ZPYD8QfBq+GCgu3j4+Lrgj1vnzp+x7ZPz5zDhd+4 IDcfAB4FvIb6sfN/UzNjlV0yY9twpP8/Z0D736icJH2T2PjmtMwx2v8yY56d VHbRczi49D3Ci4OvAU+AewPzPFB1DqmMi3aW3LVy3hEeyTKVt6v+DrGxUfjD 8F/htOAn4GMsUtkBfCw2B29y5pirbeZ1hfi6W+fOKcNBvFZl7xBj4kvMDv4Y fhnzOfM68TxzPX40McTcgDms4bvGzimo6hr+IPkEcjQ8f51S2zdx3VaxMYpf Y7fJNVg7AFeVvAw5cbAsGjo+NfdgAXYycw6LnNiJqfNB8JNbJ+ajwJ2BC877 2S+MDXKj4xLzg3k/G+YeJ/i5BxJL6bqXxubhwItsHa7LegfySnCrfwn9Wb9m vhUc/q6Z+c5wgz7M3B/ySysT82F4R7yrP2L7ecSh4KWU5HxOjh3DMrYXhzmd Z86aCPhC8IbgMO4TfD/yEWARYNrgpeATp+fGY/HZBubGRJHx4+DYwCcjT9Q3 9AFfkXUx+4Y24SEyF8Ntwz9tF/rDt0Be6ZrEfAnm9Icyc1rgorA2B84Xenhf YLnkW8m7/hXah4cHHkt5ofR/x8baqEfeGBnMDX4fPgAcuX/DPQ6tmXNC3g3O GNhS59j4UpQYS7qk5lwVMpjSkbrWebG5WHzXXBc+4LDY3zj9/D08Z7iF5Gi4 7tzMnDi4eq9n5rPD0Xw787PjGb6bec0Rud8zc3P6Dgx9Bq9e09/ca5SwUS/m HrfkHpeRo0l8L2/VzP8irwEHbGGwadi2LDHnB348uY9uoQ68M+4f7hncc/iO r4VvgWdwReb1B7wXuHAjY38vPLc1ayZjv0t4jqz72DszDg8Poj64aGz8Bx47 uOWg2JwT1t/BgYPLRw6AXAA2lrVtrHEj58g3wbcKnwS5Z/hGkI8L3xF8DDge HwWMulfQtw7nIsMdPj6Mf9ay0f6hkfmAF4d7B38lp8sznRVk4gS+3ZHhfsFn qYetYL0b5+ITgE8OD+3USfxOGQ+83+HM24nXpiGTX2VtFTlPcpGbJf7GORdb Siw4qPJ9cD/g7WCxxwSbRhx2QriXswKek5X2uXkXu0X2i08O3xr4HvU7lf5u +D7/f+0oJRgXa6jhb6xdet00XIt1Ss8dxGSDK9uJAeG75ln2Dn0gFwFXCfvL nAY/Ce56mThnvazmvnMP2PCW4V6QwQYPD2OD3As5mM9qtvHkj6Mgo19R81pL sKy0NN/z0vBeWPsJ1zspne/gWk9m7hv9gSsFV5D5lbkJm4xvcmXlsT8iPH/q tgj9h9/YUXXGVOYMsDaFOfWnUIf7hYfAHHxA5nw08zTzL+sSmod2WHNHTv71 3GtHuofvCB+AuK1t4jmJuen7zDgedpvcE5wHeAvM03Ah4EUwT8MzJO7dHRuT mbsIVgBvFw4mXDi4jvAY12AZmXkO+BJwLPGrds3M54SXOiUzN4P5/qDM6zma hXfBs28aZPiQ8B7xz1irdVn4RsjF4A/gF2Dv4dVh8zdIbPewY6xvhKfUrXQu jvmGuaZTkMmDr5/Y/qCHp3xe+I7AhcCBwJaGh/eFreb4sFCHddyDwvgfGvrQ O7QPFwobCt4+OLTPWuAzQ9/Adc+OzYtgzeY5kt/IvJYcvj28eziE1Okcma99 TrjHjRPb8y5hjliicxZVtt9nhfbhU9HvqPA10cPXAn+mr6tz93doaIe1fnCT WYvNeli4nHCcWK/3q97BJpXX6ZNbZ306uStwUdbww9Uj7r45NaYMPsOacHIu X0g+OfW6QjhS5Gv4pwH4463BPjC/EmuzlgVccWBqzgn45tnBh10dO+6GGwdW yT8FmP/xRX4Ncy/zMXkv8ungX8Q/5LNYi0ZukXmS+RI8ijUun9fMwfix9Jy5 gPxk7thhSmn782ewXfiPv8XGKOAugjeDHZ8W8NnTVd6fG2OHQ4G//F2wM/BI 4JOwBhY+E7ymXTJzD1izSW4UrhVxDVyEaSHeIG9OTh/8Au7EzNx8jK0K5xSw AZ0CNoXfSe5z68pcWOIs1tOQ/wIHbpMbi7i5dM4Cbgl4MWuGwHVPTb22htwZ GDW5PGwLNqZt7jjxttL/VQAH5x8U/HsBPgZraeHutlLd0ZU5ePBhxmfGYMmt st6nyMyzBEeFv8QaPGwc/wqBs4QtYl11g/Bu6qit3VPnAQ+sbFNYy0kOlVzq Q6m5zTzDmzNzleHS3JA5DwquyXqQR0IfyO12z/1PhmnMNSHGJ2bfp/JacTCN tpXXq4OxYNdZ/8bcAf8NbOO8yjkkMDz+vdA5938t7izN84EreH1m7hyYzcWV eVncF/cJP3l7fJ3K3BviRnLo5KDIRRFjsI4NTuMPKrfKzedifSV8LtbXYRvB B8AA4BvCiQJP/zf1+mdyWd8Efwcbh/2B28W6QcYkSStwhCjzHI4tw461Sc2n AoeHc0X+ke//l9J5SPhct4R+cg34h2vzviuvp+SdwhfJMudG4fjxzfPtg63x PuHmgculmXOc5EdYA45t3ULyT6X9O7hgcCDhX12VmU8Afv5bZv4P/z8hvw+v nXiWfNKmle8BTi8YHtg0/gP/EmG9PP/u4B8K4NPEkvik+Klw1Pm3AOtj+M8M HGzG9smZ83/kdPj/CDnR9pJvB5eozAUEF8WOkbfDRx9bOreAf8jcmyfm8pHT J49PTufK1N8rnOQrS2P5+Etws8lDXE77uXMF+BXjU3OtyBPBAYbrNSAzf36C 9ntU9sHTxPwicqUdav5/SuPK/xBhfOKz47vD720u/Rup/49BPEPfiTOYR/4L 8wV+d5yYK7gLuFLq9eP1K3OAsEXkNVgHyLshdiGe4d3vWHktFt9ag8r/f8GG bF/53yh3SN6h8hqtuyQ3qfwfk6mSt6jMNQQ3rleZWwm23Kjyf0mwz8yzxFfk shtW/g/I7QGLhWDXO/T/8uCzkTMkR0+OjzWR5JguTL2ukVzVxanz79gqckX4 /MTJ+MPwzxk/g7PAhQ8+Hn4KGAEcS7gZ0/lmKscCP8eOI+B1w00alJkHztg5 VnW2qbxmA7wLbgM4xNjUuWlyzeRyyM/iHx1QmffF2hR4U6xhYC0D/iK5VHwq uFLzA6aD74k/9UPwY1n/wDoIbDR8Lfy4DvCwcnPnwDnhyOGj7V957QDrEU7J vPYD/BPO3P65/5/Du4MzQA769MzxVpE4575V5fUS4IHtc+NvvBf8bnx0+KVb Vl6fA67I/5HI5fCPHdZ9wnMglwpHgnzeyNTcBngO5GVZ2wqfAs4M6xrwO46u nLsH2zwLe5R57f3q4JPjQ5P3hPMALti7MicBzLV/ZZsDHvB4Zc4DeGpfydtW 5tiBT+JD/hP8RngPYIC8b/g88HxOy8zxhgt9Teb1KczzIyvz4cCHZ6f+BuHg EjvzXxq+9Ux17svtGzxYmpP6dM3/d9o9MYcFP4o1UWCQ/OeBNU7kNPgXBOts WCdPfM1/sXhmaeW1H/Ar+WcW/5WCt8k/H+Cw4qs007m7hjEAVxR+TH3i9dT/ ftq2Zp7nnol5DvgJ1yXmj7MesE2yZsnJGp9tbsDh8X/m5P7fy0Ol1zHht8OR Jn4l/iT2ISYmNmbtyoVBJkbmfy7wXcGg5gXbwvtmbR++8GepcQ58fXxd/k1E /EmuEq4L/CRwYf6zAy4DtsDaQeJW8hmsKSSmI8fAukC4E5+kXhsKvwRuSevc z4FnAiZEjI3Pzxob+gt+siLx2i7wh6tKY/n4218n5pCDpxHTE7cQs8AthWNK vHR1aXydfzs8Fa5L3uKyUJ+YHz4yvGT8V7jv02v2G8aVxnuIa/i3FTl7/kmy e+51Jayj5z825Ob5DxJYwPCa1+6xBpxnSi6e9Qbk9/lfD//fwBeoW/l/F/Dk +ZcXaxVYs8D/cejLqtj94Z8/zMv8NwkuPjk+/AD+rUEdMEl8Xu6BWLSX6sax Odz8S+Qn7IOuNTIzN+zt1OtqeQ/rVPY74L3gc7Culne+bmU/hDjpycr/CcHf 2azyOia4De/kXpNAfgE+64zc//+ZV/q/XvjpTKqs38OXbpz5/w/4Xvy3BI4m 8TnrXvm/Af4oHIB3QxzHXMO6rEY1/zMO3lvjmjnJ/M+N+Z15/vrEa02+S/1/ OThu/MNkVGae4PvS75abn8wafDijcEf5Dwz/giNuIn4CC7uk5hiPNT/b1/x/ Ov5NR2wUVZ5z4RRR78bEPHz8xhsSr4n5PvV/55bX/M+W9tKvHea+Zyr/0wGc vENi/hjzIGtzwTfI+W1X+b9pxA787wZ+NFg9vDhyseSS4RaSbya/Rf6ZdYCs M7wg87/P4OHAAyTvSK56VRjbjBH+LwKOSx4Zf4y1gmCG15TG0XmnrNcHW+W5 sYYAPhD307EyHrEy4Hz4sWCEYOdg6GCR8BvxbcmXw4ckj06ejH9RsB6Gd8Sa VPiv/5/fRibGg+NNPp7cW7vK/+7BPsMPJ68Jh2NG6A/rGvCn4H/CAeBfKXA2 yGXjN8EbJ4/PWmrWR8FtglfCWl/ibfIArGkhDidnSe4SrsKyoGedy/JQn9xh +8r/+cLG7lf5/0GMc/7/AR+VbwpuEevZ4OTD4yIPOZB5v/I/hsgds+aI/OoF lWNh8guswcIuwY3oUzP2AO4AVgB3CZ4fXL0rg01jTCwM14Jbw3oQvnm+8ydC fTgrrHWC/3lt5jVK5MEnZl4rj91ew6lNvW4SvJr1Bqw7AMeGjwtXgn/WjS89 3sExyMODlTA3sJ6bdRLwb+AXwDPgflaGMUlek/XfrPmCh3R2OJfrsaac+Qfu wv9y51XxReH2kyOHQ8P6Q3hf/HOQ9XvYW/zvbrn/QYcf+2F4v2vW3afGNsnr s/YdzBPOAf8mYT0a3+b/AQMoc00= "]], Polygon3DBox[CompressedData[" 1:eJw1nAncF9P/xWef+YqfSpGUFkVliSyVRNFO2iyRQhIhUZZQtlSy79lbSEqW EIoSlQiVXYSyJftOhP95P2f+r5fRPXPvLN+ZO/d+Puec+zQaPKLvmVEQBC8k QaD/gkviIDhC/zYKg6C2djQtgqCFGqzWvpfyIKim7VaVZ6tdnUoQnKd/DxOu p/Zbq/2+at9J7Y8QDlRekAXBsyoelAbBlWrfSMdvFP5Nx/2r+smqn0q9jh2t +p1U/43w76r/T/XP6rjDdL6TdL5U5SVqt4fKv2q7XPh9tX9F5ZNU3qz2L+h8 L+r4PsJX63zPCj8nfIjwJOERarObzveG9p2p8hs6/gUdP0j1fwu/qfO3E/5W 28Xa10z1f6ntJt1PpONbCG8W/ks4Ft5P599J+D/hXHiV6hfp2ON07F863/na 31P19bWvus79qPa31vV/175rhPfX8S1UTlSu6Pibhe8Q3l/4XOEGwrvpHF/o +H90bKFtlMpXqs092t9B9a1Urqj9Fmp/k67ZUvt/UptLVb5I25O63m9q847u 7UDhJsKvCrdXebrO11T4NeEBvD+dr7HK/+ocmc6XqU2k+glqt6XwqcKNhVeo zSkqj9I2Q/gz4dd0/jU6x0G69mZt43XMNdp3g+r21f6zdPzL+ncv1f2mbZzq P1D9ayqfrPI/vBttB+h8PbRvk+reVvsDVP5b2xVq01b311zni7W/KO/narW/ XfUNVG6o+n107ztpX3WVl6ldS9V9ru0CHb+V9p2t8gSdY0uVD9Yxu6vtm8Id C38Hu6v+U23nq/27wu1V/p7nKVzRdo7Kk9T+Xl2nk87RVuX/qV21sn/dqfM9 oDY7qzxN9Y+qvrvqL1Z9Rfhj1Z+o+kTn+kp4b9UfV/afb8rznRT7930rvL/w kNj9o53wrsJ36HzHCHcsj58ifJzwhrI/DCjf3y26xja63r18o/Q91TdR+Ua1 P0r1/xPeQfXLtO9o7btTbbYXXijcV/hg1XdRuZrKg9R+B+FaOvcJuv931fZx 4cdVv4fK41X/hPATwnsKTxCuo2fwiHA3HT9W+AeeufDpsfvrzWpXU9e7R/vq qnyg6g9SOVP7AaqvreNn8v0KXyj8lOpfEu4vPFH4Rh1TPfKYVEvl67X9T/h6 3gm/XcdPUflAtT9f7a+jD6j+Ot6/yo/qfItU7qf6K1Q/r/D7Wqb768j1hB9j 7BM+WPge4T2Fj6WPCd8p3IzjhRsLT9Y5t9X5n9K+njpnG52/tcqhyv1VX13t bxduK3yO8JbChdqP074L1N/3yXz+zTrfkaofJDxEeEe1P034Np2/ttrfr32N Va6vYxaovFLtG6m+pvB04aeF6wnXzf1+lgs3FP4v97d0nvZdqPL9hd/v2apv pvreut6Rgcf+IcLbqM19ws+ovj7XV/21wlvo2ufRf1R/l/Cjqq8rvLXw3cKP Ce8gvJXwncKPCG8vvK3wbOFFwjsKz9D1uwqPFG4uvJ3qHxJ+XriBcKr6UL93 jPadw7l0/VtUrqnrX6D6qZmvV0d4jPCTaj+rPH8H4QeEuwmPEm4h3Fr4B/3+ Ydq3n8rVtOU6/+XC5/M8Mv/ehjrfJWr/UOb72Vn4MuE5wnOEmwlfLvyw8MPC LYTHCQ/Q+TKd7zL6CPOL6muq3FrXv0713YUPDzwXnCA8vXB/H6b6nfm+hf9l rGIOUPnP3HPdCOFzVT5axw/kW9Hxp6h9ojaBrncRz1D1Uwv3t8E6XxPVx8L/ 6fgLte8s1U8TblOOL0153jpfqPKl2rdAv+EJ1T+o8kLtO0j1P+ce+07VvhEq X6z6V3W9H7Wvr8q1dPxvwtvxjnV8d+07KfIY/43aXya8mvlO+EiV/1abRcJN 6IMqv642z4V+Rg2Za7XvOdUn2nedfuOOjOnCr6h+vuq3Eq4IX8V3rvubKPyX 8Nmq30vlc7T/w9AxTC0d30/3113leSqfrPZHCPfg+xAeWvH9fMR8rX3bJ57P nhWuwfNUeRu1/zmqCmWC2SkDk8YG4VZqM4aYQhWbhc9X1T4qv5J5bl2ouud1 /nHa967q/1T7gSpfxfsVHq02bRhrCs/3fB/t1f434bOY37gO403m99FJ93aR 8C+F38VlOv904SuE39P5/tH5j1f5t8zv+ladbybfv/BWKh+q+lfos2rzltr/ IXyAymcTQ4WOUYjf6L9jVd9L+7YoPF9+Jny6cK62fxT+rSnjcDl/fKH6q1V/ t+rP0vaeyu3UZpbO93jh+O4p3cOBan+42ncSnqu6k4SHq/3bar+P9k3TvhNV 359YReXTVT9L9Yu5tvY9qHI91dfXuR7Vvs+EV6piocrbMB6q/Im2/YKgKpg9 WscPU5vVzMU8E84p/KbwbsJ3Cf9c9g/GB+bvwcLHCL+nujOE1+p8LYX/Ji6u OJ56ScfXYfxUeUe131l1LxLT6NynalulclPV36xzrCfm4nmpfCzjhepfVf3/ tG+Oyg/q+KdVPlz1l6r+XbVfrvrttW8XfpvqXyc+UP1Vqv86d2xygvYNVPlM neMd4X2F71ObCYwZkfvQriqfpuMHq/yE2i3U8T2FD2G8VtvBwp3L+GKm8PHC P+WOfU/RvtNUPqycrx/m3TC+CfdlPhQ+Vfg9tXlZ7etqX3OVP9fWmflB9QNV /1buZ/WDntES4eN0fD/hV1Q/rOLvaQPxu4r1E48fxGonEjOovIe2L0P/ht1V vk9bB+5N59uF/ie8Bf1Pv2/rMr46U+0vUZtC5dO19RR+VfVncr/ME2pfW8f/ qeutFh5JrCj8nfDS1M+uu45ZRt/Udr7qt1H9L6qfzxjHeMuYJvyh8KWMf+Qr wjN1P/11bKz9I3S94/X79xQenfp5Dac/cH+p+9cq2un4rXX818y5PG/VL9H+ 4ap/LfX31k/7Xld5turnC/dOPL+dmHssujD185yl+mdU3yvx+P2ZzvuO8I08 U+17K3Zsd2XomGd/HXdL6DH2HpX7pY5d52k7VuXDY/fl/4WOGbk+83efxPHG gWpzW+icYIrKHbRNDp1jTCO+1fFr1X4KMb6O6a1994fOwR4gt2McC51j3q/y 52r/Lt8O75z4M3Vs/4i2o1TeqPqPGCuEhzIHJs49vtR2qsrL1WaozrWl2q0T nifckfFL2+d8/7nj+XfL8WUn4jfVfUKeJtxEuLnwOuHDhR/T8W2ET9D2Ad9g 7v5F7H42+VE53p7BGKXyD/w+tW2s4weo3Fjn20X4Y/Jkta/HmCH8oXAP4d+Z c4V3ET4x9Xi3p/DD2gbybvgedP6rdO1exN/C9bkXte8uXF+4gfBaxnjhq3V/ I8pceaTwFpljkbO0rxrvrnD+Qh5DfjmrcD55bep4dI7waOa/1Pn4w+SQwjel jr8fER4jvF3q+egx4UuEb00d3z9JDK/7GUZOqHueq/pLyc1S5z+9Yo/FW4ce Hx/S/U5SuWWZP8wUnih8RxlPXZs7X2PuGSX8YGEuIEudTz7EfCR8Q+r4/j61 Hy+8SxmvzRCeIHz7/8drwlcJ31XmJw/p31a617najudbTpzfM6Z11r2OEf4z 8JjfUXh+7Nj7stAx4gLhGcKXh47H58bOZcaGjknvzRyPdk48v8ObkKtcEDqG nZ45v+iReH58PHaudnHofGh67Fzl3NAx92+5c/vrtL+12v8jvIlnKdxOeHPu WOMm4f2F/xD+hecj3Jb+Jvyz8PXCbfj9+vc25rLQ+dMPqv9a5au1f1/VfyW8 TniicKuK813i6a0Sx48DY8/d24bOQQfFnou2Cz2fD8vNp7yh8p5q31fHH019 4nj/uNz59mLybuGDMo/veeL86qjYc3XN0Dnv0cK7C28Tev4+JHP+sGXiePfk 2LFH3dBz2lDhA4R3CB2PHKr2vTlf4vmjh3Av4RqJ4+8NxBDwAzpuL+Ef4aOE rxHeT3ij8HrhK4X3Fv4ePkv4Kp6D8K063zU6X/vE+c8twlcLH5A4P5qg9kPV vo3wtsIXCw8Q3lu4hvB44ZOFWwvXrpgPukrHt0ucPw3TvxsCx6jkFKcn5tOI odsKj07M9fyh7SK4k7hqig2+1XamcBfhrVT+hz4sfEFiLmqZju+guuGJ+Tdi qnbCY3U/x6rcSvur6/qXCB9HvCZck+8tc755WOL88tXYue8VoWOaHxO3J4e7 XXWbE/9+ct67hX9I/PvJYSYLf5/4euQst8ERkhOofAvvUef/izkydI51p/Zd nJifI2Y6RPjvxM+PnO6u2HwR+U6UOD9foX3zhMeFzs/vUP3Nwgcnzm9vF75J uGPi/HlK5vy2a+J8lO+ZfLZL4vz1vthcw3mh+YQ+qj+K7yFxPr0s9/x2qOq6 Cc9V/WLVH5mYT/hS9Yvhg7R11Vj2rfDSyHNYD/hI8neVH9F2XuH55B6db7Lw cJXPKFyeq30rdO7viB8jj8F7qu5D4WeZS7QdIryUMUH3Ml94bGG+Fq6OHIZc pg8xY+Acj1zvQ+KJyDHrGvg4bU9FnrMuKMzf/Re4zRhyQ+GZkefAs4XbFs5N yHnIfd7N/FuImW8szL9+r+Mf0r5zhBup/keVW2prxtyp7XtiE2JalVsUzj1/ Fx5fxrebVG4fOT5sVTjXJCckN6yrbQO/jWdKLqnta/gf5iiup+0blXtr66Dy O5nvhZxjNWOnthWRY7Reqv9V+HWVR0XOf/cunEv9LXxl4fG5s/CqyPzri+TQ et5zhM8VnpSbO9wrcXy4DfXEyszZuWNYYtnxarO2MIc9Q3jXyNz2LRXnGMyf +6r9tfQh4gTVnwZXInwu352OX8dYJPwRcyl9TPW3ljlRdR2/H1xNxXk4+Xg/ uJyKc+iG9Fnh2yvOMeoIHyg8uczZGN/bC99WcU7FeNxW+I6Kc0DG247wNRXn mOgDh5DEgXV/36n4ie4vFb5SOFT9F8IJOa3wv6r/PDMnDDdcjzFJ5ZdV/2tq voH+czZt9Ns6R+ZztlL9RGINcsjCnDXc9VjhtwpzBnAHVwh/QOyi7fTAnDnc Ofwz3DQ5FLkUHD5cfi21eVrl5Tr+ndR8yXWFNQe0hx0Yk8mdGWzhniLzEaOE /1O5W2Q+Z7Vwrvp+kflm+IJEuFdkPh4NAi2itk4zX+XHVP+8ykck5iO31r5P 4ZeISVUutH0En6DtKPIlPeMitLbQt+I56TWV9ws9V+2uLWd+174+FY//5GcV YkD6TWruIxX+KfWct5o8IfRc2JKcRbit8Cm550jmSjip53X97YT/JS4nXsmt EYXkJqG1o92EF6l+V/IL4V2FnyMWEO4vvIfw68KtyRfInbRtEZoL6ldxDEIs MkjXe0HXu413zL2kzs/Jr/fRs1igbYjKU1S/veofSMxf3y1cW/jexPzyvYX7 9ojU+eozufOhtsKdmc8Lz488m97CdwnXUv0ZqfP53mq/k/C5qfmkw4UbCz9V 8k23F/7WTkvNR9whXIN4NDEf3E3tGwiPTJ2PdxHekXynzLd75P4WR6XmSybT x4nnEvPDxCDEIsfrHpcUft/EIkOYEwvHcMRyJ5Nzc+/Cv5HrM4cyl2vfyMAc FVxVF9V3JW5V/QuqP0R4X+EbhJ8U7iTcWvgmfmNuDgguCA4KLirUtiZyTgwf FTFHRM6xexfmtOC24AQvK78/xsqjeQbMNTp3kpmjgqv6S9d4M3IOXsUfCr8T OQeHvyIGJhY+Q79hVeH+Sqw2lDmscMxL7Hum8BuFY15i3+HCqwvnTOROLwt/ UTgHJBdcKfwN433smAt+ctfMORi5GN/HbrlzRHLFVar/rnCOR64HZ7NRuKJt XWTO4ZjCORu5GxrG+sJ9ir7F99cyd8xO7D6Kd1I45iH2OVf4/cIxPrH+OcLv CXcV7q5nNlXHLyH2L3MW+KOWmXNMcs3lwp+pfa/UOTh67uLM/Ch8W53E/Phh zKmRYwhiiWdz5/P3ptZvFzLGC09Nrae+LDwj9BzFXNVe13o+9Jw+Eo4pdWyJ 5gk/vD713FsPfUPl57X1Fb5VW3+VF6Wei2+kT6Tuy8TX+4TWQCYJfxWag4Uv GljyR3CxUyrmo/7WtX9Wu5sr1jyJh38k3qh4LEefZf45KzFHDVe9XOV7K+YT v1bd92p/g/DitGrKCpbyPai8QfufCB2DDdExX2nfOtU/KbwxdQxGLMacfG35 7ohfGT+bJX535GtttO3CPJhWhb7BfJ6Zyp+qfg75mbYTVP+x9q1R/cPCn6h8 grYlKv9CzJmYP/+KvkccWrEGCx/ybak3LCH/DB0DEAt8kzqWaqj6Y1LPNejf xAvnJOYX0ddfVPkexvLUXNxnxOSpxxLyQ8bnBonnPvR35utxwl1VvyJ0TDg+ 8dyNvsv8PlH4NvIuvsVyTByq7fXQnP8mnmVufpaYgtjinsT861vlmPtpbr6Y GIRY5LHEfOSacgx9IjG/+EE5Zh6Vmd8nxiHWeSYxv7u2HLN7ZdYLiHmIfT7O zRcTIxErfZSbzyXmIva6njxHx68s55zx+r0fh9Y00A/4dsm/mW93Tqxho2Wv V/n+ivWcbsIfC99XMd+Kvv2W8NRy7CLfZH5tmHjsIn/fTVuTxPpdX5W/UnlG OZaRz7fQthNxVGZ94DvhKPNcSf7O/LpDYn55k+p/It4p5w7yWebjeoljXGLd lan1BfQf9Pz3VTetHGvhH5ppa8z7zqwfEOMR68H5wP2cEllv4Ps5RuWKjtte bbctrPei+84tY7U48nz0q47drrBejW79eMWaPvxfR+FnhOun1nNrReacrmS+ iKypw/dOEk4je0bQs4j98C8QX/+UWNNA29gD7qlifYx4vYXwgxXPUcxVzRPr J+iPXXn+wrMr1tu68LyEZxG7ZPZP4KOYX7Ge2JuxXPVz6D/wXZHHTPwVzC3w jcyvAxOPzfCBzK/HCO+V2r9SNzJHxVwB33dNaM17XqnXo7U8pfOvUX29yBoM +v1uqf0udSJzaI9k1vPR9eep/QOZ9Wl06ifLuQp+8q7QGgP8Ld6ORpHHfOZG +EXm+2OZVwrrz+jQT+j45qn9PdtF5tjQ625V23YqP12xvt1HeE8d+zDxa2o/ yNaRObtahfV7dPzHVP+p/r2ec2nbkJacbeQ5CQ6f8fBa7kfb56nnDOYO8h/G XOYM5g7OgT6EcIcX6Rud5wHmq9R9k/iCOIMcklzyWv3O5yrm/0+OHJ8Qp8D5 wv0eH5mTJ8cj17tR7Rep/UHwQJE5RPTBloVz79qZ9RbG9+nCjXiPmeeLu4Wn avuWmJVcJHJ+xhgN348hi3iKuIpcBb2TePqfxP6fSfBdkTnbGkXpZ+Bd63o1 i9L/IPyo8Lap/QY1InO45JboJcTjgcoHFZ5v62TWK6/RvmqRNT/8Mfi/7lPb ntq/QPVHFP7e+O4WCw8q3J7jXqhYE0EbuSCyPwQPDHpCX/qJ6mtk9l6Rz9bM HDvBtxO/DNKxz6ldz8jPhGfzWW59ixyUXPSL3PoiOSa55ma+l8gxwdjUOgt6 y5LI8xUcOlw6+fcvqTleuN5HI+t1NxfmMuDhl5TzHceiOV2UWsdBz1kbmd+H 76eMRo/GCr++PvKYc0fs8feVyB4DNFp0HvQe9jEeE/MSy76VOhYmZiZW/iB1 LA0nw3zIvAhXg0aFVnWw2jydWudB7+E34weDB4cP5x7g99GQ0JLoQ+hFaFpo W22FH0+tX+HdIUfdNjNfjza8qeyz9Gv6N5pJ08SaF9rXecJvpv5+0NrRlNGW 0VjQWvhm0MvIifEH4RMiVyaeQ6slx6WPrde/Uex3fHxifx96BR4EvAhfwlfG jglPSpzDkcvBV/2ZOmYkdmQMIB6CLzgytofuucJ8ApwxHqlFhceTDwJrxmjH xDzEPnyDxGtwCHBR6LhwC2gwaDHMWcR7VRpO7G+Y+Aw+YERiPhWvH/n/5Yn5 VLyI8BUTEsc/cGPkDz1ixwwNhEcX7ntwaHBpcEL0TTg+uD7y/1GJ42e4MfoD vx0ODy6veWFuDI4Nrm3r0m+A5w3vG9/D4MCeQbyDeCwPVblRYO8l/BCaXhPh BYX5mJ6xPYzPFPY44mVqFtj7SD7RN3bMtnNuz+MRsT14eCH/ie2FwrOEd4n7 2Rh5zrsvtQcNL9pegb2FRWLttkNgrh/NFO30ErVfk9rzeVhsDyJeUDxweFXg cOFy8cDhhcMjh3cSDxleso6BvZB46PDS4YHDm3l/Yj/Au6FzfPIW5mLuEX8g eQv5y3fleATHja+PMRbuGz8O3A05LLksnPfU2Jw+XDicMd6o6YG5ZPi8abE1 gI+IZXT9C2NrDmgP8FGfJI4Bs5Kv+jRxjJgL9y88dpIzkjsy3vLtwfEUJX+1 MXEMiBeG8ZdnBycENwR/+G3iOQ9tHA4bL9i0wNw2GsOU2JoC2kOHxN6MqYG9 uHDaeKdmBea66Z/kG+QdcJnwOWhYeLDWFeaLZhFrEfPG5oLQT5qG9iiRK38e uA18EhoGXhc8L2gb8EWzYnPwnxTWPGaSqwXWQtBQ8JLBwaOtoKHgNYODR1vZ j3k9dkxxRW5+A80Mj9rHhTWWB2Nz+mgvcPh4y9Cw4fbxfOD96BZY2zo0sdcP TQ5tDk2K99cnsFbF+6S/HRzYG4FmNKzsz2hJaEqnlf2R941GjjcPzR7tHE3r 2PJ7oP83Lft32/L6fB8Dyv5Lf0bTGlz2f7SuA4m/I2vE+GGIW4hf0KgbJfYX w//hycKb1Y38ITInht8EvROvCp4mvE1HkRPE1iTQJhqX33/z8nvj+z60/B75 ftE08AqiuaF1wNddGlvzeLkwh8Dz7B6YW4DfGx1bY1tcmP+7oPweXhReSrwQ O4cbVPKLl8XWCFcUjhf4NvHozkytIV4em7NAW4T/ej5xfoQ2hwaF13FuYG0K jXFk+X7RHjsXjuXQXL4s+ctnE+czaH/wiwsT51Non/hP0BbQZNBm4BjGlHPw 4NxzBnMHY/r5ant9Zi8nGhf97dHc3qjrtD2RO4fCR4yn7ueS7/kicU6Cdjst t3ZGjE6sjr7A3A/nBfeFRwhdjTbTc3tW8XHg55idmy/akDjmRjuDL/oycU6C Vowe0zUyRwdXx/c/s/w+GB/QT+Cu4dzg3tBbiB3QPNA+8E/CtaOJoI10ER4Q OAdGv6I/8fzxnOINhj98LbYn5dPCOfj8xH4zcnM4CnRM9Ey4C/jHt2Nz3l8X 1swfKb93xiP4vg8T52xoLU9q35LAmv4jufm+jxLnbGjfK3JzK3jUR5b839rE OdzvJZ/5evl9fl7yae+U38O3hTUIuA30h1aZOehJiTVpuGk4O7i7P8v5cW+1 aRCYk26VW/Pj+3ohsBa4MbOXBk4BbmF9Zi6HbxbuHn8+WgAaVcOSL9wnNR+0 Q8lXtkntj8H7cXrh3AcNCy0LTQVuC/1gD+LBzFoRnAbcBp5vfDzcwz65NYIL E3syuD6cJtzmhjJe+TKzF7Oatr1yazRwOXDy/P4PMsc+aMrNGf8YUwNzcPjB 9szsDdtcxgs7M2cH5iDwt6FBnJ/YY4Q2AT/5XuwceDn9j5g79Byyo/Cs3H2d nJbcFo4TrvOvMl6B79wvtd8Jr03ncvzFIw23f0xurWJd+X1frm1waM8jfl08 JlFqjwbeE9Yv4J1Bc2Z++T6z1oUH4QCVb8q8FgMPzfW5/W2s1SAHOSE3p8i6 AzxtcI3DMnvL8Mjib8OTtiK1/w2vGuPLisT+VbhNOHq4ETxHeI+q5/aCkPOR +9XIrT2T85H74cnGJ0KbG1W3ZW7v5kjGoNwaDLkfnhp+30up8xzyHfRm9Em8 TGjwxD8T4ZNCr+nB3/p07r6HR2tZZo2H3HS88I2ZPUebEmvieJF6Fv5tcLiH F/ZM/ZHY08LvuS6z9xrNnvl+kvDw0DnXGOGjc3tzPynHZzgy1uXgUYQ7Oyuz Nw6OCn8y8/fTZTzG+I8HbmEZz+CNg6N6KLEnE+4Kzu/xxJ5FuED8kXCJaDBd c/tV4RLRaLrn9g/DHaLx9BJur3tZFZsDWZBb03+pnH+YT9HslpXxBFoeHp+n yniM+GJAbi1rfTl/dSjjr9llvPBdZu8LnCjc6BjhQaHXyODvHJpb64GTxbuD hgzXhf55bWa/Jtwta2CYX6/O7KXHk0H8elVm7zgeDOJBjLbEjrzzibnXmOC7 4R7aCJ+aW0uCo0QPzHOvZSGH433DGbNuBo8qXPJFubUdxmv851Nyey/wYMzU tQcX5j7Q6OuW+kmX1Pw6Xgc0CrQKPBSMn4yBjIUT1H6IymFuLbSOntn1hTmI 91PHxMTGcBRvpI6hiaXRuy6O/M1frHMvze0lxFP4mvBKbZ8E5jxY7/Z3Zm2V nJbcFo0FrgJ9aFHmOZu5m3Pi756bm6uDo4OrW5VZG2BNEOvNiPGJ9c8V7leY I8N3if8S7gzOEN8K/hW4RDhJfDD4YeAq4UDxWeK3hBtlDQy8INd8PLfGC/c8 PPL3xvdHGQ8s48tfma9NH7pUbV8Unhk6B3pFeG1mr8gW5DiF/SB4HWoQUxee 7/GqVCPHKcyRwoPAh8Cdonl8kXo9GVrIy5m1C9ZosV7s+dxcI5wp3CkaI1wo ehle55MLezXqEtMX5qDhUeBT4KZfzO0lxVP6ama/Nlw3ns4zVLdc+P3AHCTr BdAo4S6Xa9/TqpufeS0BGi/zAZ5qeE/uabHwvNxzB57ZpYzt2npEjpnw68MR zk0dE8EdwgE+lTpGgxuEI8PHip8V7oz+RV+B42pS3j+/FQ4Y7ymeDrgwPLHM d/h5eHZwsvh70GzWpl6fhZYDx9wptYeX5/d16riY+Bh/DOst4W7x5DIewbnh s8VvCxfHekjWxqHpPaf6dal9uvh18cPAaePDQpSC64bzxreFfwsufFPmsQVO nfy1Tm6vI5w+3D4cbu3UHkm4XdZfwfXiKb0l93ouuEg8pLcL363zTQ7sMZ2c WxPYIfUaG87Heim4TjyrN+T+3icG5hzxPzBeTQjMaZLvwoFuldqDyfwIB1o9 taeS+ZE1Pfg28W/ew/3k9j7igbxL91Ivt5dzhvAMnlXmdbFogqwvQO/tkXrM 4H2iF3dL3Sd5n7tlXouAhw7+4u3MXJH+CZpm1pDRkjcG5mMaZ1VUXJWGx/oX 1jRVrW3S+W7NrYHsmHqNEdpIrdx1cOY8X9Yv4iXBI4VXCs8PWh4eD+Ip1kTh Q+Ud3cH4mfu3w+HD5bM+Dy0Fj+7dqhuVWxtHcyJ+RrNinSaeGLSs83Jr02iY 5BNoWKzDZY0S2tbZubV4NCni69G5tWo0UPIRNCvWcbIGDS1r98S8Kfwp+jia DL4+/H1oNYy/lwbmnPG3wOGzrhTPGtw+4xle/7gcT+GEZyde4wNXjOaAzxC/ IVrEf5ljFTh1+JOTCn9b9cv5hPFnaWBNBb8YGsdOqdc08ry2z+3NRaPifTBe vBRYwyHeRJNpldoDyfjPeki0HDzOc3KvF0ObwZP8QO54irEJjYV4nvVlaCl4 mO/PrdnsmnoNJfEumk2T1GsiyQ9ZI/Bi6hiJtQN4NNCSuCfWSrLGjLVmrD/u nDvfZk3sCao/NrOeSa5CztI99vorYvv6gfVYfCb4TRoG5jHJd3ZR+Y/Y3gV8 RPS1bQPr0axJW5B4jRtr1fDd4L+Bgzsx9hoIOHpiEmIT8g3O/UtsbwX5BbkV HC5cLt9ro9T5JGvz8HTj7SaeZ23el4VzN2J8Yn2eP9oYOfdj5fND+8JT/mDu 8QGthJj5ptzPEy2MmGRq7veNtsUYcG/5/aFF4nG/K/d4graC5/zm3OPx9JJT XJR7DQYcPTkAucCGwt4S5njmesZHtK6qMacc79BC6VN35h7P0eiJGYgd8Cnh V0IDPyb2mgXWLpwSeK3UGYnHJsao/WPnc3i/8Cw11fneyuxdw8uLn+GjzFwO nA7c8GmJxx7GoDb635rMXja87/gn+pTvmBy1ic73aWZuCI4Irpj8GK4dDh4u /rPMXDwcMVxxp9x9D42YeJv886bEa5ZZi4yHiT7WKDB/jIcLXR19nbVXjGfk hnDWcNfkt3DXcNZw1/gD8GPtIdg/9hrZVxOvYWXt7MeZuW04ZbjlN8vxGa80 fgk8W/gAiOmPKPN7vGbkvLvm9mnh16LPw4PjwcJXQE5AbsAaHjQeYhBiETxf eL/gp+C/iD/gPuAY4BqYb/HAEBMRGx2QOlYhZvkidjzSOfWa5IVlfgXXCkcK V7qmsBeIMZSxNMnNNcNJw03/m9nbyJjH2Ffk5nbgeOBW8ezAgRMDPFvml+Ri cKZwp+QPcKdw2HDZ5Des8SFmInaq5OZq4VThVv/JzHcRsxK7bi7zOcZwxvIP C681Zsxm7K5aVxKar4W3ZR1JVSwg/HDsdSLMRWj882Lrl1WxgfCc2PHu3qnX zDG+sWaEtSMvBOabWNOBbs6Yy9gb5ea64fTh9vEwoWsTIxErxbm5fDhxuHHW nKCbM0YzVsOv7Z56TThrxdEn8dO8HVi/Ojx1rkDO8HXsNSbo4IzhjOVw5nDn jI9/FtYY0RrxE7E2Do0Pra9qvC3sh8I/9GFg/Qs/ANwWHNf7sX8rcwn8CDwJ YyFzBfkneehXhd8VOQK5AnoR3Hz1wH5q5geeHZwc3Bz6PXMRnoHV2vdN7DVM cGZwZ+9n5m/w1uMXIb9C6yXm+r3Mh+Dq4Mzgzn4o7IUjBiYW/rFw/kYMSiwK 38AaLTgQuBDyM7Rk5vBfC2vQ6ITohXhjia/RJPEo/lzYH4huyYA1tswf+Fbg DOEOiSdY40d+B7fzfWEuDw4OLo74Hc4cz+9PhTV6dE/0T7zk72Xmk1jrg1/s ksRcFpxWp9ieTcaEZoHX9uPhRiOGM4E7qXqnof/mxoUlv4NvAf/CoYX973iX 0VTw83MNrsX6IrxqeJqmJ16jideJ94GuwjvET8+czdzNmhn0COIXcmH6JPkB fs+Vif1l8AGsx0T7Yg4+KLe/nb6I5wu/PfEpXCGeOPRMxkTGRtaT4C1jzRe+ AWJ2YnfWfPHNot+wNpk1XXyzUwP/rQvi121Sr6FnrT58VLXUa/T52wF4YPF9 4f9ire7ockxA70F/Yo5irmL9CV68UzOvfceTxnpX+iB9kfUeeJmYo5irWK+F 9494CJ8GHH+nwmvS8AkR4xLrwregFRDjDs1KD3JoDqY/sXPmtUx4zHj+/E0N 1jWx7wDhXzKvLcKDQHzZPvPcwxy0v/BPmb3xeBbwLrCmlnVIHNNB+ODcXnj+ Zk63zH9jgb+1wN/b6am6I7mnwJ7iPsKH5a7DowY/9Wtmbz1rmrqo3De3d38X bUfljr/Q3dDfjszt0cZLBmdzPPNr7jo8cfDveK7xhg0s4zX4NrQQ1qASTzKf 4rvEfzkktycb79+Qcn49SVuH0B6HM+mPudviyYS/hJ+iL5IznJGZf0VbIUc4 OXMMQyzDGjH0nBGZ5ws8caw/hm/CO0kOMTxzPrN96r/JwN9+YM0fPiJyTHJN +hR9izm7dW6PNr5B/IOsxcbjjQ7MN8G38WfmtQHkuOS6VZ7wxHo2f4uE9z81 sd7XsXxfTyb+mxn8rQz0mKap1+izlpu5H24Qj+E4nfPNwt5jciRyJfhytAQ8 k/gF/sjMx5Fzk3v/npmPg/OB+2H9KtwN4x9+DDzsxNT8jQf+Ngv968HEehtr uccm5tbh2A+O7SnHFwmnCbeJpxxvOXom+iX83p2J14C3K/OFOYn/JgV/qwK+ lrWucHyX6X5fL+ythoOFi32tsFaHJoc293bh75WckdxxZeH3i+aF9sV6WvoW 4y96Jf2JWA0NES2R/oqWiAaIFgifzFpWPC7jcvs3+Tb4Rq6I7f+Em8XzOSZ2 zEjsSM6yd+41olVrRUNz+axnYq7Fk8p6JTxFMxL/TQK+V/ivHQN7cFgvxbOC C0afRKfEA3pL4jWP6Dd4RCcnXvOIvoJn9e7EaxDha9ETWLsKB39l7j5IXySm b5d7zS0+LjgOuA7W5LI2l5gFfRx9mzVvxFRw5Xhq8NbgETi68PiFtoqmira6 tLC2imaNds33TS6GBosWC/9IrozvEu/BssJrB+Bs4W5fKjy/oFmgXfwfmqFs KA== "]], Polygon3DBox[CompressedData[" 1:eJwl1ge0VNUZxfEBZ96QADZEUUjUiASjIAICUqSDdHhAQFeCQqREqkhTugaB qMuoFEGQ8h6E/uhNKaIUaYJIkEQwauz0IhKN5vetu9bsNWf/zz7nllPuubVb /9x+hVOp1CrK0MIiqdR96VRqyRWp1FT+xWwqNR8rhT2NdcJyc1KppVhD7A1s PjZVbhnWCHsT+zv2KrYSa45txwqwOdrmY9djY7COWFvsqOyeQqnU927iEl2W mUc3yI2V+71cO7lXsNN8Pdou/yQ/l66RG4a1lmsmtwJrhr2DLcNm6P9ubJW+ R9JX2lbiC6ix3Ca5BXIztV2C1cXWYLOwSdoeoK3anNf2HH0vs4hqyi2Ve1Xu bzJ52LXYk1gbrLn+1tFO5Qfxe7X9VCZfuZT+8vw/LPsIrcLb8HuV18kv0G6U 8siow2+Rv87/PXhp9c8o/yXet3azssk4xHiUdY3Z/B1yxbFxMs/GM8pVwK7D BvCP03qsbE4y9v34/rQO26L9JuyQ/hqr3MrPySbjGuN7OzaXr6xtGWy8dhNo s7Yr8LXYHrkqciv5R+R6YLfIvEe75fpig7Df8vvpXawP9gRWLt4D7cQexrpj N/P7aBeW1eeLWJ5rXIo5wh+X+47vm06eMZ61AF+jvBuv7F6W8wuzyZyIuVEB W8TfLuuXGqjtE7TBNSoCJbFB/GDaiB3Bzmg3jP9l3CdfSvslylvxG/U3jb+R lmJvYaWx6XzpbLLOdmG3YjP5YjQFW4wVxibwRai6/n+gZ2INxphh+cob5ErI TY6xcD/3yMzEJqgbgV1DryuvxIrLvcz3034wVl72AO3RriQ+D9soV1JuCv+S 3LhUshEUon/LfYidjTmoXdEYK/4QncL6pJN5E/PnGF3EemMlsLv49+kk9hjm l7qN3x99MkdpCNYf+4Vr1+B/jPkc6ygnUZT/h/1EH2t3EDuhv568v9Rv+H34 If6DdPKM8ax7I8u/n07mXMy9HdjOmDsxx7Fe2B76SPlRrIkH+VqmPFYMGxv7 Xexv2GfYf11wTDpZd7H+jtI5bHQ6yUe7T6iccht8KF7Wc23B3sO68M1c44T+ TlEL5ZaZpC4yX2H1+Qb0IbYTO4/tjwy1t/YHxNzDcsPTx3L7sc3xXpX/6BpN 8W9k3sEOx7NjVbFPsH3YcawH1hw7GXsptVJunUnqIrOedik/JFcd/4/MDuwI 1g2rgX2O7Y1xx7pjD2DfYl9SLeXamSQf7b6IbwpfM5P0G/2X8W5WK7/rXd2G v85fxO+IOcp38rzDg8X48h9QF2yETE/qF/NOdgu9Hc9LW5Xfiv009lqZ7di2 qE8n+WgXPOrLxF5F22Q6Y12w0rGX0lasN5XzYTzm/j537cf47nJ9Yt7FvIhr Yz2wvjG3Y3+N62NfYBWwTtpOxO70HMOKJN+rbvq6QEP5S/RP5X9RL3Xjtfua qsZYavtyjJ22F7AW2GBsEVYfO481j70pvltYPewb7N6Ya9ik+NZgJ7FaMUbY 9Bg77FPsMj+Kv0ldpVjPVDvmBj4Dv0/uDNYQ64PNxmpjL8Q3CbvAX6TjnuFq fCa2Qq6oZ3mJz6WW2BBsg1x7/jXZjHJPrI66mtgMLAfrhd2P1Yq+Yn/H/ozV xe53zanYj/yDdDdWJfZN7Ae+M1XEKmPTsELadsWqYdXjPook3/uJ2G7314Kf TcXiG4g1kWvgGo2x43LjsG1yjfjpVFiuG1ZdrkasDX22i3WKvR1zmP8TdVAe je2Rf5S/iuooz8FeUDdF26ti7F3jSv/5+Dz6lfJorIz/Vfzq2Lu1raXtLOXn 4gyi7ST3cp5vRjdjv5bZjv9DuatsNe0/kymBN+AXxjxQN13mWqw+tgB7BZuG zZItig2IbzxWV+Z07MfYH+LbjdXnH8ALsL5Yozhf8X3pSOzX2EOx7/K96XB8 s2KcYt7wdV1jk/vKyyTrqR7fOr7J6WTuxhxuw3/pOj/xLWM/wKrFOsV3yI3A 2sdexreldelkLcSaaBfnEn0WxwZiTbGGsZ/Sz3yrOA/FPODXyHWIbwW2GSvA umFl3NdR7CP32JU/h18ZY4jVlGvMN4nveTpZC7EmmvIn8DTWEbsz5i7/LV2B dcB+F3Oc7xzz3jUm6v9w7G38Wuood1hui9xyudVY2zjjYOuxhdj1rtMEK8Be w2bFvWG1sdnY89hkbDFWMZOcLeKMsYQfHOcrejz6ML8GxjNQpUyy78b+u4wf n032n6Mxp+k79zFGu9E0JN65uqH+R8X7Ul4nszbOwXJPY2NpWKyJOI/7Lxzn Qvd3ioa7xl/VP08jlc9i5+hYjIVcK2yoe9kY75FPU1XlM+kkH+0aZZO9IfaI JXjjWNPZZM7G3F2NtYo5n032ldhfFmMN+csxf93XYOWnlIfH+ChXUX865pb8 c3FW0eYg3eW5xsvnqpsnVz6TnOHiLDefHxrvJM6oyk3lBvm/Ke5Hfr1cnly+ +jdi7mt7AHszzsz8DdFGbnnssdhsuTysXCY5O8YZMp8/m5Oss1hvc+XrYANz km/iStkVdDbGKJt8E9/nD8Z3BftZLhd7St045Wdpij6uxib7b6vPdrHnxHjF NyzeVZw/5f4P4r7V6w== "]], Polygon3DBox[CompressedData[" 1:eJwlz7kuRVEUh/EdLm5UCrVEoUHQUGoohAYvYHgAGrOYhxcQIZGoiJtoTC0F FQ3XPAuJKdSGBPE7ucV38l/fXmudvfNb2xvb0kIIucjEbNwnFkJzeghNmJEr skJY4WvkHW4beRkhzPEt2OUHuEHsya3cJqr0JLlDVMtb3Lw92XrauTYsypV8 gi+XF7kFfMtj/DJfKW9w68ixZ4pfQmFG6i7RnYrkBNfrET04NHdr7g5H8hdX LN8gGU/1RL1/KOOecc6Pqcfxi1LuCWf8iHoUtf6xGkvdPXrDmlzH9Tvrw7He e+4BJ/HUrmjnhfzCveJSnsan+QbUo48vsGdS7wSunL9x77iOermiKONA3aXu xg9KuEec8kPqYXygkLvCPt+h7sQ/E41LMg== "]]}]}, {}, {}, {}, {}}, { {GrayLevel[0], Line3DBox[CompressedData[" 1:eJwl0stLVVEcxfGf9+bxcStrZkHJHQVBQTQJ8WqElFSjwESd1aSEXjYp+gM0 UgsHKRjRxIKKiNJyJqijRtH7/VYrgpKERlGfjYPNd621f3udfc89xQPH9h0t i4hx62cuIulWnMVfWMwiVtGZjY10Hb0VN2MJS9iCe3F/RcQGc510X2VEIR/R zP/R0yXrl62Wtcv+yU46d1p+hD9L99KDOISX8Cpey5budlf3gLkZ+oKetXpu 8Hl8LOvRd53P8R+tJ7Kb/Cf6Kf0Zn+EXfI6z+CLduTzilrmXaY8e1HObL7f/ SjYvG5bdkWWyOet1ug8/T7+hv+Jb/Ibv8Du+xw5nx819oH/QV/Tc5yvTHWWX +Xt8Bf/Q73yUfi8/RU/TYziGoziKI3gRB7yLbnM99Hnvotb5Ln63vl4zp+TH 6VbZXzwhOyzbzh+kO9J/jHtwJzZgA27CLboL5tbT53RX687zi3pqZJ2Y439j i72Vsgf8LnpF6sPl2IwF3IHVeGaZ7wCrrDWeVSVfTN+Snibao6KNXsAFbJS5 SkzqLtFZuiN6jVGP6mJbuhseYubQsVhnsCicKFv6nv8Dak9a4w== "]]}, { Line3DBox[CompressedData[" 1:eJwVz9lNQlEYReHfmDh0IQ4gddiBdkABGmcQrcBEBYoxxvgCPhhHJpm0AxpQ hMTvPKzsvde5597cTGFve3cuInaQWYjYXIrI42UxYl+O5yOe9QP9EK/61XJE y7OrWLHfcM217bXk7XfccB17HbfuTvDBd+0N3Nl/aHFH8pNr6j963d1j2bZP ZM9ZRT7xp7KIrrOSrKGRvmWf6eX0Lr3C9d3LImf3UOUGaSNv91Hjhunfce/u FAN+lJ7Bgz3DiDuXX9xQ/9Uf3b1Izt6S384u5T87mDeS "]], Line3DBox[{1578, 1822, 2196, 2383, 1836, 1823, 1012, 1579, 1825, 2302, 1757, 1580, 1827, 2303, 1758, 1581, 2232, 2304, 1759, 1582, 2234, 2305, 1760, 1837, 2385, 1828, 1761, 1838, 2386, 1829, 2197, 2384, 1839, 1830, 1016, 1583, 1832, 2306, 1762, 1584, 1834, 2307, 1763, 1585, 2236, 2308, 1764, 1586, 2238, 2309, 1765, 1840, 2387, 1835, 1766, 1841}], Line3DBox[{1587, 1842, 2198, 2388, 2012, 1843, 2199, 2389, 1588, 1021, 1589, 2310, 1767, 1590, 2311, 1768, 1591, 2390, 1844, 1769, 2013, 2452, 1845, 1770, 2014, 2453, 1846, 2200, 2391, 2015, 1847, 2201, 2392, 1592, 2202, 2338, 1593, 2312, 1771, 1594, 2313, 1772, 1595, 2393, 1848, 1773, 2016, 2454, 1849, 1774, 1596}], Line3DBox[{1597, 1850, 2203, 2394, 2017, 1851, 2204, 2395, 1598, 2205, 2339, 1599, 1032, 1600, 2314, 1775, 1601, 2396, 1852, 1776, 2018, 2455, 1853, 1777, 2019, 2456, 1854, 2206, 2397, 2020, 1855, 2207, 2398, 1602, 2208, 2340, 1603, 2209, 2341, 1604, 2315, 1778, 1605, 2399, 1856, 1779, 2021, 2457, 1857, 1780, 1606}], Line3DBox[{1608, 1858, 1859, 2458, 1607, 1860, 1861, 2400, 1609, 2210, 2342, 1610, 2211, 2343, 1611, 1043, 1612, 2401, 1862, 1863, 1613, 2402, 1864, 1865, 1614, 2403, 1866, 1867, 2459, 1615, 1868, 1869, 2404, 1616, 2212, 2344, 1617, 2213, 2345, 1618, 2214, 2346, 1619, 2405, 1870, 1871, 1620, 2406, 1872, 1873, 1621}], Line3DBox[{1635, 1902, 1901, 2412, 1634, 1900, 1899, 2411, 1633, 1897, 2352, 2252, 1632, 2250, 2351, 1895, 1631, 2248, 2350, 1893, 1630, 2410, 1892, 1891, 1629, 2463, 1890, 1889, 2409, 1628, 1888, 1887, 2408, 1627, 1886, 1220, 1626, 1884, 2349, 2244, 1625, 2242, 2348, 1882, 1624, 2240, 2347, 1880, 1623, 2407, 1877, 1876, 1622, 2460, 1875, 1874, 1878}], Line3DBox[CompressedData[" 1:eJwVzlkuQ3EUwOHjoegyLECpod1Aax5SL00jXqR0oPeyD1sg2Ic0IioiLIOa iw34+vDLOef734c7sZtuJSMRUdHxaERhPKKov7GITfMyazePvKXsVxfsiaWs 7f7ROXtkCXswC+4Bb6rD7tk8+3bv65DdsTn25d6wr+uAJ2zVvqZPb9PmlK54 2/ukPacPbytmLxPR4kv2Zb3zM9/27E2+437TKbtlDXZjzrpf+fbwn9g1m2F9 d017rMvy7MVdVZ113CVe1jNbNBd0on8hVC7E "]], Line3DBox[CompressedData[" 1:eJwVzlsug1EUhuFVevrpYQwGYAJMwimllYh0AIhDRNxII9wxDNoyB73qAMSN GAatY+vZF2++9b17r5290N5f28tFxCqOihFL5YhlzGAFd1nEB39eijjALHfP jbgTHHJ5rsuN9VMccwWux33qZ3jWK3pRfqX38GKuciW5jm/uwu67+YnfkGU0 8OPsRg75TbmFDE0s5iM69lrmbcyh795vei/9ydk898D96Z30J67CPXIT/RKv ek2vyql+hTdznavJsHONkXnA7aQz7CLH38p/mOIqNg== "]], Line3DBox[CompressedData[" 1:eJwV0MkuQ2EYxvG3C8Vl2GJjiqI3oYkdaeICiDFNU6ooJbFxC4ZrsBA7toaI Ia5Co+bp9y3+eb73/7wn53yna3q2MJOJiCIa2YhcR8QuRpBBEZu46Ix4k9t2 BuUOhhA41j3Juq7cHvGHI+6R2+AeZN78y5dQ4+65Me7HvIwqd8eNct/mqfQs JrGqa8ozXUMO4MtOXq7jpC1ixU5f+j7041M/IWs491xLVuz0yC304sPOoe7W uaxbMr/jgLvhStx1+hfp7vxC+lbuistxr+Y5LHKX3HB6j3nNeR9VzOue5amu LrvxYqeQ7oVx7OEfM2A6Dg== "]], Line3DBox[{1673, 1916, 2215, 2415, 1929, 1917, 2320, 1794, 1674, 1918, 2321, 1795, 1675, 1919, 2322, 1796, 1676, 2269, 2323, 1797, 1677, 2270, 2324, 1798, 1930, 2417, 1921, 1799, 1931, 2418, 1923, 2216, 2416, 1932, 1924, 1078, 1678, 1925, 2325, 1800, 1679, 1926, 2326, 1801, 1680, 2271, 2327, 1802, 1681, 2272, 2328, 1803, 1933, 2419, 1928, 1804, 1934}], Line3DBox[{1682, 1935, 2217, 2420, 2064, 1936, 2218, 2421, 1683, 2329, 1805, 1684, 2330, 1806, 1685, 2331, 1807, 1686, 2422, 1937, 1808, 2065, 2478, 1938, 1809, 2066, 2479, 1939, 2219, 2423, 2067, 1940, 2220, 2424, 1687, 1088, 1688, 2332, 1810, 1689, 2333, 1811, 1690, 2425, 1941, 1812, 2068, 2480, 1942, 1813, 1691}], Line3DBox[{1692, 1943, 2221, 2426, 2069, 1944, 2222, 2427, 1693, 2223, 2365, 1694, 2334, 1814, 1695, 2335, 1815, 1696, 2428, 1945, 1816, 2070, 2481, 1946, 1817, 2071, 2482, 1947, 2224, 2429, 2072, 1948, 2225, 2430, 1697, 2226, 2366, 1698, 1099, 1699, 2336, 1818, 1700, 2431, 1949, 1819, 2073, 2483, 1950, 1820, 1701}], Line3DBox[{1703, 1951, 1952, 2484, 1702, 1953, 1954, 2432, 1704, 2227, 2367, 1705, 2228, 2368, 1706, 2337, 1821, 1707, 2433, 1955, 1956, 1708, 2434, 1957, 1958, 1709, 2435, 1959, 1960, 2485, 1710, 1961, 1962, 2436, 1711, 2229, 2369, 1712, 2230, 2370, 1713, 1110, 1714, 2437, 1963, 1964, 1715, 2438, 1965, 1966, 1716}], Line3DBox[{1730, 1993, 1992, 2443, 1729, 1991, 1359, 1728, 1989, 2376, 2286, 1727, 2284, 2375, 1987, 1726, 2282, 2374, 1985, 1725, 2442, 1984, 1983, 1724, 2489, 1982, 1981, 2441, 1723, 1980, 1979, 2440, 1722, 1978, 1341, 1721, 1976, 2373, 2278, 1720, 2276, 2372, 1974, 1719, 2274, 2371, 1972, 1718, 2439, 1970, 1969, 1717, 2486, 1968, 1967, 1971}], Line3DBox[CompressedData[" 1:eJwVzlkug1EchvG/ixq2QKkaV2G8o+qiO1C0VAcL0cRmxNALCVVTDUuoiFAi ugS/Xjx53vOcLzlfOl/LVQciIofXwYiV4YhVzOMQ34mIF71q1zCHxkhEj5/1 1lDErH2h/fGT9subzjPcdN/WfuysNs1X2qPWtTe0Ka6gjAe9rpXsA6SxjCVc 6vfuF+xFTGIfHf94pxftPaRw5tsvvtXPvTdhn2qf3NI+OOM83u/ub7R3e11L 8onW1N7sNW2Md7CNa/1I27LzGEUBuzjGPxMrL7A= "]]}, { Line3DBox[{824, 1130, 1005, 2447, 825, 1131, 1013, 2302, 843, 1021, 858, 2339, 1031, 873, 2342, 1041, 888, 2347, 1212, 1051, 903, 2354, 1213, 1059, 911, 2360, 1244, 1067, 2473, 919, 1263, 1075, 2321, 927, 1083, 2329, 942, 2365, 1093, 957, 2367, 1103, 972, 2371, 1333, 1113, 987, 2378, 1334, 1121, 995}], Line3DBox[{826, 1132, 1006, 2448, 827, 1133, 1014, 2303, 844, 1022, 2310, 859, 1032, 874, 2343, 1042, 889, 2348, 1214, 1052, 904, 2355, 1215, 1060, 912, 2361, 1245, 1068, 2474, 920, 1264, 1076, 2322, 928, 1084, 2330, 943, 1094, 2334, 958, 2368, 1104, 973, 2372, 1335, 1114, 988, 2379, 1336, 1122, 996}], Line3DBox[{828, 1134, 1135, 2298, 1372, 1136, 1137, 2304, 845, 1023, 2311, 860, 1033, 2314, 875, 1043, 890, 2349, 1216, 1217, 1399, 2461, 1218, 1219, 1410, 2467, 1246, 1247, 2316, 1414, 1265, 1266, 2323, 929, 1085, 2331, 944, 1095, 2335, 959, 1105, 2337, 974, 2373, 1337, 1338, 1437, 2487, 1339, 1340, 997}], Line3DBox[{829, 1138, 1139, 2299, 1374, 1140, 1141, 2305, 846, 1169, 2390, 1170, 861, 1183, 2396, 1184, 876, 1197, 2401, 1198, 891, 1220, 1221, 1401, 2462, 1223, 1224, 1411, 2468, 1249, 1250, 2317, 1415, 1268, 1269, 2324, 930, 1290, 2422, 1291, 945, 1304, 2428, 1305, 960, 1318, 2433, 1319, 975, 1341, 1342, 1439, 2488, 1345, 1346, 1366}], Line3DBox[CompressedData[" 1:eJwVzr9KgmEUgPETmiTUDdTkVjdR3UEZNCrh5JJRQwU1NQmBi0JNgbnUUtoV aJit9mcuha5AB7fq9w0PzznP+358b650sFOZi4htrKci7uYj7lHAFBM8ZyP2 +DgdcYm8/YS33K9z2VlDa5iLWpP3tSvtNpm1Ry7Zj/S2+VwbJN9qp9offnGG AV4xcv7CfaQyZnc/zJ/J25y98xu6epUX3MkibT7UZu60/GfRXsODtsRP2jLX 0dFWuKet8oX9mtcw1Da4qt3wJprJuzDGLr7xhR/8AxcVMJU= "]], Line3DBox[CompressedData[" 1:eJwVzrtKg0EQhuERE8HGBDyiIWor3oOFNyBpLH+IlU0E0wmprATBxqB2QrRR MHgoPKCCjaa00AvQIjegAUHBZ4uPd+adnd2dra5Van0RkclCf8RJPmJ4IOIU M/mWsv5lMOJLXZUzGeHauJ2LqJht4JL9Jq7yTW5PnXEtrHH73HGquXNc0df5 S3WD66TddBf3J9Pe+MVGOiP3ZqPclfrT2Q5Opr9hDq9xDG+wZ/6OU/pne2/q LbmVce4O87Ju9uPskfeH9DvS5orpTa6Eu3LBlfGJm8NN/QHOyyu3mO7nDrHo /hkpSCv9Wx7NJvQP6uX0fynpP7Ar/7ckNPU= "]], Line3DBox[{834, 1149, 1009, 2450, 835, 1150, 1017, 2306, 851, 2338, 1026, 866, 2340, 1036, 881, 2344, 1046, 896, 2350, 1229, 1055, 907, 2357, 1230, 1063, 915, 2363, 1254, 1071, 2476, 923, 1275, 1079, 2325, 935, 1088, 950, 2366, 1098, 965, 2369, 1108, 980, 2374, 1351, 1117, 991, 2381, 1352, 1125, 1000}], Line3DBox[{836, 1151, 1010, 2451, 837, 1152, 1018, 2307, 852, 1027, 2312, 867, 2341, 1037, 882, 2345, 1047, 897, 2351, 1231, 1056, 908, 2358, 1232, 1064, 916, 2364, 1255, 1072, 2477, 924, 1276, 1080, 2326, 936, 1089, 2332, 951, 1099, 966, 2370, 1109, 981, 2375, 1353, 1118, 992, 2382, 1354, 1126, 1001}], Line3DBox[{838, 1153, 1154, 2300, 1379, 1155, 1156, 2308, 853, 1028, 2313, 868, 1038, 2315, 883, 2346, 1048, 898, 2352, 1233, 1234, 1406, 2464, 1235, 1236, 1412, 2469, 1256, 1257, 2318, 1418, 1277, 1278, 2327, 937, 1090, 2333, 952, 1100, 2336, 967, 1110, 982, 2376, 1355, 1356, 1444, 2490, 1357, 1358, 1002}], Line3DBox[{839, 1157, 1158, 2301, 1381, 1159, 1160, 2309, 854, 1177, 2393, 1178, 869, 1191, 2399, 1192, 884, 1205, 2405, 1206, 899, 1237, 2411, 1238, 1408, 2465, 1240, 1241, 1413, 2470, 1259, 1260, 2319, 1419, 1280, 1281, 2328, 938, 1298, 2425, 1299, 953, 1312, 2431, 1313, 968, 1326, 2437, 1327, 983, 1359, 1360, 1446, 2491, 1362, 1363, 1370}], Line3DBox[CompressedData[" 1:eJwVzr1KglEcgPG/lkZQQ5EXUN1A3UVrOUSrhIthQThHEEEUQUsQOgURZYHQ kLQFIQh9jJXeQB/ulYv93uHh+Z/nnPe8Z7qwvlRORUQeC0MRV5mIa6ziFz94 GI0o8h/6OBx2XtvjZd9UuaQfazVzUbvgDe1EuzRXtNtkz7qiN8072iuvaVta OhuRwrb5VHvmF3w588SPyNhv2euYuxjYe+c33OsHPObMOEbMm1qa6/41xUdo aDm+02aSd+NGm+W2Nse71lWeT+7WFnlfO+NJd0/gPHkbvrGCT3ygh3+wnjGn "]], Line3DBox[CompressedData[" 1:eJwVzyFIAwEUBuAnc1OLNmHBMLAYXRDMpgUR3GDigmBZUYcgC3aLOARBBNmy YQYVEcQlbSar4oJ5bG4YV/wu/Lz3f4877nK7tc2DiYgoyk8qYmcyopOOKElX zmYivs1Pt7LbbCaiqT/xvPnO1/mV/ZEtmi9sjR3rF/q83LJVdsQa+rS02DKr sZQ+5d0ZueQ3bMntg/fNB/NeOsnz7jl2p3+Zb+Y+fzVP3LJsbK9Lkz/rdT5n HrJr1rZXWdrc1veS77FvsbGUWJWds4L+JxvsVB/xoaywnvzaKzJIvlUW/MM/ NycutQ== "]], Line3DBox[{994, 1120, 1332, 2377, 986, 1112, 2439, 1331, 971, 1102, 2432, 1317, 956, 1092, 2427, 1303, 941, 1082, 2421, 1289, 926, 2320, 1074, 1262, 918, 2472, 1066, 1243, 2359, 910, 1058, 1211, 2353, 902, 1050, 2407, 1210, 887, 1040, 2400, 1196, 872, 1030, 2395, 1182, 857, 1020, 2389, 1168, 842, 1012, 1129, 823, 2446, 1004, 1127, 1128}], Line3DBox[CompressedData[" 1:eJwVza1PQnEYBeCXqWxisFgMBILJEa3OYDAKBTfnptgI9xLcnJvaDWwacFOD m9N/wAmM4sdo0igkG1JpYvQxnJ33PL87KFTTcpKJiJKMZyIOZyPe5iJ2ZCyN +Yhv/eVt19uDu8s29YCV2a27xVZ1j22xM7tp5+WFrbNjdmkvyhNbY3WWtRey ETm54UU+ZL+6o9vy6rsrbyusZY90Xyf8U194y7PwG6f2/b/b53xJH7E79uxO WU7v2Sl/dO+z0BVWY9fuEpvKNmvYJ7JhT6THfnx3IB/yLsv++w9jViyH "]], Line3DBox[{999, 1124, 1350, 2380, 990, 1116, 2442, 1349, 979, 1107, 2436, 1325, 964, 1097, 2430, 1311, 949, 1087, 2424, 1297, 934, 1078, 1274, 922, 2475, 1070, 1253, 2362, 914, 1062, 1228, 2356, 906, 1054, 2410, 1227, 895, 1045, 2404, 1204, 880, 1035, 2398, 1190, 865, 1025, 2392, 1176, 850, 1016, 1148, 833, 2449, 1008, 1144, 1147}]}, {}, {}}}, VertexNormals->CompressedData[" 1:eJx0fXc81937v9GigYZ20dCQkqQ0HKNCKqNFhIQio2gRkZaZkLZQGlbaETkl Qopk7701jFRKfud6e19+n9v3vu9/Xg8vp+t1nee1ns/zfnvd4ia2OmZ8PDw8 aQI8PPzs2njN/7rRligFvLbW97L/vpJUx0FR2o9qiJZagc7S3DsKHl0fyKbl TaTl1mXFtHHNRPuKtaldV4iCkWVIzBSPanIrdqXmiQ8txKey+OI05RsKAj1/ dZ/HVJBVtYrKcH9Bp6PB+bxghSuKPmfgvua4IcPAzoYqvpMHXW4pWIWv7gU7 4fyXa7XYcxVDbhZNWB6pIHPYpwSeK/gZ/NJMbI64/rDa8qFC389fSU3pkWa2 nloMi8mF9dt+duXDesWJFwSYffot6qkr2Ff0GNkD9hUnPFJh/tDEiWbbwZ+m A84nwJ/QYC0tuP/x04oA8H/kjCVb4f5E6/2rwI7XgjQL2G/sWMenYOfbNocg hg8t0Zu+E/DhezJPA57r47bm7Z/D4YmCN/rw3NLU5yfiiLgini5zhXMlSyr7 r1kB9+qn6NWRh3rWB/2fNRCFaN2EjdNLyEGHg3UPIirJtglSj27HN5FTy67l v7leSHR9RzwR5ysjJ4f66rw+10ScnldfjjhXRCpkPDPOZJWSoXWeR66JN5B9 q8Of3/1VRgL89yz+q1RJxtd++SJUWEEarmXnrxpTQ36d3v2bzK8l+6wlil/M Vk08t8hM0XhCPffnBvJq59wetp6eaODPhfVPsqx+wnqZTSePMvs07afaM7Df 6nZPGuwPaT++hflDIyUcAsEfHZuHqeAP13860H8X+z22bL/0FZ/uG9hvntLr JtivX1dlEsOFtvuGFwM+fNKDvgI+SoOmRC/1D0uMPdaHZ+KPPjwxLzFPMT8R R8QV8Zx4fnPpmV21/Vfb3vDdyz6UEKGdSillN+vJ1T2xMkWfq4nG4/AV4m8K SembaYbP19WT9YcOdhU51JCnoikGmw0LiXHvu19/NtQQYWEbtfHldSSwKFv9 7+ZisjNluuWjnYXE1N2q9/7pJmKvJqixuL2M/J5kXmkxTjpRbezgutERLdyf K0nE2s+H2Xra7i/RA+uP2BupwXqrE69/M/u05ORcVY79OnU1sB+7Rt2I+UP/ jHb5Dv6MF/bXB39epkUmMf+pgUu1LPi/1/P4avBfzKErl+2T7pm9owr2WzP4 tCXs9/Ho7zcZPlR4q7oD4COSWd4I+NjwvXSJ+XUj8WxYH54fuHhinWPdY71j XDFPMb6II+KKeIovuVo3blld//VKd8wtD6V8EjYtcIVSRi3p/ni9zOdlHXlp rpVn+TGPaMWvNX3wrIr8iKTBbb0N5JSG2XLRBQXkd8p8oYaXeSRBZtif5JUt 5KiLSPfgkCKS3FK2af3wlYkNZ8/Pvs/zmftzCWlxyxvL1tOk6ZN/w/pCK5lf sD5DSn0Ps08tGtqCwP4S+7tyYL+ncMpK5g+dOmkpx5+arY254I9e9IZa5jfd lBRcD/7nGiaFgf+dHV6SbL/0unVFOuxXN/0Zgf3aHBCJZ/hQJaMFzwEfEnE/ DvBRbynW3zDyeuKYuD483bl4Yt/EPor9E+sc6x7rHfMS8xTzE3FEXBFP8zkh y9Ztruu/vrD6LpZqlkdWkSHZlcrVJP2uguqMiAYyLCDs5KqifPInZp3tyuv5 JGv05NTroi3k57mxCULORYSn7z9XPqmvUwBnlx019oCzgP50U7aeWrbwpcP6 tEsVL2E9lZmYxezTr3L2amDf7HjmKbBvVfJiOfODbtyQKAf+hH8YzfEn5Z5X KfOfpogegjiQj/or88H/pXwO39h+abzxbBPYb5DLgl2w3y/jGp0ZPjTBOHo7 4HNui2Y24KNhrOy4s/d64icunipKfXjiHMK5hPMI+yb2UeyfWOdY91jvmJeY p5ifiCPiingeMLZenJ9d23+NGFtcMlikiKjLG6mvH1VCIr/vbNrJ30RmKCds X69X1o/z/fOOsdA38t/wSVmyvmH01mEXW091Lp+qhfU/YofrwPq2uLvLmV06 dNn0BWB/XtXhPLC/4rLaOuYPzdjXwvHHRfsNB/9DWmbgP53qcI3jv+ahPI7/ MgsjlNl+6Tolxb+w36m36jVhv707Ii8yfGia/qPjgI/dRxs5wMdpkVH0iFOh iQqifXiKRvThiXMd5zzOd5xDOJdwHmHfxD6K/RPrHOse6x3zEvMU8xNxRFwR zwUZIu9uTq/uv1bWfBqVMLeG8BZ0+cTP3p5o/HTQKSM2B/t+biAaPRfL2Dq6 pqboFazvnDV2MKw/emt5K7NP20pOrwH76x44cPDvjXmTwvyhWvqT7cCfHoe1 FPyZpDUC+g5N4l8pAv6fFHX9A/4PWx3bzfZLBcJ/HYD9jjn0YAvslxxKSWH4 UIkLN/4CPvdsdQYrMnzuOWfZ3j10L3HY4D48O4/04flPnqSZiHzpn3NdNRHn +z/nkHQizqN/9s2Vidg/sc4xH7HeMS/xPubnP3Hcnoh44rp/Xr/hejpw/YTj ds+YfYrrx2w6IQ3260IFwJ/++9cGJxwBf7j+04H+yw0zrwI7tndD6mG/fddK 0jPfSJrhQ1v+HGgCfPquDWTy76m5rjtiEsO+9eHZd/1KkHciD0X+iTwJeRPy JZzrOOdxvuMcwrmE8wj7JvZR7J9Y51j3WO+Yl5inmJ8D8pkinibjjHJhHV7H m2/9Hc/Wi68zaoB8HmwRYgD2p89J3wD2r7tHQn1RgyGd5uBPlpvwa/BHbPX0 bsjnR6/qRMH/Gv7Q3+D/BVW7n5DPuvNSj8N+x4QM1oH9Fr36kQT5/Glk4Qhh ho9xnD4f5HPOXoN9kM8q5X14Tuzuw7Ofx3N5PfJ55J3IQ5F/Ik9C3oR8Cec6 znmc7ziHcC7hPMK+iX0U+yfWOdY91jvmH+Yp5ifiiLginmfP6y0Bu3iNjh6T BfaN5zjDvKCbjP5y/Cld9fk0+NPgdQn8p5dabnD877k+fhn4/yfUVAn6s/Yb OZ4ett/JMYabYL8GohqB0J/bkiNcAJ/0VzFLAR/jyo2R0J8XTerDs4mLJ+oi 1Emoj5DHI69HPo+8E3ko8k/kScibkC/hXMc5j/Md5xDOJZxH2Dexj2L/RJyx 7rHeMS8xTzE/EUfEFfHczFMEvIfi9fJC6engT2PbTA7fmJb9h+P/j/U5HL7U EHzyK/CNS1Wau2G/f4/+MoL9Tj993BH4hoJGkB7gw3P+8AfA59LZkEPANwq4 eF6068MTdSbqTtSbA/gzRf6MPB55PfJ55J3IQ5F/Ik9C3oR8Cec6znmc7ziH cC7hPBrAnyn2T6xzrHusd8xLzFPMT8QRcUU8T6/SAd5P8TrqTe5t8P/Z8GdS wJ81itRTYb9HQryU/4U/U+TPyzyO6wJ/Fgnpw9OHiyfqdtTxqN9RZ6LuRL2J ugh1Euoj5PHI65HPI+9EHor8E3kS8ibkSzjXcc7jfMc59M+5VEmwb2Ifxf6J dY51j/WOeYl5ivmJOCKuiKftqJ4i2CdeDUcYH4D9Lt7bGQ56sMJGBfQyPXhR 8jPg4/r+pAfowadcPOeM68MTz0HwXATPQ1C3o45H/Y46E3Un6k3URRhnjC/y eOT1yOeRdyIPRf6JPAl5E/IlnOv/nPMNBOcQziWcR9g3sY9i/8Q6x7rHese8 HOg/4oi4Ip78ho7pgAteyXujH4CPRorRMzjfqNreh+eyp3144rkSnjPh+RKe g+C5CJ6HoG5HHY/6HXUm6k7Um6iLUCehPkIej7we+TzyTuShyD+RJ/2TN30l ONdxzuN8xzmEcwnnEfZN7KPYP7HOse6x3jEvMU8xPxFHxBXxPHqqD0e8JrT0 +ZnRG+02eEd+/3XbzRPWIjktxPFR2QedsQ1koa/EN++cj8T8mFPE1xO1/T/j 7/H+zZnheSMvRyhMnevr1ZpRQIw8o8ZEPvlM5q+aumhVbQOJDJtxYsexWwo3 HzamZavXEZHQNRZFa2v6r9Nfbju3LLmSNL+fGP7rajPx6yaSY0szSGZNfelU AzbHd0w45K3H8vd8m1c8W3dJKOqK2tRSEmf1WPiFQQtZ//7bMO0/78hkN7Oj e7XLSflc/RmXpRqJlnrN9MM7KonK7xUKviuKycdRltKBTs3kabOo7TbFTOLi JJZnrV5Jiv4Iz3/xpp64bLYamZ5bRSK3/bWs3VtCJpbv7/Z/V080TTb81rXN IWPMfh7bq1hLvOfO1m+OyyPeO6ZOCdhXTGY3qyq/Hd5CJgdv8ZWdVE0ejxkl unFBHXl1pXmmqAvjFV7HEpsYLhe1Uuyp+AOFnfJqtwCfj0PG2DM7VERo8wSw o3jLXAHstLzbX3xiSiZJXEpXJE5pIq0Ke4Ic9aqJZtnYQmaHvrn8Zz/YOfx+ zg2wo+Dy9Q/zk9bET/4Ffr5d9MAB/Iy0f/uT2aHVmSryYGfXIJ3rYGdn/MKM lbUNlFRNXCX87I7C00NC8p9YXHbPKPBj/tNTe6LGgv8vnUrFwX8ubnQgbt3D PwFudJBJ9gjALW6eMAe3ZEc9ERYXutV2yVCIS9fsA4chLjvsFWeyuNDGH2M5 cUka/W0VxGVRVNFdFncqdnLhQoj7kxvB5RD3pcsKDrC406Lqq+cg7rbGM25A 3BtN6t+w/KO+gkN/Qj7mTBN9AnmofHPTMpbHdK+VhA/ks8lOT0fI5xTT68Ys z6jVDBkbyLc90iH+kG96To3bWL7SiQkTKyB/VzUsmwZ4rnfXT6tdcS/RbV5f Pk/17stnPkWlp+x5VG9zWQ7k/4aejzHw3JpxgxwkWstIir64bdTyOvLnm4P1 yCfV/XmPdYD5f6SwZFGmRQnhETz4O3l9Azmiu9TDZ0YVebZ/t1jNulWJL16M uhtU0kRmaSi/ai2qJkJXi1az9fThyrSfsN57g8JZWC8Xd3kjey49ezXxCDxX 8rTIIXjudocpOYcCQhN7uM/d+ajvuVhXWGdYX1hXWGdYX3ddRD0iI8pJT8KM oJm/Gkm0bIboxqdFxG/njNXCEmnk0vqSmNXDW4m5Z+QwN4NSIv1Tx4jdpzFz TO/D/T1zpYfC/a51572YHfqrxf062IkrXcCxI3gv6AR7Lj3d5eEIz7USXBEC z213TckbU5pBp/PMiwY/4+vNKsBPrHOse6x3rHOse6z37VoWy63jy0jUhQ46 5WkTcdrmLVxbUECGt/44c1U+lXxoWxEmdKuVmHp6n8gZX0wc0rOj2H2asiTs Jtyf8mWiK9w36hi3mtmhCjn5iWBn+spTQmAncu2o8ey59Pz7nxLw3OUFq1Tg uY/GnX2i9ecd/XXj/ljw8/CHTCfwE+sH+xDWEfYd7EPYf86HFe6eYVRJvibw fN1i10g+DbksdHZ+EamasHGNnOI74rY16JJ4RwsRlZVwFltTSjorjI3YffpQ Xe8i3F/mXH6Mc/+h815mhzYt92oFO7d+C40EO+qpWwax51LdGRqL4LlRHuoH 4LnPli4VZn5Ss2VbloKfY2ZKFIKf2AexL2I/xH6H/Q/7HvZH7JfYJ0fltihA 3xlNc9JYHyL1Uk9WQv/Bfof9D/se5h/mI+Yh5h/mI+Yhxhvjj3HHeGP8Me6I L+KNOCO+iDfi/LRYNCxjSG3/dW1pSIfjuzLy9AH5lWOTTf5EWkxQLm0kvq5j iw3mV/f/jL/H+xnbqifl2mTT+gt+Y+H3R6zXFsB9M3OB1fqxRf3XZ89O6m/e 0ozPowOfG1MsbcHWUQFZd1lYH9aWqQPrc9YHTWd2qa+bbxs892mQyCewz90v /Y/90oH7XZAb/IrhSW1e/ZUDPOsDLYT+B086EE+tSduusnjRdZYHzkG8nh5S mwzxSve9CX2Bin4PUoR4jY9MGgHx6vazGsnyh+64OSYQ8ufmkGYpyJ9Hmryv Wb7RlGsmvAEs35QEZrlBvgV5X1vC8oSaDpnfCHnyUDL5NuTJkqpt6zbahiUu f9WXV60L+/JqnKt9nv++YiomMG4P5KGxwCxtyMOPvB7F26TqyMgnX5ao8n0i QUUHXjmsqic4j3E+41zG+Y3zHOc4zlectzhnsQ9iX8R+iP0F+w32GaxbrGOs X762aXVKn2rJKnmNEGe5PNKrfl+osLSOYN5gHmH+4LnBKeNU+08zS4mmyK6W uy9bCeYH5gvmSd2aF23MPt0kUXYR7IerdA0G++vvxRjDOrxeXTBpPaynS1Im Q15dmSszBp4b6qmcBc/l+k8H+s/dLx243woryWjIh1jfTBPAR1RddTjg42Q+ +x2LC3X68k4B4uL7qPgDxIXOFpOBuEvHuAxxYzjParsfBjg7L2kVKBkRnfjd py8uy1f1xeWmbHg2xH1/A58LxPFIkvJGiKPslMuFEHe5AjFVZp9OnLQ3Eewj f0I+hTwK+RbyL+RdyJOQNyFfwjmHcw/nHc4PnCc4R7AvY5/G/ny2YU8lxH2x 1LJUFhcqWf1CEOIyoP9Q7AMD4k4x7lj/2A+wD1it5P8McZeblP4S7JeV8PGC fYwrxhnjO6D/9D+X6z8d6D8dfRL6MD26O3Il7NfTcdco2O8m9YQr0B8uLm45 D/gkTY2YBPhUuMqmQdzvi/RoQ1yGdnzMgLi8qxMcAf0hZPbFS4Dz1aYSScA5 I6FxEMT9akVfXHSy+uKyIfxjIvSN5lVV/Kxv0I6cEheI49OazY1JeZXEXMbT 7IRlLZ1wqeiW3t8qgjwYeTHy4RCXr+vNhlUQi+Nuh6d41dO4pJvOvoGV/TjP uhGuyXgadfw7Y/lnxtN+LN9kytbTJasK98P6v2VHHGC986FBhey5VJp/ijU8 l9/hdAQ8d4fGBxXoV24Jfc99cbjvuQN4AkWegDwbeTfy7QE8gf4HT6D/wRPo f/CE/jhm5sXxA09wWDxCGp77wkB//7/wBIo8AXk/6gDk/8j7UQcg/8e5gnMG 58sAnkb/g6f19xPMM8w7zDeVTiIKPG3k+PI58NxnX9qU4LlJsemPgKcNit4y DvzUPFDsCH6iDkFdgnoEdQjqEtQjOOdw7uG8wzmHcw/nHfY77H/Y97AesD6w LoS7150Cnqyfo3YEnquq/yAMnntU4Ekh8GTTisZI8DM0dFoV+Im6CHUS6iPU P6iHUAehXkL9hLrpajf/WdAv7p675zEdQaOCtmaBjkD9g3oIdRDyeOT1yOeR xyOvRz6PvBl5NPJn5M3Io5E/I09F3op8FXkq5iPmIfIJ5BfIK5A3II9A/oA8 A3kH8g2cNzh/cO4gn0B+gbwC+xT2LexXOIdwLuE8wj6FfQv7FdYb1h/WHdbb wP1ifmO+Y55jfmO+Y55jPmF+YV5hPmF+YV6J1XuYQd7g9dGtpouQPxrx4i8h D9L569Mh32iIZRzkA/6Mv8f7Nt6WhaBP9b368mrvjb68ShmVqgT5h1eXCQFn IQ/lo4Wrd72vJm//CGdf3p9DL2QM3pXC00hQn6NeR52Oeh71Pep61MOoj1EX i9y7f87XppoYqtY4N+Xl0+WxU593uzcQ5JHIK5FPJmxbrts+Wz2xtbthYR6b s2K7FRVhziL/QD6CPETQ5sIFZp9+uqTsCPY3XTR+DPZxbuEcw/mF8wDnA86F 9qk3PzAcaODqJaWAg+TEFBvAAXFEXBHPVO3vHwGXROc+HH439uGAP+Pv8T6e 3+F5Hp7jjSKLSwH/ZweyR1zZn0Pspp7Rg+fiz/h7vI/nIHguguch1XnBs1LG NJEkLWn5a6ZFJG7WR8WOi+XEQ7J+gUplEwl1KJM9GV1I0vxM5yzaX0o2twV6 Dn3WSOL9nu95s76E8HWO6L06q5ygbkQdifqx3pX/LMSRdz8/ZTiTdcM2RwPO st88drG5S57fv9QM899Dbe0dmL9uFXPUII4apMmBxZFIWNdKQRxRD6A+QF1Q sa7JG+Jo/cokHuwb1weGg33kkcgrkU8iz0DegXwjsGGFB9sXvZ7y2QL2pbDx OO81tq9Lt6cCDvQRXScHOPDVDZoHOMyMXi3GcKMKSYqKgFvDfR11wA37MvZp 7M+pMUmpkCchjzrGQ3z+WK7dA3FRfHrKlMWFdq56cwri4ngp+yDEBesK6wzr C+OEccN4LdOcH2t7Lp9sf7ovvyummTR/7NaVWlBCnMgq78KcVYkPpP7UNPm1 cn8uJREGwslsPQ33tsqF9VN2tm+D9ZdWPBjP7FNJ+cz5YF/TcIca2Mc8wLzA fKg6xeNcmZJH3Fp6Cjv0Wohg1o9Jq8f//89Jt7+5UBUr/plk8URvpceKSZ7N BHe2nv7onl8A61cd1pgI6xNyzcYx+/SbYbgM2D9RECcF9jHPMO8w3w5kxx7V 0y4kd90zNlYbN5MHDrNmh5cUE3mPpXWFORsSh53x/AD77fuZzfePj33Zehr4 6qI6rM+aWioG6639jNYy+9Rys4sf2DdRPTYU4o55iXmK+Yl5jHmN+dx/bsg9 R8TzQ4wHxgfjgnghfogb7gf3h/saNWjNNuC9j7rn2DAeSybnPDgJPBZ/xt/j /QF8mCAfRr2K+hV1q8XLm7bAkx1jnfeCPYMvp13ADuoc1D2od5B/Ix9HHn73 9DNN5j8VmfbrIPifdppHHPzn7pcO3O/y2hDIP+o3NySek7+ds3cCPscV1YqB n/99NdkC8D8yvy0K8PfSdulgONMveXtXAM5PQz74As44J3Bu4LzAPoJ9BfsJ nufi+S6e6/6zTlYlYr1gHiOumM//zLMNiZhviDuuR/xR/+N91IOoDwfeRz0z 0I7trMJM9lya+VuwEp7bdy0lxr0llczP/vXhP4t0wU+avaAa1suKWQTAvvqu pUTJ2SYE7GceG7wQcJDt0U0HHHCO4lzFeYp9Fvsu9ls8B8dzcTwPx/6C/Qb7 DNY/9gPsA1ifWK9Yp5iXmKeYn3g+gucleE6C+hn1NOpo1IGoC1EPXnx5QgPy duvUTi94bvO82CnwXK6fdKCfZ+NDP0He8sudSYV9nXadqg/7Wnky5xvkp/sl czXA4e2FfB/AAXkG8g7kGzhvcP7g3MH6wXrCOsJ4/zP+pQT9xn2g/xtSAlWh v0WrzzoP9oNDWgXAPs4znG841wb0czqwn2N+YV4N6Of9+GRMyhKFfv63sHIx 2I+fv2MR2Md5ifMT5ybWP/YD7AOYr//M31KCuGMcEP9RUa+mwfyyFbaSAPun G0u1wD7OV5y3OGdxHuN8xrmMn9/g5zn4OQ7ORZyTOB9xbuEcw/mFcwXnDM4X 7F/Yz7CPYb/D/od9D+sT6xXrFM/j8HwOz+Uw/zAfMQ/xHAfPdfA8B89B8FwE z0MwbzCPMH8wrhhnjC/ijnFA/Enldj3AcUinuDXg/0TSwgnwxJ/x93gf+TTy a+TV++dMvDszJ63/OvjenaMFKV/Iz3Ido6ndKWRc4lyNZdMqiU1L4aPk8S1k X43Wu+N8laT979MR8rveEfuZf9wWNjUTmQNfdLdfSSOkbpgc/9BMci98gdmK 41/Ij6pOG3afPmnnWQr3FwWLmcJ93/QpPCnq6VR0qMJanjEPFRbluch5GH4l Ji/dl7Ln0Rktuhbw/IMashSeGxx1X5D5R80XykWDnw8jVriCn5Mvmnfw1b8i 5p6/O3ZPaSQ+qcaH91+vJVZtF/n4619RGfErnPsqd0dw7pcHTYuYfq6afPu9 cPDnuGRS2mkfM9qniQQdjgyH+6bzCsez+/S3Sd59uI/7wf3hvkKbJSclDWkk HkkWp/Z0viFXNaYc7/CoJUuOJo+H+3st/XPZfZq7cJQT3H+x9q/S9bo08vgg v/3TA9XER8l5TKdZE96nA+9PmTjSXC/pQ/9VTMXzifvyL+S1/ikj+NnhuHkh u9JH/g3RcJ/77yk+B+0MuE/x/gyVU00MF7r7zrAewO/iLTE3wOdzkTjnfjyv /AjAb/3J9yfgvtYBeevlu97RkEHXMyH++ZFLPCHu08tc3PiGZtLZi1x2AT4j P7yzBXyuNh85Affbgk8fgfgHJCXawP1rCqGCkDey6hPBDjUIL3UFO8Nel2XD fvCqXr3mLuzrg/GrOq1H9xM3v+/Ll6DCvjxp+ZnhCLh7JYnPZHjTwP1yBwHn 2yGd7wD36VovxOD+p81z7eB+VnzZRsjjiurMuindKXRFitlzyCvMJ8wvzKup W7aOhvz4/K3Sn+UFDf0WTjl5cuLvLMiP6HRrzv1XhsM593H/iAfisNfS9BPs k//hrH2A38vFY91hvwVfcr+CH1PiVy+HfFeb/foN+GP3OEMY/MCrSXTmWfDn kuCZu9YpkQpjYkadyVBPJ3I7DKrdGQ6Hh7hmBV5JJVdSeGNF9xQQ178nHfwX fyZpP1ybktk6v1elnPpStLu1DHC7oRaj3iRXQObMXTj//ZH3xKV2v5jz99b+ eGB8MC7P/irvYuspT/r72bBefeGfybD+cM7tUcwPetWvKAr8UvY0bgR/Xv69 Y8f8oDsvaRSDX8WB5WfAH8Qd44D4C8p9ncPWUcEnxS/B/xvbslxh/bzKO0qX yitJWp127YaWEkKDdVWatzaQoymDI0aVVJEZcbZeTsU5pP5sqsSa0Mb+foT9 CfsS7hP3jfs12Pkh41pvHTl5PWHbX5ES0qZXVzKmtpqk18fX3ZZuICQw7WyX ZA5JGB43+VpJTX/dDqwvbe8rPTxSlf3X8Tw/V68xru+vT6xXrNOEbQ8WBV3K ID6lBwLljpSQNXpiXUdEWvE+/T/3cz4P5pWqpMEPX3aD/eBg/hVgX+RhivoI hyp6ycV8kbJjAZluteHT2EmN/fWA9YF1oRSe9pHtl/LvVdCG/bYOEy6E/WJ+ Y75jnj9+7Duf4U/puKEdgL9D1C1NwL8moawe6tG7uy+/Yg715dW7vDbXjCPv qf+bMi3AWX+T+TzA+aaeoyLEccTUi63MDhVpjFUCOzgPcD7gXMA8w7zDfBsQ L4rxQlz6ceLiMyBedEC/7e+L/9GH++8PiBf9j3j13xf8JcIPfuB1PhGSA38G 4E8Rf+xT2LewX0lJ7Z4H+A/ZqPEbcEvv5N8EuGHfwT6E/Qf7C/Yb7DMvDp93 grjEOBzYC3iKXW6bBXh6t7/YGbiijHQKOcxjV3p97B7t2TaNRO3Q5qPjf5YT QelS++yvudRSzfjVpl9NpOSFTzJvQx2pMl8v2ZmQRGVWptrnFDOd/I5fMku/ ljwx9ZZT8y6izvOcR50WqyNPH/T1qWfeVS3G68ITVxv09Susc6x7rHec9zj/ ce5jH8G+gv3E7YNa8q34GhI3M9Zrum4Zff9Aa4SmYy1RWCz4vCKzjowYWTux e/Jb2uNxtPr263qCcwvnGM4vzG/Md8xznFs4x3B+Ba9JEikufUueaIssiY0q oYL7Gm7OUGslO/bNlGL3qXjsr8VwXz0mPRTumysvfUN2VBLRyj9amz9GJP5e ruh99UQLwTrBusF6wXhj/DHuZ9O6tWNXltMPF9OXyTwupHreH8Zt0W8iKVKi L9h+6UU1ufGw3+pHzypgv0X8h1IZPvShQI474NN+UkMQ8ME5inMV5ynmB+YL 5olVV+40Fl+69XWbIsR3ds+48RBfec24hywfqIGEszzkw7dTE05DPuA8w/mG c83YwEgW8gyvkeond0C+rTv54hvkx8S8vnmi7t03RyLevpCB/Jjx2eUoxJ3/ y7xzEPfp8TqJijsq6XWp7CT/eXcS2/W7uq4wPHEd/jtcj/wV+SzyWJyXOD9x bk68k6sDdYHXixXr1cDP9RXasyDPU/LKTRgOZM85z6GAw+HZb19BXYyPaEtk OJAL/nm2gEP22SOPWf2Qu/UjrKGeluu0PIM6wnX473A92sXnoP0b8h2PIJ8n 1T0LYfEl8sNlyyG+ogpeCZD/sVu6nrH4kpBtaoMgvjgvcX7i3Lz2U3g1yx/y feT04yx/yOPQRkHIH+TByIuRDyMPRl6MfPhjWy8/5P+izmPHWJ4Tr6XVfpDn jhN2TYf8v7rD1BHuZzgkn4f7OKdxbuO8xnmA8wHngs3B5xTyNmaFyBPYV9o8 FT7Yl4Rc71NOnosJ3AAcxGTtSgCHz6M3hTD79PmCIffAvmDB4FlgPzuuLRry s8di1gfAW61U4gTgfHf4zAmQzwdk1lgD3kNMZgoDztgHsS9iP3w53VWZxY8G DFdJgHh+Opn7GuKI/RH7JfZJ7IPYF7EfYt/EPor9E+OH8cQ4Yrwx/hh3jB/G E+OIOgR1CeoR1CGoS1CPIO/BuYrzFPkEl1/08wqcuwPXc3kSRd6EfIlrhw60 g30Z+zT2Z+zj2Nexnw+3WikP/W7K508asF+BZerjYb/vb1rWKQRlEg0BqYbV ozUT+65f+/MS8xTzE/MS8xTzE3Uj6kjUj6gbUUeifpRvF1hol1VNNO8Lj1eo sUjsuzb18znkC8gHBtzv5wmta47oLwvKpJf/DjZUGG2b2Hf92s8z/sMOHWhn lU3iYLMtjf3nk2kVv3TWpdeSZ5/CFtlnMR5jZv4g7866xCUvq/VXMz9xbuEc w/mFcwvnGM6vp8ujnSDfhuQuV4H5M+SHlQDgj3WIdYn1iHWLdYz1OyCvKOYD 8lHkR8iL1HgcTgL/Xpxt18zyiq7+qTT+X/JqoB060A7OS5yfODdxLuKcxPmI cxTnKs5T7BfYP7BvYH/BfoN9BvsF9g/sG6i3UX+j7ka9jfobdXfhkmWXoH+a a17yZ/2Nxh83XQr9LcpnXBT0vdvPLp2H+0UfbsrAfZzHOJ9xLuP8xnmOczz2 8V0n6GPb77/dCH4KO6pngJ+oM1F3ot50ny8h/FnvnkK5jFAum8NEX1mwGebv aKU+njNJanXahtfRClSuj+dgff6zXr8SzRd9c1z008XJYO/Cjr45jnwR+SPy xpGz3AZPlVZOrJekp1m+k9BBc16uZXk+/uYIVZbnZFPlqVDI8x08Veshz1H3 og5G/VsoJC4I/x7rRai8YCPUC9bzP+u7iZhtX18vx/wevXy1GdRp3/UrGb76 twJbRz/Pei0I/67v2kTkeH2OQT2KGncIgb+Rs0TTwU/kf8gHkQd2Lp8szXCh dlu2twNOfdevZPLDn8mA4+l29TS2nja2r/CA9dgv/tk/vvbvB/sB9oGYJX1x GvR2TyzwpTiVvnihbkcdj/od+wX2D+wbqPdQ/6HuK+ro8+/7mOGbYH8S3/v8 RH6GfA15GvI85H3I93CfuG/cL/qN+0D/Mc8w7zDfcN4M1MUYv3/G82t/f8F+ g30G6w3rD+sOeQbyDuQbeI6J55p4njngPIHifBzgZ38fw3z6Z341DdT7/esH +N/fJ7EvYJ/A/oBxwrhhvM4qrJSYuKaOFIbNkb8r+Im2uE/bzzeb8UxufWK9 Yp0GGIs3P/5SSxLmuj/dODyP1hhtmjH+fR3BOY1zG+c15vc/8/0rWelAPjM7 lG+E9GOwczy9cjrYuZ2iOIn5Qx2MFyuBPy9X/HEAf7BPYd/CfoX9CPsT9iXk 38jHkYcH8XiJwX4rokcdYPbJPXEZS7CPP+Pv+++feFQN+732fkEH85OU15yf BH5i38E+hP0H52X//OTOTferH+tgv6Uxud/AjvPGmRPATtzZ82NhvxcsJjjA 8+1yhA7CczEeGB+MC/qBfqE/2Aewz2F/w/OsgTwN44fxxDhin8W+i/0W/cZ9 oP+YfwPnNcYV44zxxX3ivnG/2Dexj2L/xDzAvMB8mFZ137hBq5ysHrNZOH1/ Fdn6XS9hzsx64vGnWmW9az1ZnJrR9OJ8KbkcNP3x4mdVxIz3lMhL6RaSGH78 Z0hksMJ7PZ5jRhWVREF5tPRBhSaSv3jZT/0lRWRU7KSIKzLlxG5Tohr8HaVx c4RDwfBghdxpb23h7xM9ud/buMn9Hkc69/sbBgcCvicw+0Hn3a0fq4YqTP04 5B7Ydz66UOnJkCaSNz+jsX3GbYV1Yc7Ri9tqSHiXY6SPENNXj8Zn6HlFKfA2 f+E9ZdlMOgPPC/LwaPW/J02A+96PfVu1F3m6l9LZG6QWdTyuIeu8Ksz3v6sl W0RCBY9m1dGg3oP2upUVRDk+d3bAnCriICTyg/lD970buw/8OZ0bfBv8oeE1 E7Z8bqTdiTqebaXFxDP5w/yoj2WkU593Pfw9pkaX5iHYb6+67j7Y7399b+fZ 3mxhhiedEXK4G/C0mCfmBPb/CF/zZPul07OXRf0kNxVKxuhpw36jUqpPnROq pt+y+PcuuXVXQbp0vfVJtl/e7dOMeX8XELJWNjNXuZFsGTvYM2NMFZm2N2Jj dXo1WfP4uaD79joSpeQWs9GgjIxz6izZ/5H9HP3p4r3jNSTFfO2rGV+KyIk8 He9ph+pJkOx6U3HZGjIvwHOeqF8h2UJfrYyTqSMKk9bGJuytJUuWBmQ0zC4i bl98iG5oFeFJ1m5VbK0nC9t439Sal5CzXc1Wbi55ZOXRkaIbeZvJ0At3czId WF+bmNT5b+/7CtPUdGDr6Vq/2WNhfZXIvmxY3zHsrDKzT4fI32wG+3Eyva/A vvIW2dXMHzpshdRz8EelcsU78Cff+4oX85+WGVVx/N+xd/t88L+yKbyA7Zc2 d8y6CvtdNT8uGfY74orgWoYPXedZIQT4rBt3+Rngs8h2xBqGJ42VKfwEeGZP UvMBPKVF9QJmxeaRv8atkv5yzeSsuuXL3EtlxPLDjns3d1aRRUuF9kzzaCAb z7vzK3QVkaHbPZbUGNeSY1t2/xRLqSOBvJ8cZiwvIIXqFe0uvHVk1ZzJkvcc 68iaHWJvdATySZBpPe+KqBoimxq7YH8Ii0PJBNEIg3xi2h66/7doJRF32BOh 39ZIJPIXPpjcXEBc7m76OFcih3z/8vnQuZstZGzeybM5P4vI1IvDdv3b+74G 6zTns/X055eeg7A+SPDmGVjfcCLUntmnx6fl3QP7WWmR98G+/QwtfuYPlTOP lwR/TC3Fx4E/g686gv80VWkvx/9td+w5/p89IibN9kvNzpd1w35Pxbs4wX7X BoQGM3yoTcLffYBPWOevYYDPH4HowwxPuinbWhrw/BJwPAnw9Lwb43/XL5+c 5DfpCRnTTMIzzFba7y8jXu83dz+qryI+u1bypMk3kJkpw1aPDy4i44UOFtxt qiXHWz2z5xnVkdaD5X+DMvLJcK2OAupeR7pCHty6JFRHBLY2j7a9lkfuvt+X pCBXS9oeLHlTtbqezFW93tPTnUdEq38vLAyqJDmSw15NCm8k9hIC5ufDCkh9 gK5xVmsOeVp8JDPxdAvJeMbj/qysiIT7y5+3rX2UMPB9XzmTjbax9fSbdnsW rE+uNvWA9aWKyxYw+9TIx/s12Pepd9oD9m9tPAT+0PBHUhx/Nl3w4/hjWv4d /KcbT0Vz/Pde18rx/5xFSC7bL43wepAD+32fIc17g+03OeRaO8OH/hmRMQjw 2RAuogz4fKo1OcTwpAeXLuYLZXj6fspWBDxtwqYcvedXTBZ3r/Rek9nA/Jza Xv26kpxd/np6k2ot4evK1T9iWkuefE2bs1yolPhvy5v0mtl9ap2yY9GWapJ3 ZJJ31a5Cctw112tnXgPRzL75aGhPFengsxrbzVdACnb9vHLuVj0Rntd5z06p hiwJVhWRiSsg9NbwEULiNURr/d03qwbXk2VLN1yI0y4mqz8utQxpKSCihcmb 0641kfY4N7FovnKydu1XCf1rzxKiB7zvq82ix4Wtp37tvzVhvddjkSmw/rWs 1Vhmnz4YppEI9m80VfmA/ezUkmvMH/pMf8td8Cdoj64Q+GPctQD8p28yFB+D /57isuPA//GOfhPYfumFFGoA+12ql34O9vueXBrP8KERX7btAnweOxkvAnw+ K+7dzPCkC+rGBQCesW++dAGe78RiHKTUqsiDmkHRfhFMT+i3vKudU0fCfDbM MT7QSB621bw4+Jn1U1HDyIIxlWTYrwn2gTnNpMVScmrpjnyiPWTBtsz04v/8 nt6+623eFXqVdLbk3Q2tLdVkibvyiZk/akj7Q//RdtkN9HW1h3bW+DJCs5zc gjUrSIddmbixbzN99cWobXBdAfk+7EeAyOn//l7cPtvgoXdcakmaTFzDvo51 iWHfH5v5+DcSredzHHozmkmjnfvVhKVyiaq/p78Jc64iybXFfGvut5Ii8w4N A5NViX3X//O9NR783pqErKbEbZdaOmjIOvkPKSaJPfvCxc8x+3NuqS9j9vF8 hmdckMDc28x+0/LEbyr3W+kDfaEpJsFrE01y5gSCffw+0LcIj3xx8YXx+L2g wDUiRwB/ycd5jxn+9NSgB6mAv6p5zizAX3q9ZhrDnxpGPg8H/FtHGR8A/P8a nprD8KfLb9luAfz/63tixhdvnQL8E54bGzL8aaCByhHA3yNRcyTg73dCx5Lh T5snHz0G+K+IXjMd8PdPretl+FPr7Wp+gP9/fb9r5bmSw1CnS0OVfVhe0aih c9sgr7bdvjQN6rRu69mdLA8p7xk5CcjDJ9fkJkKdvm/ZtZPlLQ2/ZOUJeZvP 58ap05DAeZDn9NjOKZw6rb72+TLUqdr20AhWF/TvyY+cupDuWT8U6vQWjUpn dUR/nOvi1JHXqRwzqFP34C9bWd3RMaODOXUnMqx6BtTp+AHvfVo17doxqNNB L2brwPr7wxdOgPUy5yKFoE4HHddKBvtmKt5nwX4Jb/ZVqNMvHrzh4M/eDVUj wZ/Yo8WeUKdjz6dy/B/jVMvxX562i0KdRqgYGMF+BRwm+8B+r0VZi0Kdntsk sBvw6R2dKQX4JMyfowN1ush7ygXAM6Tx53fAM1o1yBfmTqDC0l42d6j4EvVl 0Cdf5Uj/grljo3CDl/VV6rti0Uroq1S8KB/mThS/zifWh6mp/gLO3BmhosmZ O8mBbmGsb9PHcWs5ffup+DzO3FmSfAz6PE14Y83p86NH8ErD3Ake25nI5gJ1 KIrgzAW5W5UmMHfGW8h/YHOEZhTqesEccRt7yR/mzsD3PolLNujC3Nlc+Rjm FH0z6KU3rC+wXCUFc0fy8FGYazTwyjQLsP/opgxn7rSkHOL4UyO8m+OPWbY2 Z+5McnDh+C8Xqcrxf5nTYM7cKbp5JBf2u+bRcR6YO7/uHm2DuVPaJDUE8Hk2 bbki4PPjlJYdzJ3T+wcNYnOHDl7xdBXgqdOgy+FRucJCC9jcp4anvybA3J/l OiICeBT/58VmjCdQx6qkwcAT5Ht+ygKPUhG52MV4BZ0i73EMeIX91k8dwKPm irTOYzyE7tGZngw85LfVRT7gUXHfvwJvoUOkizk8amO82AHgUYutysIZz6GN ARMfAs/R15b4BDxqg+5E4FF0YtUDD+BF0/7Jo/rf+1T5+3Uh8Cgt3XnAo+gt 0Sx3WJ+1Xuwg8KhzIhrAo+j5MxdjwH72fJ5BwKPiL7TPB38yE6s5PCrktjX4 T59Iys8H/x1u2HH8fzH1/GLgUVIbhX/Bfkd0yB2H/fKs2xwKPErloLgl4JO3 VnY44DOtJIrDo2adOA88ir7J4ufwqNmKB8xBFyiaG6czHksnut47BzxW5+Ne HdAFarnd/Iz30kf1nRzeu2JDfCXogpj5/r6MJ9PWAN63wJPbPe6cB11Qs/b5 TsarqZz2uoXAq5Nz2wnoAsky/UeMh9PffDc+Ag8/NKVNBXRBYGVuPePtVFJ3 7Dvg7RLSP+xBFww+dEmE8XzqntpYBjz/zO0/3f/23icVD31X0AWjzsUIwXqj tVElsL5ernkd6IJrW2fXgf0nV0TSwP5DC3Ml0AXf/6g8BH8E76/NAn/UlD77 gi6YeWCTIfhvKTFmEfg/5MX+UtAFX/bX+sN+zbcfegf7Jbzp6qALNCJnCAA+ Oi8EEwGfTbpG60EXxG8eBDqLXjnT4gd4fp99xhp0dIrjur9p+6vorvQFb0FH 88r4rgcdXV6nkMp0NJ2ZEBALOjo8tGMp6OVvxjKFTC9TWdt5D0Evt3G/t/mS +71NN+73Ni+H8yqAbn2ktWEa063UVSX3AOhWz+f8o0G37gm4rsN0K00Z/lgS dKvw5G3TQZ/6ZmVYMH1KLTK8ZUCf9nK/J/me+z3JBO73JI9c+XaR6UpSddk8 qGrv7cTOhnZj0JULhM74gu7WG/VTyO9cSOKr6VIaoEPruecAlpOl50QuDEqc uqPvHOA7V+9/uD2qZcuZ64kW0/v0vrBdn65/XaK7p1cjOPE8V9cvFet9wPQ7 fbd83CCpB+GJv6zm/YXntvFNVwH9G+Qb2C3Aeyvx+ulRkfDchcJ9evxFfL0J 2PnF1eNHDPp0t6W7UAM898L6Pt0tZ9GnrzV9O+eCn/FcfT1Ollcxyaui//pI bU5VeFs9SZINnDvzVAMZb3XLUFE0nxgdPV738H41MTzpedHxSDOx9Sq5fvLO R2IWft5saU0FieW+Z0R7wPuF5CqkLq/pKKMH/uSUOPNXk+yfYySq39eRJTP4 T34Y10AN9obMD84vJEb7S85a7KgmSspv+cO3NNMx3/SL/qRlk5OivE984yrI G+7fx+7i/r3sd+7fyb6nPjJHwwqJTPEi+5m3G8guPwG7rIdVZG51+1nN4pr+ 6+f4d1dFnpaTEv3dJsulG8i8at5NSjpVZDHverUSjZL+96HoDHgP0mO9i27j JufTd9oe97a7NBH31Hb5WfEVpGlofUtIbDUNVRrn+MezjiRMGHdPu62UjNi6 eNSau/U0OSGnd4NiNVkh+2qxR3hx/9/xNg94n4+R7Bflv7z5xNWV18dxaDOJ eLtH7cWQcvLzy/Mjr8qqiFP0UaNO/gbiFCEV+vFwMbk21bDbr7W2/6pvdO6h uUEhMV3tZSD/is1Zjweqaoa1pHe3Qd6VzQXkdXaPx6/wWjKyvOGKxLo68vbI NovKYYVk5Ntiq07DHHp0nmmVrmsL2ZB8glfSqJgoy008rOJZSe1myLoUuDWS +DQep9+HC4nT/ZAGZcVaqjNrmo5dZh3xHx2Snn2mgFjfWhhxLKmOetJxLdn6 tUR7nc7lFPbcD4Ou2i3QqqP3eQeZSJrUkl3bRjfPKygkvhNLmuqD88mbFUPD 6iY1k0GpL73vaZSRzAQ9udntVWTvRPE9J9c0kGnHy2zitheRtnTzvMLntWTw 4dJT107VEevSC1NdO/PJBr1z7tpr6/qv25vq09/n5JHdV/cZzyuvIbPydUdP c64nmr+uxTuvYHo85JZ9dEsODTj2V6TuXAvxo44z3J4Xkd5av7kBlyvpi02/ 1nXFN5JyefsLK00LyJCnPY6Vg2rp3Cd2az/sqie7BU/ffz01n9in7HO4vLaO rghrhSt5cvHe1VvZeeR2ZZH2hoBa+nalepVaSB15JHHavlaogEy5qN552qqY GOTOv9EztZFcT59/1HRnJVlfmVSo3FJDnu+2VlCYXEcWbxwX6NdVTHQPn1IS tqgno7X+8vidqiEHZxwY1RFfQNZ9fvpYPr6eyJgON7X0qSET1glbiLK5Wa1o Pm3m7Lr+69AJpUsD0/JJFk/X3BePCuhhBbcTq6ubyOIxR2zsV5YR8ThVmhhZ TQ/PNHc8E1dP/E8Uvk5fVkQWVG6akplWR8fyBEnes6oljxyPasTyFBC90iCR s7H19PGDfSm5fjVk4pwPUle355PupGFaLA+o0Z2MRpYXxFZ+ywfIh9bJrvkP 2yrJhG0/HeoZT3TZbVXNt7eWNC/KSJc50UAO3/7eK+tcTj5Z6k/2+lxOflUd uZhzmfXV1D+ecq6lJHGuvOVEWkSiue+l2cZ9L40z9700NRPG6Ia8r6DLnDcK 2UjUkgsCfxYLTKkhZ8XuJ7c+qaf7RlRMCmquJA5T4juesD5f2nh6zvOFTfSq 6qUbvRvKSSKPBk+gThFZyP37+X3cv6dv5P4dfZCP3/AF+2uJu4jk9H0FT0hO 5KCEEU6NhF88ePeh681kaYGuzLWdieTU5aqGCIMqcs1hm+i7Xa2kXbBKL3pB EhH65i0gKV5KMrnvzxnC/bt8M+7f43eqXM4JsqilIg/Um9xHx5HwLzwGYUx3 eUXp8sZ6N9O3y1f23gl+TXJ/iDsUaVaRnVcDH8zd0kpf2uypLkh+Q67ozhin MaaUZHH/zr+3pc/+Hq79/dw+u4Tbd3O4/XbrnRdjovY1kQiphasD3uXQ2m++ 5PGLSnIgcoLFlsYWYjDlUpjEyA9UNbhKVyGxpP+9Ky4D3kPScrmlsGtRFcVr r+yXMqmPtWSCWvBW7+FNtNTp7pcN2/Np/XIjtWTnSiK/Pe6LxfsWevy+ZFyQ cBZ1n/xZNvpmv316mmt/Ktd+09HzK7fbs9+PLVsdNbOBdg+tMbXdXEWwz2Lf fcnttyt2i2+7ThvJmC+Ww45XVdANR39ezhv//98fYsJ9f4gY9/0hicbBCp0v Cql5bmzk7lFNdM9KHbfhMhUkcdzVCzH7ayleyx6vTr7B/NiZ+zbDSqWREtGs LMXiSurmoiJqeqWQJHLfm3BswPs6atP4+acNKiCa79OumZc10bQpL6qO55eR oUtXhZhEVJPNkglhre71dPcEHu+yhiKC/RT7K/bVKwVVQqzuyPMSmsrqjsYH PFoAdZdyMmEaq1PiLDV4HqtTStcf49TpuRlOFlLquVTh+WfV+p0ttNRawF5H oZhUpq5K6d1cRdXsxL7uHt1IFQxm/xk6pJCs/bBkOusXFK/zu+oWQd+QipGA PkPtz6pCn6E8+05ZQp/JLXy6mvUlmvpw8WDWl+ibdzxC0Je8O5x/X6zPI27H bDwKljdTuYXd322sy8j+0gZqHV5F3iRN27jCtoHyL3WyOHKmiDhHSmxlfZJI tD8vZ32Sar0zOgB9Evsp9lfsq1df0KOsD5OhQUSV9WE63U4vBvrwZSOxwBnK OVR1sqyHz90WqqA0fGFCZhEJHNlTU6VZSQMs6GyZmkZ62Kn32yLPAvJY5jvM BXr9kp8Imwt0xY78BJgLg0e5w/ygeK3rHv8O5sh7k+hPbO5QU/6LZ9jcoZp/ 28Vg7tiFLh207FsB8cyJCL3j00g3iBIT88hKor2luLo6uJokFg4v9GllfdQt fZf9sFJyVz7Ukc1BEhBmr8fmIB1RFMKZg8ol2VFsbhL54fYNbG7SuE7JazA3 sZ9if8W+OvlAnfuJXXnUP0rGIFq5mQ718pXuiiwjGdOERwwyqqJ3gkeP33G8 gc7KdLQ4PLGY5FaGn2Nzn145XnOBzX36MHDYPpj7Ntd2GDKeQGWjzqxhPIGq vL5XBDxh47a9vxifoHi9KDsnFnjFfPtihfUJZWRKe4q1TVQ1/cl/XHAO248d v8GBZ6F1ZOEu1znlpyvptO8//grnVJI37266X+FpJL0vnbtVd1XQiQIjkmP2 lPa/vyKC+/4Kee77K9wzD9+d9qWEakVOjrqSUUuLx0XXv2qqIY8bDXtdU2vp FD3dFcPlq2nynEzHUeKVZFnY4U2STO/p78xNCbpRSXNn79t7r7CEjOK+z0GJ +z6HWO77HFabOK0/yVdNcnN7Pm2f9Ix2KJluN9rUTDbKWGnr5zeSa1tGlCnx vKbjpb23msSxufrsmKbz0BbyNVxV51NPMl2VfpBXfVMl+c19z0YU9z0bR7nv 2TB5Inpt+Z8qulzG49XSgBf08EYnm6nKzeRTZu5O1+RGelFLUdvy0RtaWsLv H32X8dAW9eGqXc10552fczuz3tJYhZFJN1UqyWDueyeecN87oc1970Tm+sRN 4Ofm7U5qyjyvyYMVMzaDn4dG9emRFV/97sDnYlJcPaLUoGkFcZk3c44Miwsp N+rthrhsM/XfAPsyUXAPY/sifsMjetXYvuyvrTgJ8dqWmS+stquC/Nx+8yXE C98bqPwf7wvV5PLkNVyeXPh9zVC2L7JIe9dZti9StWn/K9iX/VMd4PPEq35V MfD54kC+p8DnBUqF1VgcyaXdhR9ZHElBMd0NcQzbt20k48+kp/w0z0bGnyfu fyUD/FkvZI0uw5P4z8zPZHgSq4K5foDntAyNE0xHkPvmdgtAR3TsNvcAHeGf U9PF8odsXFCsyvKHGLkePQz5o24a0cTmB5naYnkM5smLmupwmCNbk555sjwk q+K/JrA8JPY/FlZAHpqtWHCI8X/SohgWAfx/TdeZVcD/DfNX7oD4Gul7vwd/ 5lvnnAN/KjdtvgL5PC92/wuwUxweUQp2noz0/fW/n/f14P9PgbdP3328JlcP n+emnOrTd5enBv6E/D9l/Xod+B/jePYQ+F8ffBtwpm0XTDk4p7/NooDzPak5 6lAXa2z/ZAGewfxiJoAnvldoHVc3/eDqJn2uHqnn6pFkrh7xWN6hwfKEDrdP vQN5Ihh0kgfyf5btpUCm+6jjvs4g0H0iQ2bvBd2Xta3MleUPzaDtYyF/NguK vob8Cd+ywYjpLEpjvbRAZ2k76G4AnfU+4ocqy2d6+O4DLcjn5F3y+pDPVH2B ONObdOKDFeagN6XzA1pBb078eM6M5TN1nXhcDvL55uF9vZDPj8+0uzBdRxf7 d3iDvjvc7XUT9J1m1FgRpgfp87Ovj4IerKolh0EPbtpxwXdhSjGxT1rZ/Z3N z5U3b978urqGCBb1xp7bV0i8L8v6axc0EMkuiakdJ6qIxW5v+X97v6hT9bZU tp7mCXzyhfW9a80nw/pEfjVjZp9+bTbj62L2Fe8UhIP90a62f+XYvHjoHHqb zQvivfSYIcyL1TEN5TAvItYrl7F5QVbRn/owLzyD0oewfk5OLV00hfVzYuQx zQz6+WTJdnumy0hQiaEr6LKtn2Y7gy6LjfM8yOYCMRspaMLmAhGz954Pc+GI jYUp03fkqeqVatB3xxoj+UDflV4P4HzurD7gc2f5XGs3mC9q0g1GYKczetJc sBNiPXz3/35+msI998stsRgGc+dt3drJ4KfI/tGm4GeP8Ph8ti/qauFfDfsy K31rAvtyUu61YXqW3lE+Zwp6djHf8LugZ696ZVUyfOh4sfMRgI/p3OJdgI/h 2HszmS6mX8789ANdfMt3yibQxYPLH3H4xoytSsA3yKAX9l3AN64ISnH4hsea euAbRDMobC/wjTvLjlQxPkDOyfDMYXyAlAx52A58YO2LA6D7iKngCFXQfXmq Lhzdl38/0pPxCtLittCL8QpSMN5QCniF5OdrR5h+JDtv7uXox/LsJnHQjxVF a03+9f8nZecTAPzkoUoT8BMivX/RArCzbPIhiS97Hv+fz0nvb5lbC7xl+yFf 4C3EdrNOG/g5P3jhc7YvapropQP7WmH6xBr2Ne79r4VML1P7Raf2gV62vxJm D3q5drtPKcOHblJdcg7w6b7F+wfweSY8M4Ppbvo5RzQcdHf7OGt/0N0ZXtcH A19tszC4yvgqcc64Vwt89eKCwaHAV52Hp95ifJUkZYr4AF8dlHv8DeOTpP7B 5m+MT5LnfgYcPuk1cXkc05UkMWTBcdCVtl8XvQVd6eF+3orxUuL+Zooa46Xk cFKNLfDS/OcLxzB9SmREVU6DPk14nWMH+lTq2oY5878+7cfHlYvPqu6te4Df jvVr5Nip23Z9P9jB9fj/mcnjfh56RzItGXivdsll4L3k+uKA3+Cn1lu3K2xf 1E3R7h7sy+78EX/YV1aCSTbT4zSm1lAF9HiJkvk10OM/Dt2pmzqogF4JexQM +DzvzmwGfC4pxGQxXU+LBPlug663OVnqBLr+nNaC1aBfnG+fWcX0C0lYJWAO +mUad96s586fp9y5c3bt7XGgy0Suz1vEdBnpfpuhCLrs5Bre7aBrbMYOGsx0 DdGMKLgCumbm2QBL0GuTGmXcmV4j/m36O0Cv4XtcdwzQy6hDRw/QoaE7Qz8w XUMaZUPfM11DTgaEjwddE23TCHqZRLp9CwK9fOe2Z+8Fppcv6Od+ZTqODBfX Dmc6jhg2feHouCShT6BPSYyFBUefDvstNRb06egA7wCmo/qvwyaefAd6qvC2 yBum00n1pB+TQaericztAp1+tDN9HtNlxM/PK4rpMhKiuPg86LL9qnNBVxKX mxKFTFeS2cMea4GuXMin3vvcu5nwvzEcepfpZeWbb4+BXtbSJTKd4i/7Px8v 4OaDxAelNaD77Hxy7oJ95/eGnmD/jZjcJdB7o9y/nQc/95sbp4KfoyeI7wA9 u3NqejY8V6lxowY8N7bUDHCjT9tLOLhdM+zg4Db32WnAh+b7JUcAPu0/kpYC PviePjvuOUMD95yBGxc6nhsXc25cnp96t4XFnY6ukhSAuA/6qREEcY9ukLyQ c7mJBk295AvnJNcHqdjAOclv332g36m8RqkX5IOB1UhDyIfBZw+Ne7erlYbG nzGAc4nobZEj4Fwi8fnqgywPqZ7++y+Qh+qzfj2EPJziqPBG5kQDddJqFFjq XE68fxyaDeczB3+PEmX5TOmf7yqQzzr2V/ZBPt8/myHE8pYO9guWg7wNoI6q kLdWiw8ZHrreTGMVnRThnORr0d6vcE7SWbL52K9zNeTslZsVeT8/kaH8HlpZ xxrIPVshzrnKosuGu9h66llxkHOuIvZJA/wnHXK2jsx/Gt9+fBj4j+cS9gPO Ja4mT+LkYdCPH10sD2nQLvsxkId3/gzl5O2z1bHP4fyhc8RETt5OVi0Jnidd QyR3W+XfMs0nzef8ascMayDrPHX/Ql6lLhScz/KKyjzn4+TVoSN3tCAPh/AN /g7nG2m6yRshH2K+ia6YOCo1YeD7Y/2rXe4w+/SG9NhPYN9u3PhKsH9Tdi8P nPM4hdWLg/2UEYZHwb6sZnkMnPOE//nO8X8B3cOpo7fccxJr7n6ncffrVWE5 FuJ7p2GsM+Cjrxc0HPBRe/JtD+SDs4viPTjPGT0pwADyof6q6x6GP71/fFIL 4L+VN94Q8BdyrdsJ8XrL62YL+HeK/fkC+Ds1Vo6E+IbNCFsD50XOTQrrIL5z Lus5QBwv8TztYHboryKxTWDn/on3qXC+J5PwYhjLH1oT9HYC5I/GbhoI53sj pFecY3lLS5+5WkDe4vnMzgHvdz2elSsB/WfHAaebrP/Qq2omf6H/rN3K9x76 lZ3uBc45jMWTX+Og7lKUDYMgjnsOpzYxnKlzwdcqwPlF7ohX0GfqBYPEWZ+h vEnu7dBnRnLrPIlb9/bceh8Qx/73wY51nzML+pJb4f4HcF50JmaWO/SNVeV8 YRDfHBXbOnjuUMNDZfDcWhXz2dB/8HP/sdzP/S01w1/D+aTNn1Ni4M/SD5O/ gT/31e1gv1RdbuYt2O+jWzM4/fYV93zpIPd8yYt7vsRjYR8AfUDrTK4/4Bnn 72kNeFrfat4MfePpC/8RcA7G89bqOvSNSdvPmEHcU+sW9EK8VAp1DCBeFRnk NdT7sj3RoyFel+dXzYB4qYxqtIP+8PPv0DY4Z9PUk3wA/eHjTPux0AeGWG1Y C+dyvgr2ltAHFON+/5ZSKyeVvQce8IvX0bk5x7Xfh1eTTXJbJ2qmlBDX7hl5 31Y10LrDE5wPClf14zPwfbBbzTJk2Xp662FmFqy3H7PQAdannFuex+xTH3sS C/atI010wX7ZxqUdcK4eGV8K5+p094wLR2D+vjZML4Bz9VkOrwmb4zQp4UMA zPGkks3PgJ9I2Z85wfgJdRePSgJ+orC/g8NnylRLOOdjuglfOHxmQcZeIeAn AmvVzzJ+QuecfM45Py998MwG+MzDJnHOOZtVkZbd//IQ/P98jebGfcZY6dlw Dr/J2v0k2LmRu8Pyf3kOfm/hOvd7C7rHdifA+Xz9d+oMfkY/3pIIfq5dafER +MmU7kdrYF/7Hk67Cvt6lRl3GfjMNuM94XCuOLbYzA/4jG7X1UzgJ3PaHwM/ oUtL13L4icjjkTXAZ74PmR4K55M8GyobgM+sfzq0AT6XmZ1y9Tbjh1RxzCYP 4IeqWw4vhc9l7Nvn7GU8k/psvm4NPLNb1Z/Dn39md8DnJvTsNg8Of/b5psHh 2+kS0sC3ae0iQw7fjqtIcQD+/PaEnTDjz/RpnP4s4M+nril4A98+scPBE87x 6hvlF/0vTx74vY4xAR8Owec4PTuGAQ+nFndbZ/0LD+//fsJju0ecz3c2iVZx /Dyv5tzn525RDn92HuZlBfuqtNltB/viPdDE4dvBq5K14dzy628vG+DbdlGa acCfNxpGRAA+UiY95wAfK2tdDt9+YG0MfJsumuD+G/h2oNV6Ffhcz5c3xpvp F3p0tbI66BdJgRmO8Lmej463AdNBVKooJwx00Cd/m0Og77ruJx1n+o6qNV5w AX13otJWEPTg7q+/Oed7dg1nLEFnReTvMQd99/KtL3x+R5+7ug8GfXdxG98x 0IMPPLYawjnhMi3eJaDjbv1Tx1HUcUoLi2zgc0DXezsqwY6HgeEgsLN5Xibn ewjLBnwP4VdQ4BH4fDDj+yVn8PN+ue1x8DPGwOIA6LvnDaG7YF+10g8jYF8i zwSKQQ8G/tAHnUuVgy/tBT0YsGHQLNB3f4beAX1HDwz5wdF3XVGB9aAH2w9d uQPnqxICN8xAD/6cVycPn/Oaz+u1Yrqezs59dQR0Pep/PA+w454DdAheWAif X/+VS5dVFM2nI6W1m+E8ofx4xB74/DdsgvMaJZ0q6jb41CY4lzBpF7gGn2sb fmk5dPLORzrySpclnG/4cs8to7jnlsu455bd3PPA+AHngfmVGqPh/Oq87Yqf GxSrqfm268vh/OqKjvFGOO+K1n7wFs4tR/YIWsL5zIdvvsPgfEykuSvmT1o2 zX2qFQ/nY5VKTYJwnnbZ5DvnnDDrbTTnnBB5G/I45G/RN6J74LyrZvyBlXBe ekiKHoPzovjbpU5wfvVWw+T2dpcm6pElogbnV7+Uii/DeZfZ/av34dz10O7F TXBO9WL6O3c4T3N8+/fvjfxCmrp6hy+cp324XKYP52/xEzw3w3mm2Dq9C3De teRqeu//fl/lADdPRqSs84TPzcMMVG/Bc9+FOK/lPJc7V3DOaOB8OXzCE74P IJm2oAeeu2R9lg88l7yTGAOfp+tudP8BeJ79f5WdeVxPzRv3KfsWWSJkiaIi RIqYrCEkW6KNsosI2RJJSLKkSHZF1giF0ihLWiSlfd83WSpC0nOur/Px/O6e /PH81cv3Pvecc+bMmZkzc73fl/zZ0VSf3vbSrSlOwKuqq6Te7DUNnlC9tRPX gSeL68APG3h93zbw+t62c7eidaoxn1roUXvwsT8xl9pDX+cpzrSutcnf6zet Y28JdoigdS3lrG5naB1sZWwzO2onj7+6WFM7memSMZvWzTyynOfTuvHDxbOl aN0sRLPKidol/jbVnnWD2ueMD2fW0LqWk1GyKq2fF7S1ku6UkMNsu63rTutX FUnHNlE7v65cs5PaeWUfVWVaH6vaYaFD7bngyIov1J5nnfCdQetpnj66hbSO rW50xZTW0161r1fdo5bLum5ZeaxG+z3faD3ORaF1KZvWYozZsFhhHDCw/Zz+ NpkXt9vU4bV9CXPe/ocrSdtV/IviTHr7/uFKXr6Yu5Y8gxWid7Cf6BvsM+X1 MqEc3s3udwWVk+Rb1pbK+eHSTU44L49zMDtD572QddyTznu/0x+O43CtXFeK n7Hp8ofj2Lt9tBJd5yMF9VjheGZV93gvHX/b2rLH/IoSJj1m5yHiSvRvFQym uJ1turcW0vUnaR/VyHibzFT7GkrTeXdla7ba9raQJU1z3krcSmXxdmWK/3GY NXEJXf9M0TepLHomb2kn93E5mMEi4hOGE/8S+eHmaoojmu0wZgndV+JS+eFU vsLjyCZUvo/3CEmeuP/myy1m+UffqW0eX8rX3HatI94nz/PAXYpfevhtdieq B5fBSil0X07rO7jRfTV9qa4zY08Rf3NhURXxRKd6dXhMcVD5a7S1iudkCd8L MnLEHzleK3xBcVN71jtznTNJrNXjY2zx4VJm2T7Iu1BbaOePioz31CWwzbIf VK/2KGdsx5jFGw6nM6Ow1Rcb88rWuHZbKRzPKxbXDabjg2wmLaLjJ4b5ewvl 859OC6dQ+ZfMXlym8vf49pJfVpXIns8rbXeB1u/T5HPy6jNYVOuK1IHTEtiP vAF3poSWs6KXOrYlK//veN3QKzvw++ci4Xi+zWDqLTpecZ3zRjpeasfXmqVV ibw8yFyWyu8mp1BE5b9Qe6pdZpTCfE5M7bxEt5TNV9k33Dgri3U2Wqmz2jOR Za/cHtUhvYxZD5o8P1R4TycoDPncmFf2g+VoQ+F4bn1DKYKOt9iQN4eO7yzf v4tQPj9bn92DypfTdtem8nM+SzcZKsxjrzmk3BLmmWyv6ad5NM9s5RTT1+Jo Ges3ZF8VxYevXGzgSfHJ++MKFWl+a5nS840wX2Udw57so/nqI/PeFOfMzr54 b0xx5tbtrQ5TnDPWJRp6Xytdx27PNs5hn/c+nE/x6h1PvThE8dLH65cwmg87 Ho2IoPK9TOMcqPzzXgmelLfXXMyf3ETM22vtvY/itDlbNb0vxclnZpcaU5y2 1SvdVJo/z6/yfUD3FTUqYTHd19aY1v0sNgrz3aHDXlC8vZeS4j2K99ZuXWc1 ZFouN5IZ95Di85VvGCdSfPhcmWYUZ84OrajuQ3HmbSd0P01x5q7rrLQo7h1x 6RvNFilRXPrlAKemk+984K92LjakuPc/fzNYpye9NlMcu1Ogqw/FyWunpkZR nPzsUA0Fquea5q2lWhQm8yy/i5I4/Fnr0lpSfW6wPLeJ4saPGZs7UX2WOVfY UL0d6LBhBcWZW6196UD1dua/9cNRP3PuRW2g+jE0uaxCcezPdw1ZRPXT3feY AtVDqrP3O4p73xS8y5/qofkQ82VUD/FZ7UMoTv7yPIV4qofpujZjqX0+WjtD Vmg/vL7vcg1qP0YtD2lT+9zkmh4ttDc+cYicIbW3pGNS5Y15QYd0MZ5N7bPJ 24Ov6XjNzQ9n0fGnhiR2pfZ5LyW/O5X/Qn3LWCp/9+1ayfu48aQTvY+886fs xt5H3vB9bOgFbfA+cryP9Xvff6f30ev7z05U/gXVfMn76Pxi2kvqf9amttYR +geuMK7bFeofBl74akL9j8tCfRWhP+FNF6wxo/5E9rLntca8oJ02D1xD/Y/0 BZNBdPw2fVsTOn6y3KZL1P+Y+b6dQOVbuCneoPIXqTmcof2apg9jP319Xcjd TX1u0H5KXVYixXMyrxnVqyieU/n+leE0LrRJDg6nfZzPo+1dDJOLuW7NpAG0 L3N/v5cMjQvnM24voLhQO61FQ2hccF0/VK8xb2fikQNDaVyYn1zZl+JLW/he 3EzjgkOO7Dva99G6Ln+Qyu+ot68/lT9Edff3xvKHGn4KGEHjgkPGgUyKa5WZ 7RlE40Jw4oi1tE/kkPm9hu7r8tLUe3Rfu36mT6RxwTY0Oo7iYwePdQylceGe f8cpNC4onZZqLowL3Gvno1gaF3Llyty1fuWy+tv1XUa7P2FhtdKSfWcNe0cP h9m5LOxL3Kjx8vHslrKs+0TjUnYmZ6qEA01Mif0PB/rg/kMTGh8niuPjYHF8 DMis1dwnlcc39btZskg+kG1v1mMp7ZuvOS/9e/rBXO4/UKVlmFssU1vooSfj V8p41yklVA/HxPFxtTg+bgi7qPO/+2hK4j7aEA+7QOnKfBZjmGw2alcMk3bN MVatK2YZRwZL4q8e9pllsTb5AR8XZB9M8VespelDOv7X+vM7heP5+id+i+j4 oedNT9P7bir2h9Li+37v4949bm9ehLiK63KzxPWcSvsRg2Qe5/O5RyLU1pfE sQ6zndeoPS1mC9Iz4ykuy+nJ5SmHZB/zAw/7LaG4LNu+U5Xo+G6dAnWF47lb 3IlVdHzEWrO35zJfh+Av8tTj3zvEdSRD8bxvW8+S9EvLxH6pPunPdRYUFYct v/UsRFFcD9kljgumY5bLzTiYywwzU+2fucVyueItulTPKtbPf1I9/xTbW4XY 3n69OrSanuNXcZ7WR5yn7R155KLQHvhb29SycfLx/IJn2WlqDx/q405T3MI+ ra+y1H7SA++uofajaW91ho73t7LXoPazo73yMTrerTwqk+LKzNQzXCdXZbK3 V4wGUVyZTM7J185985meSvLitG7J7FSo9TWp0iJW8SfOja0Q49zuiHFult2v 9RPqk606umA41f8jH6UNVJ/GbyLivqnn/t+/L8zLKa7snceC+l3n85h/Yejr D9VprHzOmHLbScJzln//nurZ6Er8BuGvDuofv4v1z1D/ahfSsiherXdEShSV f/XX1QIqv6KqeRv783n8R61RGJV/xO5AAZX/4Fz776o2BfxVrwtqFAc4f1C/ GGqHGeP5ZaEd8mt9TttQuz3vW72K2mEr2VeRQv3wyr26Z6l+Zn07rUH1czOl 5IFQP/xZVfFKqp+Om44+oPpZF5/9iurtcdr2VcLvfFH/tb70ew/x+gaL13tD vM4Oahq1VA+9U1mBcJ18vqpJEV2nwZ92y1LFdusqttuCJ0/6UD2P7Dx5CrVb TWUNa6rnBu8L/8f7wvG+qLrkN6f6Mf+UkkHn/Wl4PZvOW9L/bQTdb+TwE9co znC2/oLhdL8tozXu0/1q+bhsofuKTXQNoPuqOudbQ/XZVzXMmt7rUI0z0VSf FXd9LlF9FumYH6H3uvn7kJVUn8EmQ2dSPPqZ0Urywl/unf+zlOLSLwyQzQ6N ymGR/sus9mxJ4acDwnVGG5Uwoxh1T+oPXa+5h1McjtmJtxupPTuMvOlN/WFa kyEV1P4T7iZ6U3uuEp9Ta/G5zcTziq9K36+fwz6Ed7z/eUsGb1O9ukb7ZDFb m/en/6xc6CjJX3xFzF/8VeXVOnrv8sX3TlF875p9/8PjT3fkLSmeX/rDHx4/ TqyvCrH+pon1tv5jm1zhvFz9U/+7dN5zNyKq6bxhp/7w+/Ji3mScN+/bDi3q n9OT9DMprqnWyMOS+uflyvOlhH6De+5RdqN+o/ykzyzqN0ZbzFOiesTfY7tj K6k+M5avjBLqk1+Ssd1A9blAftw0qk+3V3/4+pjFK68RB7Er8w9f33Z63TSK p/qqYJpF44Ldx+L5dN6l97p0pv5qpGPGN+G8bKnfijF03hHd1VPpebG7pZ5C +ex1Ud+RVP6+MSkjKK6sWHblrvW38pj7j4ymFFdmaRfyUuFVOpvS/4jujXcF bNHYto+XC9+Ji8V+x1Xsh+LF/sf619D39LzeBN8tE+qNRZvUl1O9Xci0K6d+ 8rA4HlmL41GQwXZjel7zxfFuoDjeqXefmkr1364kvJjKWdbZtJTK8RDbX6DY Hs+L7XCTsdMLqjeljj8v0X3tmO3N6L7eau9rK9wX72mtuo/ua5batdZ0X58j 3noJ98Xz0rWm0X3tnDL/Gd3X0Y4G33+5ZrPTvRwvq8sXsIsTFOcMnJTPEv47 XjCMF4W5nyP/Z7xgGC8WPtk76WJMNhsZN7czxUWb9JulSXHRX6rv38numsls Tx5fKj2ziC2oLx+vEJ7LpKMvBgu/86kJxWb0e+TAHzr0+9xJKs/vfcnhQ2tz 9lL8dsREl3KK3/acbBMvXCcf3IPdoOtMiTxuRNe5I3iygq9DAdt2K40Rr+p9 3mwQ8apVzcva7T4ZGRL4cMTDqd9WB6N/vmQrVU1863c5qRriZ+udOm4lftb8 nN57ihvPqmnjIJyX91R7l03nzf7tWU31s2ZJj6vCebl0ZOksOu/c9W806X53 XR/eR7hfHvWmkzrd746xM67S/cr01V0l3BffO+CnNt1XRoyZPsWN2y9U60nH twp8pkLHu3QafZ/qocDMczkdXzOjpRYd/+rFl2dUD9Vnq5zpeszbfiqh6ykZ 8SiW6qHWKOk2XY+W4aIFdD1nizLiqN2OqVMZJTxfPsWvfRg9Xz3fYzXUDuvF 8bpUHK89YybOoHmRrjj/HCXOP2027Zej9jN7pstmircM0ZwmS+2n7+jPPtR+ UgKTdKj8TQELX1P5WzOf1DbmxVoec7FzY56r1E6TezXmp6pePs6KvEYVog/K S/RB5Yvzk4Y+qDeJQWGN+Z3SFP5wTCVBzSLIQ1Kz5g/HtOHC5rVU/grRm9RZ 9CZtO1gtQ9fTTvQUfRQ9RT6DCluMb8Tz4376D59llffdhLwf14v+8Fn75iQF NObPKRDfl4Yem62tZBUa88OgXJwH5cMnAr8IvCLwX8CHAQ8GfA3wN8DbAL8A fAPwDIBnBt8Mrhn8LXhccLjgRcGPghsF3wjeEZwj4kQRN4p4UfhQ4EeBFwX+ Dvg84PGAbwL+CXgn4EeALwGeBPDY4LPBZYMfBk8Mjhi8K/hXcK/gM8FrgtOE fwc+Hnh44HOB3wVeF/hH4COBhwS+DPgz4M2A3wG+B3gewJODLwdXDv4ZPDQ4 aPC64HfB7YIvBW8KzhQ8IfhCcIXwB8EnBI8QPDXw1sBXA68KPCvwq8ADAi8I fCDwVsBjAX8FOHlw8+DlwXWD8wbfDQ4ZXDJ4ZHCz4GjBz4KTBDcJXhLrv1gP xjowvEjwJMGPBC8PPD3w8/z1yIheGfhk4D2BBwX+E3g64O2ArwPrgFgXxHog 1sWwTob1MaxnYX0L61rwC8A3AM8AeHjw8eDiwW+D5wbHDd4Y/DG4Y6yPYL0E 6yTgTsGhgj/FujnW0bF+Dp8R/EbwGsG/Ax8PPDzwxcAfA28M/CbwncBzgnVS rJtivRTriVhfxLoi1gGxLoj1QHgZ4GmAnwEeAXgF4BMA9w4OHvw7OG1w2+C1 sX6E9SSsI2G/BPsn2DfBvgL2GbC/AA8UvFDwQcFbBI8R/EXw7MC7A98OvDDw xMAPg3VkrCtjPRnzM8zXME/D+inWU7GOCp8F/BbwWsC/AB8DPAzwBcAfAG8A +Hbw7uDcsb6G9Tass+F7Cd9P+G7Cvgv2YbD/gnkG5h2YbyDOHp4txDnDqwXP FvxaiN+FLwrxA/BDwRcFTxTiU+E9QhwvPEfwHsF3hHhE+Hvg7YGvB/4eeHuw vo/1fqxjYz6N+TXm1VjvPtPgeMQhwUcCDwn8I/CRwEOCeAt4NRB3AY8GvBrw aSCeQKFBvcEHAT8EvBDYJ4bnAHEF8BrAcwC/AdZVsc6K9VV8D+P7GN/F4CjA VYCngDcNHjX40+D5gvcLvi94qeCpgp8KHiV4leBTgrcFHhf4W+AZgXcEvhF4 MeDJgB8DHgd4HeBzgHcPHj749+B9gwcO/jd4yuAtg68MXi14tuDXggcKXij4 oOCdgYcG/hl4UuBNgS8FXg94PuD3gIcCXgr4KOAvgM8AHgN4A+ERhD8QPjv4 7eC1g38NPjZ42OALgz8M3jD4reC7gucKPh34deDVgf8FPhh4YOArgb8E3hL4 NeDbgGcDXgZ4GuBnwP4x9pOxjwwfIvyI8CLC3wefHzx+8M3BPwfvHPxo8KXB kwafF/xe8HphHxH7ithPxH7ef/f3Mhj21bDPhv01eIjgJYKPCN4ceHTgz4Hn Bd4X+F7gJYGnBH4S7K9gvwX7LPBcwHsB3wX23bEPj/13eA//ehBF/yE8ffD2 /fX1iV45eObgl4MHDV40+NCwz4p9V+y3Yh8U+6LYD8V+JPYnsS8JfxN8TvA4 wTcE/xC8Q/DjwJcDTw58LvC7wOuC/SfsR2EfCnEbiONA/AbiFRC/gLgF+CLh j4Q3En5D+A7hOYSPD34+ePngj4NPDh457E9jvxr71FhXwjoT1pewj4t9Xezn wnsFDxb8V/A0wdsEXxO8QvAMwS8EDw68OPDhYN8O+3jYv8O6KtZZsb5aoVH4 Rda3mOn2rG0ZfzmF+eol2W4LyGW3vioPPt+yjP0+lyrv0ySJxVR/3KnTMuuv R+OY6NWATwO+Cfgn4J2AlwGeBvgZ4DuA/wDeg69aV9T9FIv5kKmZb49vFMbL bkZmg+bnsvZLYp1cMkv5SPvArGShf7xaplFal5TJ9okcuJvIhY8WeXDw0uCn wU2DKwZnDL4YvC74XXC7/Q9Fd/kpXcwKQ3ur+2fmsv2z0jaWb01jq0VvCDwi fUR/CPwa8G3AswEPBbwU8FHA7wDfAzwPLdvYa346WMSnv3363fhGHttvvM+1 ojj1L9++QeTdpUTOHRw4uHDw4OClwU+DmwaHDC4ZPLK8k4vLHadC9mS1V0BI UAHTCLU1PV+dxCY//mhpvT+fmcvNj2Griph+gtTc4SHJfz0a8GrApwE/BXwV 8FQ8KHinMOuiMB5v7u44xb2AxRlcS/sgI3yHDjgXfXFZAU+o+mAZbFDIdssr 71NLTvnLdYPzBt8NXhr8NLjpZe62g3YfyWdjB2j6qwQXsYkT1Bd2EOYD8HrA 8wFeCb4McEvglRZoZ0SkLCngTebF7bALL2Qm67/oPp2X/JcnB18OrhycNrht xGduEv0Y8BLFiX4MV715OXMcSlnEqwMp+T2SeH7yoE8dQrKZm8mBvZv2lLMr N+rra00T+JRVz49vNU9j8MjAKwOfDHwr8K/AuwJfCfwl8JbAAwIvCHwgURbe Vcs7lHLF0MNNfB+ncKnc90XtNbJZ9+MGc5uYlfOey2KCdKe95/5Fm1+eHZ/G 4EGAFwE+BPgC4A+ANwC8Pfh7cPfg2MG1g2e/LPo3ykT/Rqjo3ygxHL4v27GE vb04J0OdvEGBP0w72qUw+HTg14FXB94ZeGjgn4G3BR4X+FvgQ4EfBV6Um9vW TVwlW8KdL5w3/Dovl/tdvP6mS4sUBu8DPBDwP8CPAF8CPAnwC8A3AM8AuH1w /OD3G/o6jou+juYnOm3+vrSIaVhPHOnXrIDLXFC5lNU7iS0ysFvRY30Bs7hc XmUTUciDv74d+7xJMoOPBn4aeGngeYH3Bb6X9K4jDIbYF3Hn7v6xXbPy+cZh vVs5j0liP9LXuTXVK+TWRuopStcL+BJ24NrtVikMfgT4EuBJgHcAHgL4B/7l 3xh61SOt/Yl8Ztv6R7TJI2G+36Frv91GSQzeHHh04M+BjwZ+Gnhp7KQWcisz YT46N/CB0rNCPtBa/tdO4f2FrwH+Bngb4EGAFwE+hIZ+DBvRjwE/AnwJ8CTA gwAvAnwI4LHBZ4PLBo8NPhtcNnhj8MfgjsEbgz8Gd+y71+N+VHQCs18xIPrx 2lJ2Yvf6KROf5DBVkXMD93ZY5N3ATYGjAj8FvgW8CzgX8C3gXcC5gN8AzwGO A/wGeA5wHClrnX0+yyXxzu3aRo1zKma2k+w8Ot7J++u7h/8e3nv4eeHrhacX 3lt4cOG/hU8Wfll4ZeEBhBcQPkD49eDbg2cP3gp4LOCvgLcCHgv4K3z2vn7m m5vN7mU6Bp/kJaxWcXW/MLlU5tj195H+Mm/YXdsWHyaVlLNeHt0f1j5NZ9Ui ZwjuELwhuDVwbODXvBbHx8+dm8vzNKM6aAwrZvJxrcue6aezUWPavCu+Fsc3 +zqlWNmVsY93lY88z8v+69GAVwM+DXg04NWATwMc760G46PsP8ZH8JDgI8FF gq8DbwfODjwD+AYtcdx8Io6b4BvsxHETXg94PuD3GPVgQstZUe/YtHOmn4/P L2Odf8171+dx9l+vBzwf8HukP+URC3TzWLdlAZcnXCtiYfeaWmy/nsaeH75p oZ+Ww1Y+PuW3alIJk3masdnIK+UvhwwuGTyy6viy4Y6yb9mRB6d2LIopZ5E6 ayevvZz+l0MGlwwe2VvkQr3AiYp86NA3E3WFcvjskujtVM7sIs9JVA74Q/CI 4BAt9c5bCtfJ52V9v0rXKT1hiC1dZ+XWzVy4L54cde0a3Ze3ZeZyui/wHuA/ wH08CpXKnBn1jiddO/OV6u1KwMVkqjfwHuA/wH3AewIPCvwnC93bztqYksKO VB11zuhazEI0uxY9Ms776z2BBwX+k4YcOvwnyCeB/BLIKwEfCvwo8KLATwFf BTwV8FDASwEfBfwL8DHAwwDPArwL8C3AIwCvAHwC8AXAHwBvAHhy8OXgyq1q tZyuLEpiLYc9fH68bSlbcInV6dnn/OXGwZGDH48UuV9wwOB/l+p1uSSUw4eO 0uBUznR3w59UDvhS8KbgTMGXgjfdLHKm4A/BI4JDBGcI7hC8Ifg68Hbg7MDR gasDTwdODNwYeDHwYODDwIU15MFniDwROCJwReCJTutf7iO0N37JsYMbtTej My0+UHsDFwROCHwQ+CLwRuCM4MeBLweeHHhJ4CnBuj28JPCUwE+CdXvwf1h/ hncDHg74N+CJAH8JXwS4TfwOfhPcJjhO8JtYJ0ecNdbJwSWCUwSfCI4OXB3W vZF/BflYkIcFXiF4huAXgg8IfiB4geBhgZcFPhb4ROAXgVcEfnz48uHJb1OY Zk/vy5elt18L7ZxvPpNeQ+0cPnf43eF13yly7ODawbODcwb3DN4ZXCs4V/Ct 4DPBa4LThOcX3l/4fs93jOtN7XCY+8ujQjvkhjK7yqgdIm8N8tggfw28/8gD AP8/9hnh14dXH556eOvhq4dfGL5heIbh54WvF55eeJrgbYKvCZ4meJvga9q5 oEgyDp4ZZkLjIJ/orLSFxhf9nuYaNN5pF0+j8Y4v2sOm0DjlJ/oC4A+ANwA8 OfhycOXFc8JDaZz6EOjoJ4xTPHxwphWNU7VhfTNoPMrc3uGbMB7xy8Xnk2g8 gjcKHin4o+CNgkcK/ih4LuC9gO9C7r/zFg7fBbwG8BzAbwDuHRw8+HdwfeD8 wPeB6wPnB74PHit4reCzmi3T/ocwT2Or5sgmCPM0fvriQheap8FjBa8VfFY9 A3OyhPkeO624roUw3+N7d2UV03wvt/LTC5pnbhk787Ewz+SBazIH0DwTng54 O+Dr2Bl77TjNPz/tySoT5p+8Q2bkI5p/wtMBbwd8HddEvwN8D/A8FE9tfkco h5u8sSylcm4rzgmicuAFgCcAfoAXA41eC9fJD05Z94iu80Sn34p0nWvVTBJp Hjt+1P22dF92Ot0/0n2BewQHCf6xfXj/eJrfJgQfT6Z68/QLPkr1Bu4RHCT4 R3i+4P2C78vX6kOi8N3BFD9eCRG+O3j3w8Gn6LsDni94v+D7asj5wveFvFDI E4X8UPBPwUcFDxU8U/BOwTcFvxJ8S/AswaMErxJ8SvAEwRsEXxB8QPADwQsE rwo8K/CrrApqF0zfiS9b6L8UvhP5mtO9ZtJ3Ivwp8KnAoxImejrg7YCvo9i7 Y6RQDv82zeI5ldMqI2cGlQO/A3wP8Dx8b8DhzhY5XPgF4BuAZwAeAXgF4BMA Pw+eHhw9OHlw8+DlwYGDCwcPDt4b/De4b/Cx4GXByWrr9blF361S7a6EU/tJ 7XX4LLUfcLDgYsHDIq8b8rwhvxu4U3Co4E/hiYM3Dr44cJjgMsFjgpMENwle EhwjuEbwjMh/g3w4yIMD/hA8IjhEeHPg0YE/B3lckNcF+VzgZ4GvBZ4WeDrg 7YCvAzwb+DZwbeDNwJ+BOwMPBj4MXBi8/8gD8Nf/L3Jc4LrAc4FPBq8MThn5 85BPD3n0kAcIeYGQDwj5df6bbyfjb94a5LFB/hrkG0D+AeQdQB4+5OVDPj7k AULeIeQDwvyhIfeKvDXIk4P8NchngPwGyGsAnhl8M7hmeAnhKYSfENwvOGDw v+BywQWCBwQ3C44W/Cz4VfCs4FjhRYInCX4keHbg3YFvB54XeF/gewEPCT4S XCR4xYbXCZ4QfCG4QnB94PzA94FjB9cOnh28N/hvcN/g0OB3hNcRvDT4aXDT eK6Y5+P5gjcGfwzuGHwveF9wvvBDwTMEvxB8Qw1/hx8HvhyUA44UXCl4UnCe uE7wnuAwwWWCxwT3CA4S/CM4f3D/4P3Bw4OPBxcPDya8mPBhgjMHdw7eHBw4 OFTwp+C0wW2D1wb/DB76LwcterXg2YJfCz4m+JngZYJXCJ4h+IXA34LHBYcL PrbhdYJfBc8KjhVcKDhR8KHwI8CXAE8C8mUifybyZiIPGfKSIR8Z8nsh3xfy fCFvFvJoIX8W8p0g/wnyniDvJvJwIv9mg/6No39D/rCGHHGD/u1vfi7kU0F+ FeRVgQcBXgT4EOBLhT8V3lT4COAngJcAvgD4A+ANAM8Pvh9cP7h3cPDg3+FB gxcNPjR4suDNgi8L/in4qOChAqcNbhu8NjhqcNXgqcE5g3sG7wweGHwwuGB4 NODVgE8D/BV4LHBYf/krkccChwXeCfwTuCfwReCNwBmBLwJvBM4IPCf4TnCd 4DnBd4LrTBa5RHCK4BPBJYJTBJ8InhMcJ+IbwXPid3Cd4BXBL4JbBG8D/gbc DXgb8DfgbsANgiMEPwhuEBwh+EFwgOACEX8IDhBcIHhAcLbgbsHbgrMFdwve FvwweGLcL3hU8KngUsGjgk8Fl9pD5C2rRf4S3CV4S/CX4C7BE4IvBFcInhB8 IbhC8MnglcEpHxE5PROR20sQeT1weuD2wOuBYwfXDp4dHDu4dvDs4NzAvYF3 A+cG7g28G/hh8MTgiMHZyovc7U2RtwVnC+4WvC14M/Bn4M7Am4E/A3cGjhRc KXhScIbgDsEbgs8Hrw9OH3w+eH1w+uD3wPOB4wPPDL4ZXDN4+IbvC3h48PHg 4veL7y/4eHDx4OHBx4OLBycMbhi8MLg7cHjg78DdgcMDfwdO/m3j/RIHN49+ CdwsOFrws+DhwceDiwcPDz4eXDw4T3Cf4D3BeYL7BO8JzhPcJ3hPcJ7gPsF7 wqcAvwK8CvApwK8ArwI4THCZ4DHBYYLLBI8JzhzcOXjzCJE7BrdtIHLH4LTB bYPXBvcIDhL8I7hHcJDgH8Ergl8EtwheEfwiuEXwxuCPwR2DEwY3DF4YnDC4 YfDC4ITBDYMXBk8LvhZcLTwF8BbAVwAPBbwU8FH4ix4KeCngo4CHAl4K+CjA 84PvB9cPrhWcK/hWcK3gXMG3giMFVwqeFNw7OHjw7+A/wYOCA4WPA34OeDnw HQQ/B7wc4ELBiYIPBRcKThR8KLhQcKLgQ8GFghMFHwo+E7wmOE3wmeA1wWmC FwU/Cm4UvCj4UXCj4DnBd4LrBEcKrhQ8KfL8Ie8f8v3VBshFE1dy/dsfDqVp 2R8OpezGWUn/XO1x7D/9M/L1In8v8vYinx/y+yGvH/LWI4898tcjrzDyDCO/ MDhecL3geZHnaYMY15YoxrNpHZoXS+urmh/bvqC4jqB7147R+li/FV5htE54 1087kuJShoePmEzrhJsOVNfQenibMc3fU9zCZ7/wA7SuO6NgYQate48buK81 xTkod4zLp/XhsiNLbtD6c+9nh2kdmwWnn79P688HHqjTejh/WXz5CcVdJEUd 6kvrzA3zx7mLcVOG/4iLmPuPuIjuWx3CrcwK2OtBxQFKzwpZJ5/YGoojcvhH /MOyBvEPyAOlHFya0f5EPt/abFyUyaMiNv7Kzz4U1/Sv/G5bm29wb6pXyI4l OyUoXS9gfmOSfCVxVoN/UFwWM340kOKymMm9vBYUl9X1WrZlj/UF3H+T8Teb iEL2k8dL4r667Mza8n1pEa82aTbCr1kB66ZeL4kTqxXjmSwa5FMzXqStT/v7 vZrpHaR9rqCbLgW0zyU1PPAM7Uf3XKn6gvbp1rpWVNM+3bYg8xYUjzFnwzuK x+Bdhs+No32cuFPtJXEXqrOPXKF9n2K7pua076N/I2gCxT/8lLen+AeeOfhP HEWvTqmSOIcDC55SnAMf3cZOEueA/IvIx4g8jMhriDyHyG+4883u6JQlBWyl ypBtduGFfPRnufEUt7n/v8/rb/4v5NNCfi3k1Tr4yZ/iSPm34Kt3VIKLeNa0 K0YUR8rZkPcXlwnfITsLlwQbFPLMfl6OFKdaNs6y36yLhWzRoejdU9wL+PuM mAyKa70eqbjKen8+v7F032u2qoizR+6SuFl3vcmud5wKuf6ZbP+QoAKutTXe guJsf09bts8ls5Q9mjQ7l+Kc9Uz6f6A454oPB0Z9OljEujx3/kHxwPWdPI5Q PLDUgZlD/RSL2fDibe8oXjo5yN6c4qX1xXgLxF88EuMugqYlDjrfsozvVdPs SXHd+W8id1Fc94lB2Z1+ShfznMwDwynOWfrgni0U59zrxv1yWd9irtHCUIbi wwf3O7qd4sMfiPsiI8R9EltxfyS61/o8imsd+bNXdH6PJPaLPf1Cca06X5c4 UdzmlrDBaeouOezhKQVzitu8Hh3iSPGu7dscrqk1TWCDZn08QfGuy8U8GVPF vBlJYr4M5MNQEfNjIC9GSNaFSatkS1hnwxyDr/NymYl2riQ+c6ORA8WvsmZr 0p7oTnvPKicahlP86kNb6+rlHUqZ94uAcp/HKSzUOaia4l09DOZ9pzjYXxkd i+j3rwF+H+j39/bKVD53y50/h8rvv8I2lspvfdvJkOJjfXPrQ6j8X2qhL6j8 KNFHDD8xvMTwDsNDDP9w6XXuKNQPH7nwajrVz+n7R5ZS/ZhOu0/xwNx2+qEf VD8PekZ7UP28e6+aKdQzPzU8Jp7qWbFseh3VMzhE/00vJfl//ub9EeMW8pf3 lnh54eMFV4h1PHCF+P2m7FybUS0CQ5AXY/fYGfOoPu3Lrj6keGCfXy2f0/2C N+yveD7wsO3TEORBKHZ6+InqOcJ3SAuKK371IP8j1Sc4QSm9ZtfpeHjLEefw M9NAcl54qsH9NYy7wO9FDe5rQqr9Hqq3VmV1TX+ZJvA4zYsnqd7AA6oLoyjV D/yxR+s7plN9Dv2tmUPx2C0dH/6k+jyZWkBxv6ydjIok7jffVk7SrpC/Afkc NojxNh4tPPbSc3Qb9SaT4pMXxK+yoOeIfS/4aOGhffZtaw3xFzk6W4reXU7h YS07bqP3y2B4bg/iDi4kWCkJ7yM/WB5kR+9jzOQ+Q4nL8J/pVnulSRIv/eaz l95f5GX5m6dFzM+C/CvIx/JFzMPC1DXGUH9SOrJZpdCf8AGta09QfzK8w+OD 1P+8WmQYJvQ//IXZjErqf9p8Ch5F/YztdsMbQj/D0851XE79TN1F2dHEa2xI eehHv+/5VWpJvy+eOWgs8QsKE8Z+ofJvzCk9TuWzvgNdiOOYeOJxKJXfr2LJ Jyof/mv4sOHBhuca3mv4rp/FVXej/sqrMnYQ1U9LJbOdVD/Jp2KGUP82Ir1M Uj9N4hwcqX6+rJtCnAuPVo6uoHrWz31tT/UMX88Mx2MSfw+8PfBVNbe0kfir 4K2Cvwk+J3ic4PkaIn7f+4rf9fDENSwHPqZ34nfSdPH7CJ61xE4ZEu8afGvm 4rrGUXGdAz40b/G7MUT8joS3aoUVmx6ypZQ5dtYPKCpMZh08B5x1P5DFlsV6 TtojzB+sT7sdG7U6g9WsMtXyjMxlk9+nl9kI45/ivdbz965IYlGm4TdM32cx l4zFZiPaFvOlsbF1FqapLPfqndOu2nksMuHy0g1caD/aqrunCvPVH9p1PY5n pLEnj9v4VBsXM5UFsX3S3uSyr3tuLhm2IZXty2xhd069iCX0b+Mz95fw/y8Z 8fLmkDQ2TRyn+jQYp0JLZbcJx/OUsSOv0PH1I2Vf0PEWVoOpfH5l5mNJ+ZGv tkjKd745yEy4Hq5wvXYPXU+dnIYCXU+AOE5piOPUZnGcajbGYrXf8UJ2t+sq h41XC5hcZbmTljDe6iQX3D47Vfh3XVulmvhCNnplZJsOFskszkP3lZl7IXdz OFl71qeAvRvsPcJMON67+obWpcoCnv9QLmtuZQHTe3Xgs59GCtvTvap/+ifh u/Bkiyg3G+F7eP3oBzlDkljPbtbHr/oU8EL/KYsXuReyQ7Uv8+YJ5exy23b3 ZMtyJt3MxvOdUiI3Hbm+4Fml0K+uW65dsq2EFT4yttsXnspHn9ltfKVHDlOv XH9gt045H9R+aKdvEQl8RBv5vBLldCZdsnBG1bcSbhFj/OVpfhIPGrXkVdy6 nP+Hp+AiT9FEs2KJ8qQSZnn3zMrFz3L4Z71Uy3c5Kcz2y44319+WsBH9nKun bc7h+zz7tdG3S2Zes23kd4YWM48g/UmHb+bygI+Rc3fMT2Ftxf7wpdgfbhT7 Q8tuOXQ8f1aQM5GOP12iLzm+Q50zlc/V8vZIyi9dUteayudH7hkL18O/Ol5d TdfTe1u7lXQ9E8T+86fYfyJ+4F/5TLWuvDc+tr6IVZyesK1VVT43HfNxp5NK EosPfvDmnGoh+/XsTPJJlUJuqfHla5+zSSx7d8HTSzZFfNfs16bhn/J5xMeE jhXC8xoR9PnmsYRCPvh+/tPfUwp4WlnV+Wrzf+cP3bF+9C7tKuE7fOy2K2vW F/G4offurBPOu3jkgImHrhZww8Ju908fL+RPTvbsryD17/yb/8p/3dwtaLJQ Dtu70f2eUA57Ov2QApWjZztot3BerhZed0k4L5PJ9L9N5/3X98WtJ+f8hfti CRqaT4T7YuH7as/RfXl+3hoq1AN7pbGC6oGZShXIUD2cfWUYI9QbD86tSxHq jZm/+yypt+taBkuEeuYBK+ZsFeqZVV38tIvq+V/5mi/NbGVK7e1qkcdy4fmy /JTvVvR8t2uMj6X21nKPQpXQHpiKXYqkvVWeze9J7S3b+7Wu0H7Y2mfr5lP7 eWo1rxe1q3aRppLf5z75OI9+78xmUDm8yYQeknKO6TyQlGPmE7OY2pXW40vU zplMa7VVdN5vzU/OFd4XNrNKI114X1hirmsYvS/Nqg67CO8XC3ZIkxLeL/ap X7scer+w3x0p7iMXivvIajudJgnvKQ9IHrBAeE+ZYW6UEb2nNgc/BQjvNc9w aXlIeK+ZVnzHQnqvv4v70Q3LMRR5hlNRxfeJb5gmcg2IM6jJGWFBcQeIN/jX fjHiCzG/Qpwh9vNMtsoq0/4e9vWw36Z4a/+o/93P7ajmeFLor9gPzS9GQn/F zTfY5lB/NXrFAkWhf+NF0psjhf6Nt1FQfkj9m/HPbUzoD9kM8+nJQn/IWzkf lPSHL4d5vBb6T5Y02uG70H/yPjkVI6n/9Fzmfk/ob/kpa9P+Qn/Llwx93pb6 2+TC/DVC/8ylF73fJfTPXIPvPkj98899ESto3DGsWrtF6Of5mP5yfamftzY5 6kfjTrNlfboL4wKPWnDKgsYFjUkvdtK4M27P0bPCOMLlJiVE0Tiy3iBuF40v E70ee9Pv+r3uR9LvXVveoXL4LuM2knLOey+VlBO4ZJYljS/7l+lso/OyJrMG 0HnrN89cJ4yPbK9Vk7fC+MitrRaeovEx83tUpTCest2OQUOE8ZRXTVC8ReMp 9hOlxf1EOXE/samC1ixhXOZpO5qvFMZlPnXsKx0alzsoTTQQxnHeu2m8mzCO c7fBGVdoHP/Xft+lRI3hNWaprJfr4Nd5bYrZtv7Dsy2F61FdXDInv0CY17pe HfhAaO/vVh52jhLa+RgztUnC72yzTaoy/b62a90B+t27yZP7jfE1y6ratRXK 50dnHIul8iuWWhRQ+elNtyiVrUxiNgbO+qOF+3YpOH5DTrhfZffQwfrCeLzq zL1Ec+G5zfUeO/KxUG8vp+3StRLew8/9Mx90EfqDHjmLL9UL7+OGeN0zta8T +J7nZ+UWCu9fa93uJ2OE926L9t6JwvH8TnXYfTq+6fixF+n4R3b1fYXy+YNB SWlU/rDDC8ZQ+f/yyecaRUrmDbMXDPKn9nJ9ZPEIer5uW19UUn+x0zz/O/VD X35sM5oh9BtK4n78djGOYIC4L/9MTk0ybtnK95UcXzkwfCEdH2wlL2k3w77f uk/lJ7ZKGE3l1/gMlloozGOO/VTtdkBoj6O0LDIqhPa2Yq1K1Umh/6q375K7 TOjnkgd2Dg0R+jG9qjV1hcqJ7H0rtTgrYV5gfTW6iZ/Qb2jqfFBpzPtUtfz2 V6EcLtP/UjaVM6DAJoTKqRzg/3OB0L77apbK03kzDJrm0XlfvLwjZVaczAOj 3uhsE+aJkfndX80R2lVfcR6GvLVB4nxsWZv1p2ueC/O/F/fP7hfmI96OoWY+ Qv9mcFqlfbnq05CG3iTMAzAv2CTOB7gY/7+4Qfx/u92mJYprM/hp1079mgnz 08Ame0KthfZ/TJzvGovz33fivHeoOM+WE+fdfuJ8u9CmvN2AtRkswOFIT6Ec 3nF9diCV43U976Zw/Xz9hR90/dza//BCun57f5njdF9yE4su0e+etVHG9Ltj 8MgmdF8N47QDAgoL6Tozt/ZRpPJbb8gPofL1ugcqCfXJLIfs0BTqk5+5VRdK 9RkdPK8pPfdWXbXkhPrnCz+ydKr/ARG8kp67gacTPXeet9T9KT2vQa2WtipS TuQD26TGCs+dz+J76q4Jz/1e2ETJ8zUf0ymHjh/W90swHR8xNvUHPV+vOV97 UvlNWuTmUPkOYvzcJjGerosYR/dl9gNJ+3dopUftn882uSdp/+9Gc0n7v7Lm E7VnbvNsfmPtn6P9S6cqSdq/90C1P8d/OCdp/9FLmkva/9Kb0dT++fZh5yTt f0CUmxr1A4FGo+OF95SHGW/Sovd064MD9F6zjF2XAoT3mn9rd9SH3uufT42P C/0AW6CfTf0AT0055EX9wKnNB5c35gNR9nWdTP2D12zne1RO5poNV6icwDtv Fal/kCpakkznvTzddTyd95pN71ZCf8W9W52aLfRX/FrE8kDqr7CedU/8bsD3 go6Vpz71kwX5sf2EfpL3bjHOjfrJiZNDn1I/KSv6NLREn0atOE+d2CDelX2/ 3pn6T/Ww5hFC/8n9ikvLqP98Kn6/nRC/586J33FJ4vdhofi9OFP8TizVLVxO 486FXiO+0ndZ4OcBJ2jc6fVgRgWNO2oBHebQd5xOj0O+NO6gH9zbIF40wspn Co078ru7udH3oMyUME0ad7zCu9H3I08L9JB8Pw68v1Hy/fiv+MyMMB83el5D N83sQf32t/hID3peV837WTQWJxlh2r8Z1X/2ghaGNF7sMFa9R/X//5vvA+Po B3FcxXi6RWGd5H3M/3qZ3kfWws1f8j7um3G6Nb1fh1ro0fvFDDSSftP7patj KUP9hrWHQw/qf4Lrdz6i99rnkSnN31hgX+ZC87fuk5cX0fyto8Hc8fRd9tRv nwnN91xahZrQfM+x2YT71M+M6h9xivrJDZoOS6g/aZ6vcIi+156xo81pPund LSaf5pO6AYdm0vdaifG5fJp/dv8YE0HzT/i9qxv4vdHvj9pbo9JYXgysvzXM i1H81Wt5Y3kxxnf48PR/82JgX0db3OeJF/d3gscunUPz5PDln0vou3Lr4J7P 6DqHSWUcpHly/1nbO9B3qHPXxVl0X/+Ku4s6fYrqjScW/9xA37NNbQ/Pp3qb ZtbmHs2TldZredD3r314j3yq53/FxX26q/GLxkebdqE0PvJ1I7bW03M0H95S ubG4NU/+XTLeaUr50njHTaRWSsa7f+Wz6C/OgxvGoTVx/DPfOiPOvy6K867Q LjYqNP9RlZKbTv3Jg7kx/tSe3WK/nqX5zNWz6t2oHyubknKK3osDaXHaNE97 JHXhGfUDQ/yeFFI/kBGxhuZ77JXpAcl8b2u7o5L53rkDKvq0bqPqYb+a5ofD zJeNp/d0mMVcY5rXban37kP9ksOiaFfql1r2MPlM6zkb9wYMp/mns7PJPeoH rnQMt6L1nDHdziXTfPW8fM456jew/3dNT/EH7QdiH/BT205TGvP4KYv7jrXR juPpv/8W9x/bbjNtta4RHw7G6WHiuI3xukjs15LFfg792yJxvD8ujv8Y99Eu rcV2miC2T3ex3wwV+1H0nzvF696wSU5yH2fF678sXl++2jrJ9TbZ/+c6dy7f Jbkf5Qb7qrEnuvxobJ/0/wDLBLbo "]], Axes->True, BoxRatios->{1, 1, 0.4}, ImageSize->{360., 283.61323934421523`}, Method->{"RotationControl" -> "Globe"}, PlotRange-> NCache[{{-Pi, Pi}, {-Pi, Pi}, {-4.2, 3.7999999999996374`}}, {{-3.141592653589793, 3.141592653589793}, {-3.141592653589793, 3.141592653589793}, {-4.2, 3.7999999999996374`}}], PlotRangePadding->{ Scaled[0.02], Scaled[0.02], Scaled[0.02]}, ViewPoint->{2.874406543915874, 1.588055579355628, 0.8160064320647965}, ViewVertical->{0., 0., 1.}]], "Output", CellChangeTimes->{{3.561272154187893*^9, 3.5612721983195066`*^9}, 3.561384817912284*^9, {3.561384908984756*^9, 3.561384916255368*^9}, { 3.561384982045293*^9, 3.5613850429093246`*^9}, {3.561385134889752*^9, 3.56138517600985*^9}, {3.561385525250626*^9, 3.561385614393333*^9}, { 3.5613856557813177`*^9, 3.5613856625404387`*^9}, {3.5613857293978786`*^9, 3.561385750499514*^9}, {3.561465217798296*^9, 3.561465238713442*^9}}, ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzsvXecVcd5Nz65d3ep6laxrbjIll87Thzi/CIndt44b+w4eeM4Wap6QSC6 BALUUReSkOgC0XvvvffeWVi29wIsIDqIDvf3fcrMmXP33AXl7/d8mLvL2XvP PWfm+33aPPPMn1r37PDCi617dmzT+gf/1r11tw4d2/T4wR+6dsep+J8Z82cd 0B78gaHfE8bYlwT+JTrSC535f7//v9+jf9/JPzLMnj17zL333mt++9vfcvuH f/gHs3Xr1uHhd129etX07NnTFBcX85lr166Z6upqfdcu/hE3ly5dMr169TIb NmwwI+VPu/lHGl/gpZdeMn379jU3btz4BZ2OE2DxsXbt2vG7qLWVj+3RKx47 dsw8+OCDpqyszPyMzqXLR/BbjD73Qvg2T5w4Yf70pz+ZixcvmnPnzpmHHnrI 5Ofn/9h9sr7ejv1K+onWJnwZerrevXubjz/+mBvd+JUrV77vLiN3YIRwCdOQ X9NDD2Kv/ry885j7bIY+mv0wtQZ6zr9ALOLcs3Kxg/Qjgy5wf8Sbgt7Rt5e7 7/7ziLenR5x7Sj5Y5D4Yi7jpqItlRJx7Ui6W6y5W7xYvVs89iF5in7vEX0a8 PaoTH/MAyh/8m4g3NYw496h88H3tooULF5rOnTubPn36mNdee43h/M919k7U FzVyD6SXf0877ezZs+anP/2pqaqq4ks/8sgjZufOnb+ps8uivuG2iHMtwt9V UFBgHn74YXP+/Hk+8/TTTxPI/85hqvEtftftEeea+9+VZrKysvi5Lly4II8O JjVxD3X3LX7RHa7bmocfpbCwMOpRfu6+IS3iG34f8Q13RZzLrD1EP/vZz0jq 8RD96le/oiH6ifuuzIhr3B1x7r/DyFq6dKnp3r276d+/v3nrrbf42j90F20Z cYF7XHfopSa6oXs84u33Rpz7T/ngGPc9Vgj4HfVoxAfvizj3R7nYcHexthFv ihJU/yEfHOxuv2PEmx5wT6tv7+e+Jx5x01GX+E7EuX+Ti33qLlb/Fi/23Yhz f5CL/YtCJYVKDdj8RsQ1HnTPmXS1FKr3Eddrb0dc7XsR534n1/17/RPpyJdf ftm0adMG/5PX+fPnu7dboeYr9b+tEzBvRXzp9yPOyZMpEWuZBn/pvqPhLX7H D1zX6ZX/Vd/kWw//y132jlu87EMR534bHpsU9sYP3dhEaYZ+Edf9UcS5fwp/ Vwqj5ME6ERz1XT923aXf8Ky7xJiIt/8k4txv5INPuA8mGUTjIj7zvyLO/Vo+ 1dJdJ8o4GhvxwZ+6Z9BLZLpLzI54+19EnPuVfPCP7oMLIt7084hzj8gH/+A+ GKVl5kV88C/dTesl/tnhZFXE238Rce5v5YOBKNkQ8aa/jjj3S/ngI3Xe9LqI DzZxN62X+Bt3iQa3eIlfprxHE5D99lu82N+m7CmP4lGaYV+qi/HD6SUecpco jnj736VEiNiv/MGKlJCJwqTot5RWZNTFfhVx7mdysfu9S6hrEympoy77964v Ii5m38QfORTx6V9HnPtJXdexX1Yd8cHfRJx7WC4mMEkj08v8/ve/N7/73e/M kSNHkh/SqSj+jsqI6/2j+6te2aoFMsQ++ugj/p9ewgpXvkJZxMX+KeKcqA83 qrXVbcOQuqVGD9WjRw/zySefmD/+8Y/mD3/4g1mwYEHUCDZ0t18S8d2/jTj3 Q7mfxvpgdD/dunXjn/aRo6RvY/fghREX/Wd3G3r523R8SktLzbhx40y/fv3o 0lFXDsz6/Igr/0vEue/5GIibWbNmmfbt26e89bvcredEXOx3Eef+PPwFZJk8 8cQTwRcwFO51950dcYnfu7/+eWr43+feFCWV/hBx7jupL/aAe8w9ER/8t4hz 3059se+6O9sV8cF/d3/VS9wXcYnvufvZHnGJ/4g4d1/qi/3QfSM7TOnK7Eeb tDNPoz2L1hqtDVrMtG3SjrVplI74Y8S5e73v5a/9kfu2t9xww2tvjqu3RKNv fQLtKf3m59FeQOuA1hntRb4LUUCv4PdX0V7jc6/jNW7ewOub2vj7ojT1f7p7 uDd1tzzs+vgV+u0eIyr9bVz4HbR30d5v0i5mPmhCCuBDvH6krTfax9594m3u qj+LuJ3/ijh3d+obCwyzrkEP3m4y8S10NNOefAztSR3D53T82nk9+RLay/QA MtzUYW+h2ed7Dy1Nn/kT/P4p2mdonzdpl2b60uf62Q/H+Q32FqOM2f+OOHdX 6if8C9f1Hd0TxugBLVro+R73UEL4BDJNe7ROaF3QuqF1d6PQiJFhH/BdfUAa GRq/D71R+9QiBw/eH78PQBsoLU1uZLD+9uOIp8p0g1PH8/2Ve1Nb93xx//la KBNo/J5JYkEnZUHX0PPdGfl8yc9mB7KPDibGkYaRnlOfbQjdxFB6+ZJehnFn DNfh7We/7ocRT94s4tztqfvgr10fPOf9lUCcyd+J1zv1yXxI+k+U/DSfe09k R21QgPCh+hT2GM5PM6JJu7gZSS+jAjz39/Ac5ec3jzh3m/esfJ1fOhRLbDUt 9ISZ2uV4Pn+0k9naUdGsbDU99c680RaB3cBnqB1UvxsItgqWDBpcHlvqA/QA dYB7/pgZTd0xhm5wbNAnfvc9GPH8LdyA3pZ61P8/96ZHk0ZdvjmK6FaQPeMR 3e+aMBEasCTrdRPIWIIn9c9Nu2c0fxZdQz0T3DPOjcP/x2tLNxOCfqOPDNE3 R4XJWkWca5i6Bx9xqGLCpclzUA8+yO8jRdqqSd3ikcSHFY90vN6ktux/v0lt sZiErjSPWMk9Fgv6K831F7VxdHp80D0TcW6StpiZTMibFPx1nHY+HQ9EdFRU ALVB6s77Bwe//3Y0zeDO+z6/r0US3KKY2DU1E2vJ3Y+8zuvTJJBQ/T3YfdHE Ktq4jzWhYYz6LsYdlxaCGANsYtBR6DgzRVuad84e3A9RoeXHIs7VT92Dv3Hw +49wD8qN/Hkt1RxlwFnsveJ1YS+vCy32rDHlC3q/CwdoF8aUzUkgDKTZTbvR MOq4xyY3UfFQz0wN+neC15ffiuiyxx2ytPN4Iip1pDrK4fwnd40/uL6tFyjC e51U8/vI56evCPsl9REdJIaGRhFVxZQ9YiL3LVXRZ/T4E7UxPScHXTPV+2R9 M60JyT86Jkn/MvvpiJqpeTLiXHq4A1ME59MFiMZ4DvK/eJ1qdUpalKZ9oklq dfKSArRHk0A4qkqR57oj2R4O4ZFoPdjrbx+TI11/p3F/j9HmtGwKcKY5cLoB msqnqbOna+OPTyf5OYM+N93C2I1DTPqgdoc/FXFOYpc2zGcjK2m3OIkRNZf6 L05y/G8dZn+Y7O9xeTz69QHTVP8YZQX4YtlzZ6KGLVKnfWJR0bCWkUSHr9NU KvtMsSMnMiXQ/nL3/FJ74KbQNaby+/2Bi8mAcWfPJJDNCIt1K3ruiBgmlt4Z dEpZY4NDSTM+UeLmXx1vfh3BG76D9ECyf7fWKKRyKlOQJ9UoRNqt1vNMMi1i TKF0HojR2qxxEfNMiwncyROb+CJNLkj6caq2aQFP0OXU99xiZpY+dD3+fwb/ 1R50Ab1wVCZAU3qtFwxI+K86hWODX/7kWdQI/ZujzN8ljVCm5bNYL7fxH2wM Jcrzj1LB0id3O/MvSr1YC4YGKpUFQ8cXJHikiyON5mgjUBWr1Swxoks8lYBj WjBB7Pjwb0walSb0NhqgSXpXjSLG4D/cCDVOPUJW+aSYfYwarP9wdPqbVHRi ZW4edoPl2+m+OiI7Pdnxo4OCXVGDZU3OZHvJd/F9O4BMzmTdpFIrhXIax12s Ssm3BEyyATo1uFZtaqXRa5obvwz6TVnmH1MDjkWmHP3ODeE9Nx/CFJO6UZNz f3JD+AsVo/4Q2gG0T2yNCfmDyEjrHNjRsuHIZPnnj1ayg2Bl4MA6Rksst5Fh LzMkCXFLdrjskFlWTOb3OG0UsEyPBuFRwtVnN0mSpExE+9dp3l/rRwzIP7rh ivJ/dbjudSZvppN6f6GjYEdAf7JWEsI3TBkd8IUdRkUG6O5I76wuc46OwbUH gONGuDPrrKlCsiIw0opLd51vHTXhilNDaY4r/kDE/YEgvtBgzGri9FRtFUWX VZsjI6LD/84NR1QYzx+OJHo0c/T4iRusWGC1ecE7Ou4P2Xa+5W1nFZ5vEra+ fQOCDvKwX0tBIjtLERHJNDbgZ8fNd3lSDBw7iCbNKqcA6xP4u6wwsv7hFL5S ClNOFJJ0ghV89RxfAusi7rQXf0wfaVqTsApLixgjjh/XD+aRw3+NpR7BFo5a DyXZ4D7FYvK9YcPC6irfsEg1gDIAt7F/n2oAU1mBcsP1HPlsiMQO5Jd8/eE8 WtbKCFkaGcmWhmWhXDnDmeQ+Cy0H052VoQaG/S1NfnNUZPHohnemul24upWj U/Rb1HqPSjX+iSNiVEpmHcP4qCPi95L0lLbAeDc/4L/RpJClYKpRtFaHHUU6 yI6/lVFMFejqZwV1hCk/gjGfRETPq8pIFqN8oYiYlxOjOKeGIrd6/BoPmRex CHJmuLHVnkweVoaGlSr0rVYeUOfTmP3QjeTff7ORDMJG3422ODKS5Csdjfn1 Aefu2gGyzlZUNNI3DZNlJh2+/6tUs91cy+bwHDDPSFSzI632aE3ij/jRSKWc BCwaRAxTIx2mWclDF/PGY1pwjzbGQd3+HTcYUTkadQzGk046soP2Lb0T61aR BCRrw5+e9iMRHZoE1rCNcPZ0mGrkIpy3wh0LNn9YvpBhMTw1B2AM8/qGjlvx t9LtqDiD0BmDSZE8lmT1/FiEPz6NffuPhi/QgNOsXZnBV7UHjYFGSO5yAxSV huEPEH/Ds44jbFxKd95lXt2YMD3XJ9wXdFmVMB1XgI/LEqbtkoRpvShhnl2Q ME/Nu2Een3PDtJp1w7SYccM0m3rDNJ18w2ROuO6GK3PEVXcdwcQdzpi0hz/v +rI3vNYp8+cB5Bp3Rlqaln10+AFaO8SeovPnX62us+onykWLjDyplIxJNNty hoc3TZlHhxWasQg2NvAkIX/DNHc9AY7lNo2j7VM7QUajWc+N+J++GSWfc5Q0 Qfqr3IPc2Ae7Eua9HQnzzvaEeWtrwryxJWFe3QRkbEiY7kBH17VWqMZN26XX 3OetVtp9+obZe+aGyTp7w+w7l2jAp29n/vri1Q6y1X/+TIU3yBlKHd+F88aV Z9bhIvmeXFK0RIxRozF43Ka1Rn1HTkRqWrIVkx4eXQ05hIdTYiW1BSmu5rN/ qjWX6vGX0NfRGFi9N15kig1B4U8tvtm4tpZxpeM20y87YT7fnzB9shLmk70J 03tPQsZ1p4xrr20J8ybG9fXNCWH9Bmu53mHWHT5pNh45Y7Z89bXZfuKy2XlS xnjPGRnXfRjX/edumAPnEyYHLffrhMm/kFBEFF6kGyu6GOAqTXEVNR2a7LTb Hvo8SRD7o84ZFUlzpGFfJO4PvWFHJK4QjY63yASVH8is5wY+7sX9rUhu4BE3 SoNOddcLkUtYne7G3gJwfJOA43ZqJ5GInkisAwHPOvkOZTI0P2GG5CXMoNyE GZCTCBCxL0DEh7sT5n0g4t0dCpx7Ta/NJ/m3JeVVZmVVDf++vuak2XT0rNlq AXFKAOFIjpZ9LsGAIDDkAQwFCgiCQxrBIWaKGRnFF5KREQ8hQW6kfq0MlKTU C6vNrWj3wSC+TIOQDPCtKytGx7mvSwvNmU9WKcz8ZSDE5cusZRUE45LldhCQ sBebaMdWlEiG09rjtI2Vu7Ljb6fmaUCj8hjqGP+nAgnQyIwqCvqZji/qwILN 0fhg5yXz4Y4z7jMLisvM8opqqx831JwymwkHxy+YHScuW30RyIRELZlQcNHK BUAgThCImRKGRAn+Who0+/gWBh86SjSucx422ZobEniTSbIhOUwxOqQZBAu+ dNA/WDDUc+ogLp0V2HLT3VUsDvS/kzROFQ+SVzjE4MZdx57vZVSTdn700TdF v6EmeCKQA/XMxLKEGV+aMGNLEmZ0ccKMBC6GFybMlwUJ9Xq+ZRaXlmOcD/L/ 1h0+DumPgT52zmyjgT55hc/vOW3JnqhFdn+k7TjHeZwzTOnF0DibMuF/zJR9 7ZZS+3acTVPqe/OB9oIXch2r+AO3Ku6GWr40MAB8J9gZABqXsMNt1Tgd9Ju2 wB6IRwj+tPDYx2Tsx9ObBWQ0inSIWz7a3eVId+fDAxj4KWJR6YC1TPvHg8Fv ZKZWJsyUioSZVJ4wEwCEcQDCGABhVBIQhuYlXCcOzL5sBuw7b/rvPaWPfp9Z UlZhVlQKQNYzQE6bLQDI9uMXYR4IQKw2IDGQnSwG0AoDgJjiSwknC+IMkXRT dlHAURaARFCCl/MJnQ4oPRdINV8kWFl0M6QMC/Wv73rbI+x6p0dG/OMuV4Ox ku6yWjI0ZEKHtRUyovREOJPI0w9xZxCMtzchqL2d74yG3goMOnzcDNfn+1Kf d4g8vxtXT7FEJQ/XIVBa+ZiaVZ0wM9CmVSUYX5OBr4nA13jgayzhC9gi5TOi MFAsQ3KumC8OfG0G7z9lBmcd4bPj9+XIn+8xS8sqAa9DAq+aEzA2TsPYOM/w 2uXBq5ahEQGvGIELwLokwIoRrmKmnG2PcoUV/cQ5C600U6awKoVwKz2TsBok SdlYkZoKWIEBGsTg7OEMUfzND6JaeKme4MlaC670pBjCVPu/9LBxGg+DKxbk W3kWyESH+fHB7KPVPxZS4mzSfTdwhog9kmDFvWCtp37h90Zl39cBL1kuLspo 3uGEmXMoYWYdTJiZQNl0RVmyFBtb7EZpRP4VMzz3azMs57T5MvuYjUnPKyw0 i0pKzVK2ZA/z2Q01JxoqHfI8C8VShMRSibaYKSUIlZGAKr/o7JMKfKQCHwV4 CEIsmMqBHkJQ2VlF0Rmg6DQuc8o6ymnJyTDitkan13lKa3STIDphUaPIiblZ sPQwauKKGjqsR5MeRo3OT04NmgecNDdPoj5S3GmwwIvW7D+6P7Fo7JzBiNpC yFqkA5RJBJa+KrdJfpMc/1S/8mP9GbXupQ4ENQ8EVEOzoCbBMJoLGM1WGM0A jKYpjCYDRrCKbE+MKbxiRhd8bUblnTEjco5bkTU2K8fheVFJmVkmMIrrl5B4 2nHiktl1SsJcWWcC0ygnMI0084KAFWdYlWoDsi6JXIqZiotWvRG6KglhirIK XIkwFiOMxRhgEFZnFGYCMVz9pLOkrJCnQ5dnpp6cC+RBUtJIPAyruHTUFArG sIFTO7gxRd/qoUcR5KPHKjM/i3RUE+sUJeuwIQEffOhYB9FChwxHgo31GsiZ fE9v+t+/GYya+jBafCRhFqIlw2mWB6epFQ5GE0qumfFFF83YgnNmTN4J69rO zsvj38jEtiHMjUdOih8Ff1owdE0xlKhtXquYsuqNlZtcmmBUpg0y6hJhowKv BKcKeXuc0ZRuKr8O8MSYOseYOkuYOsNgPC2XJ5Flr190HF+LVvCVPVffxWGs 6qMjJL9uPpdBh2dU8Uxwhkbf6PAMI1aA9QOrqV7IaqLDF1UxmZFMQpqVU57B 15jxkGwq0UESeoAnoj4T0RQjkMnoNXAYo1glhbIodkkxTApW05TRqxajUSVb FHy29FJUgZ6oNaGZ3rllx6xLLfcThc3plfKeyWXXzaSSy9qzGWb8gVLXdXPy 8y0ybXxe/D4LzMsOmHsVmM7D920v3+4iv14FnB4xAmaMcZnGqKzU91eS5Ksk x5/AmWYqFZoV57gxOgnW+GoCJzUb8yk5Ce/hREIACnAWHKO/5R91XPQnuL8M pEitpQAmHprS8aMAdEywgjHdy2cPHiyUtJ3uAkaBKvWdQLkD37aPR4J0lJJI PnEngycKpQNVIlpFmiwJP2iiaynfC1JofIT2DCbvaXKaJqlpwo1mZ2iW5hkb eI/zXJ09+FyT1LiWzLKUlaHSvQlZb+bhv/x4xQoMKEF86dEEi+BFEL8LAPH5 h6ySRFcXnzGTC4/z/8bnVpoJB0oUHN8xcwsK3O0ur6wd09j61YVvjG3rslps i+q+ZBnJQpdNxsqL9vHot0rR5ozwOAM8LvA+Ky3G6L7NlBO+TwWObQmwXQxs F30V4LsA3QGEmzx0SW6N/eZ0N4NphbBAM2JhVTifVz9vHVsVnRPdH6ynmxZG eb0IbOtSBns5tw4pLRTlCsE87mCOJ0h2W4MJr7sd0q1Mtibjp4r03mGd7+Tx WyqTXxfEy0Lj+qbFtIR5dGbCPDEnYZ6enzCtF8q8ZvtlCdNppUAwqn5JErpT 1CILyi6Ie92Iv3U1BnIVBnEFBnH5UcH1EsX1QsX13INWuNUzMyqumRnll8z0 0rNmarEE4yflHzITcyt0bB4AxgsdWKzfvE7DMoxxDtBeAcavO4xnKcZ9AzUF xtn1oYgMXssV2xWXrJgPY7zqArc4YTxGGMcLSW/CdwNTgS8mdJereVEGyV16 Ui0ZRXjMFB4jajPCjwjC82oE5TnooAOHvDhCk/ASAjpGOdk5huHr+0mB1xKE YNOcces7ynbeL+6tl7PRO31LKCjjzcZKt4REuITxGziTNtl3JnBZbMvFv+fs DSvJe3uS3GL7bcX2G4ptu9qL5lZpIt2Kcso7ovT0NoE45/wKyrOgfAvKu6Dc pWa6ECqqMGEI9NFF8aJytv8zEOYNzBpIMiLASp8AGN8lNQEBbFxpTtV1M7vy splZ/rWZUXrGTCsWAT85v9pMzi3j32fm5rFFLZ+5F759pUeAEx4BLnLg+hsT gIMBJWys+Oa1Z8NY+4WOKrJhGP1VbMNU4bIk5sEAYUElWdhEgkamQilQDkHP NEDXlBzXr0b3FKF7ClXQx5gIGUKDw0KDHNDgAORE9kGnKn25b6M1oUnPKDZ4 4lqPwMRJj8grokNinuGJjHhoEiuwY0zyurfAohkRKe9lSleeiPCXKkQgMPt5 SnlvrRu7iJQ48ZJygvKIrHlDuXnPRXCC8pHI1rErpDIHy+BkjoD9PTphmo1L mBYTE6bVlIR5bHrCPDkrYZ6dmzDPL0iYdosSpuPShOmyPGG6rUqYHmsSerc3 VSYpqkFGUUuCIpJDtQ4QWgsIrQGEVgM+K48Jw5YpwxYTww7LXcw/eMPMrbpm 5lReMrPKz5mZpafM9OKvlF1VNj4zWx0COvygmRDrDIh1nom1/eRVY53kPUqs fedqzwp5xJLJ33SeEirVZrULE4vVirVTWad87VqMeQWOnXPMMkwtmMeV+P6K MwGzytEtZSfC7Cq27Doq7Co4ooqmBpcmesV9crk0Fm+ZmgA5MgfMBl6szyCf DRHK8wDSQx6A/UyUJxDUThC/5Z5I3tBh7SPCmK9DPm0SeARWl1juyF3f42yk V/ValJ/TVXVJJ483Vo9Qfh7luD5ZW48EiV+f3zCZ/RPMHzl3u8kcBf6MTZiW 4M+j4M/j4M/T4M9zMMTawhBrD/50Bn9eAn9eBn9eEf5EFcCL8DQiCpxG0ef/ BprpXrMeQFl3IuDQKuUQaahlqqEWK38WHLxu5lVfMXMrL5jZ5WfNrFIxy6YV HjJT8yv59xnQTDZJn2I9yyqqXf4EJdRsYAJ9DQJdAoHE9dgFlUAE2qsECrkg NK16Mcih8LQT21/MIG02iGjt7qrALhPkWhIxh1QrEXMkFl4B3lT43Dku3Cn5 Svl7DG8n8jQW6tSIfZaH3sk9FCgmOrKr8RRVeJpKPFVFoqHekK+ExrkYjeVD hjO0+A9pAqOxWjAjyWHQ6iJ0PFDLrKLDD+EQblKFCT/w1AiFcqxpZSkB0+pb ypLMz4HmAYLozKGqFSyiJwiinwSin4Fr8TwQ/QIQ3RGI7gJEdwOiewDRr6pG iIL0n4WDQlG1daPw/O+el7ER47cB4+dgfTxRy/MgWFtFu/DgNTO/+rKZV/m1 mVN+xswuFWNreuFB50kTpP1jcWkFZwk4WNecAqzPmk3HLpgtxy+bbR6sdyus sxTW2Qrr3AtBrpjCWnRDWlg32Dm7NBvJFIda7S1GtPYG6QanH/CHs1RrofJM YKRVnhZ4V6Bryk8wxGOM8QxGeLGG04rQQ4VHWDvEGOONQgin4wDQnV0VIDyr Avwtw8OWBrGpoU3C+YdCwFC9hHgqLzwjIoBp9YudoRPbzlIi7ighOU/xkIYQ L+0hpyFsvIiwZzWE70V/kESHZMvK9zasZeV7G75lRRqCVkU8GlhWVjxl9gKN 3kX7AK23VBL1dEQrMOrxydAPYNRzYFRbMKo9GNUZjHoJzvrLYNQrKxPmdWFU 1HIdJdS3IkgjheXu5nObgIqNJ5U4J4Q41p5aRfYUILH8iIz9ksPXzaKDV82C 6otmfuU5M7f8lJlT9lVMJdHMAgmszlTOWA99SVklVMEhs7JaJr3X1pw264+e A2cugjNXwBlxUHYqZ/ZYzpwXzhwQztiuI5PK0waiDOolK4MQZzjICmglGVWW Ox5toDiUNkQZNHz0FJXd85hjytA/pV8lUlGHmZN/ONAOdORAO1juZIM3+5U7 e5U7O0vsKAUevuUQHSEPP+5RiPvEZtbEtW6ATaB0TMF7/Jn4UaRiuDqVpY3k hKdHznALh77vok8EM2tZ+R568oyAzxs6fMsqlUdiLSvLm7Bl1dBkvgbCvIn2 Ntp7aB+ifYzWB62v01Hs0f/0JrTgawY1UWBPbcZY18WIlccCKbcUbFh86LJZ WP21WVB51syrOOlScGYWikU0M68ATVyKeYVFSocqs7TisLMV19YEyYb1FQH7 FfY5ClL10WNeZjEpjBLGdpA6VK7N4p6nvuK+/0BHNbhVxf5DasTHGPCNTQUe vvx4GPIl6ITio6q/FPIFAnl5pttMLtCeUy2IP+Ahfp8ifg8Qv6tELrG9OGG2 FQX9aqfW/PiWBpRsAbG4N4EaKAkvgdTmEsqy85HuzSMI9zdBu5UzSVP1cvrX DKao0JSvMJJdiu5Nol0KC3zfpSDg+y4FHZkvA9Q91Oh6Hb+/pQR4H+0jtE/Q PkPrhzYQ7Qt5b1O47S3htj8Gt/1JuB3PwEh7DiqlLdyO9lApnaFSXloIdQKV 8gpUyutQKb1EpUTV/K5DpfA8n028ZwZ5LLLG2BrVKXQsP3IDDLpqlhy6ZBZV nzc2p2B28UEzu6hc2SPMmZNf4NizuKwa7KmxNVY2HrtkNh+/araeuMFndgDD u1SH7D3n9Ij1qv1EzULiU5HkYyuXSplPZZInpTyqsDwyHN8V3cHpCFUU6CUi ibdMZOJ2xkWJfTLFmEu3h9hUeixgU5FlVI2wiWkP5ZGHlkvxLuJT44BNFcKm rPJAhzhGgU1bCxNmS0EiaoqEDpcXmuZIpWLeTle73Ba5hGVT3KmNuEshZItL lo/dGaKTDe/SUVfWyyeqVHrb4jn31nJFbuad20m7uqgkFP6eyewKinRXOpE+ eUMp9c7NKdUMlGoFSj0OSj0FSj0LSj0PSrUDpTrOTZgXQalusNJ6gFKvgVJv wu95WygVVcG0Dkr9zpso3ApMbQG0N59OSIpYY7Ow8rRZUC4ey5ziajNHSTMj V0lTUGDmFxXz74vKDlrpuvLQKbOm5qxZd+SC2XDsstl0/JrTrdvB2Z34pt1n AyNs3/mE00Z05AZp6r4hlhzcKvM0UYxTedJlKvBrr1kWSVgrjdnDTDqTiCBQ nAl0tyNQWRKBio8EBGLywPpiAh1kAplc8CenyumjGFOokdlXHqik3UqgHaqS iESbC2AS5EOQ5dVWUV8qKF16UZqz06zEscmp2mKOOWmONKqbZA2Xr4msG0+H 2l4x5k3jyOAW4SqFGSaTxvXrjGc9YddUx01mpxsms8sN/R8d3xG9Q4ZX2HMx mZ8mJDhA4a5BCdN0iPRhi5EJ8+iYhHliPPTOpIRpPRV6B0TpAKJ0BlG6LkiY 7iDKK0sT5g0Qpdeq/wlJ/k9gvX3LbANutp5WppAld1J0EFtxQMxaIGa16p8V R66bZYcvm6WHLpjF1WfNokqJZ80rPWzmFleZOYVl9slpNn1eUalZUCJG3eKK o/xz5aHTZnXNObP2yEWz/tgVs+Er8WO24Cu34etJFzk6nQvolK1UyrkQxAIK LK3qh4y7kouhBQOUtMtsirvp9Jv6LgF38Bt7/OVfhclTIuRRGBYcpn2KLHHy fOJUiurJrlD1U55a/WwT9WM25wfxlnU5SatxmgT5UzGhxAgX4RLo+fm3AXVY 38SJOmmyoNxlyf0iNFtOh69uUkWDP1DyJM8w+roneUaFaihFzTISm+qcUel4 Q+jVGe3FG6KLXlY9/e1ADaV2bUxTDb+1GgU1BIY9BYY9B4a1AcPazUiYTrOh hsCwbmBYTzDsNTDsTTDsHWGY7sdwyxT7Zy/EtgMw2w6QbTstTPNZtsFjmfWD Vhy5ZpYfvmSWHvzaLKk+YxZXnuC/zC89BJZVmtmFZfpt34XCCib0F5QdBs2O CVMPnTGrDp83q49cMmuPXTXrvxLBtBnfueWU3Estqp0XqtFh/ai8gGo0334h od4WLcYr0VaqPCO+lRPNKiQvS7WVNp7ejxPnrK9QqRObFCuI4NydrLR83pUe Fd7RUWQVF5hXcEiUVj5xr9pxL8bkaxhQT+nn+1I7i+UyUFxWT1m9tT4XwwL2 rc4O8oeSl/m70ic2ikaHXTrGZOOFOGm68NTqKKungln8u1NyzuebdZkIhMlx NuWcnTjxQwaWcqkmMWuF2hqYzPZgWQePdV1AoxfRuokVmPmKteDvC1t+Srmm OgfacjgcKVDuqbGw+ibA6pucMC9Mg0ID5bqAcl1Bue6g3Kug3BugXC9Q7l2h XFRF9zoYJ/Ul7uVzO4HoHR7jCPGE/I0nhHHrlXF0rD563aw8chWMu2iWHTxn llafBuPERJxXepAZZyXrrDxJEZtdUKzn7jLzy444OCw/eNasOPy1WXXksllz 9JpZp99B30vfv9UyD/e2C/e4+5w4XFbYk5KzzAutgGL2FV1I2CrPvNRJFxOU a4pujLIgg0wash2tc+WZiGwfEvk0bYwiFmHe1Xe8s61MucfEJ51XVJOQjL7a 1CPakd5r4DTf/iTNt8fTfNaIVseLubfR496aA3B+wb8V+xNm2b5QmqZdS2PU DGSrMD3CPozLUgJ6b4MQ8/zoNh2WgYKrvw4FLPzcARu0IGD67IuKdJPGuxWP y6Mgfz6zrZhFjocdwatOiYCHLyUkwNFTPbI31MhUNWjnadnIVG+sqXpjj8Ib exLe2DPwxlrDG2sLb6w9ONlpJlQgOPnyPKhAcPK1xVCB4OQ7K+RzNyMkd/k/ +ZFBy8PtSTzcdEK4SDy00S/h4WXw5wLzcEn1Kf7LwvIjZl4J8bCC/0/RwVn5 1Ar1s983c/H3+WViYC6pOg3NeQ58vmBW1lzh61quE/dJ81oubk/iIh1WC2af D3MxL4mPYCNrQQVaKa8Jo5dyImAFBw69lB7631mrSGiWSc1NJmLFKef0WZct zly0TIzx6/2m/JiwkQ7ShCXQgsUgYxG0YKFOOhccDGtCUPKmliipQ4FM45AP t5F0Ibi4zuPiSnBx+b6EWZqVMIv3Ok4m1bdOkxWEQ2iW9gtHqi+UtHFdBOYb njG6hJWEVhMmBzx6u0t9u1YAkXDpZyrburc3i57XkeNmbIGbzHbgYPtEwMPO ykXiYddAJzIXbaTdOnwfiUlq56uegJP3NEzQ52CCtoEJ2g786wgnrwv41xX8 6w7+vboQ+hD867UM+lD4F7VnYh368B89fUj49rm4LQUX6Vh77AY4c82sqrnM umwZdNqSKvHzFpTVgIvVTh/OVH04I89ysb6ZU3LYzCsTK3Rx1Rmz5OB5+IyX zIqaq2aVzbS/j7/O0pFuhcQDGcmWjnTs9YxSO6/llkgRHdEK0ArRir7W8EfJ 1zb+U4q3lkmTBXdpvHxF1wmIOUqczEjFSYnni5lDnHSNxRa4KbRszLS0BynK 0iN1UjPG3PxuiJm+ttznsZMOO9VFx/aICMs6a6mCoSvB0OWiLc0SMHTR3oRZ sMeCI40J5S26bET0UxE2gLll53r7NnGVDIiAjRwFUzmDPh1tngVh1TqCdoOL mzmCUYHIkDP43FWT2fqayWxz3ebkMDM7KDs7J2nJbimmAdRZbNq7tvXabDC5 H8ZE7olaB+d+k4pzZ5I4dzKKc1ehry4p5854nDvsce4+1n3+Mauo2swuAS/L JC9vUdVZsxie49JDl82ymutuHppm4mg+Yf2JSOJZNUxq0MVd/Plk5V7e+TDv BCHFpPhKztdiHi/HOVd7+UKdtIsz7dKYao56TLbjtKT2K9pKjw5WhkelMeNq hHHFYFsRbNJCnUUmZZhf7exTIwZqWrKBasHkR2ace5jCPl0dtk9FJyrr5u+W z87aEbDv4yZBvTFDeq4fmaZ9mTF+5SLri/pcs3yLMeNuC+Uh+UGYZKfwNVWN pA6l4+q7OTLhE7j0rHLq+eswPW/Y/A+n6V5M0nS+1enNATQlPkHTNf0UDZZn U1ieTWF5tlDL80lYns/A8mwNb7AtvMH28AY7TYXVCW+w26yE6QFv8NX50HzQ fr2WJMx7yxL/Axb+Q2CCPhhJw61JNNzgaHhdaXjRrDh0Xmlogy+S02pnDMj8 pGNaXgn/nFl00MwqOWI14/yq82Zh9SUddjq+zSlVNCdOM3s0w0ezfZuVgXRQ nIgt0bNJU3FeiiyrP0tDjdUU4mcRWjFPDZSw5WnLXZSxd1mmy+LiTL+6iSdT bnLPzgS1xJOOLlPixfj15458JUnkKzgYELAua5SOkDXqpXcw+6DztngW6XrV eWvAwFXJOg9tUZbovHnKwJlg4PTtCTNlq30CKRdk14zHiZNxUnNxWbRJR0O3 kZ49opL/3qG3E+u+E1o+5Juhr6gpaqu31LXcoi63UPVfOhM2Q6jahukqXBQd KDf/w0AFdk24mfCQgWpnJIi2MFCbQgU27YMGFdi0P1TgoIRppbMST4G2z4G2 beAwtgNtO4K2XUDbrqBtd9D2FdD2ddC21yIYq6DtB8sTehffiLdSrlWWXFna RlL3VArqHrmi1D0H6p4GdY+7mCpFcZi2BUVsrQp1JfVqRtEhM6PkmCtjvVCt NcqGp/RHSoOUv93Os/QMSb2nnWquMl/PBintnJFL60XQcs+52GIB/luorQit mOlZci5EWdaQ9JrOS1nLvUz1ChfBiTvHkZRlyHEs1z6hn6lpm2HKjojeLCXq HnbUjTF3M0LMzQuYK1HV7/Kfk41VX3XuUNVZl7FK5F2h5F26T1TnQlKde1R1 7kyYGTsC0o7fFNjZWi2pt501rO8UpG1JfLUawdeRlquvJ/G1p3LWbh9ACE7m 7C26kGpDZ7a+nsbMre8rWpP5glLSWq+dEjaoEalwkw1YnU9k9n4mCrcZDNgW Gn59chgULtzN1nA324K97SdC4YK9L01LmJfB3p5wN18De99ckDBvg73vLb0p c+9JydxGIebuiGDuFo+5Nm6w9tg1MPcymHuBmGvrONrQKx0zlbBTcovM1Lwy Y2dcZ1VcMnOqrpq51Tec+0nLV2iV5DIlLi0go3xmStdfZ8td3BVyN3kOxKZQ ntVFvbaagpISHDZ5aPlolsQxU8QkLcZribZSdV3jVB5Bh76C6VpxKoj1xB1d ha3yQDbcarkaJ57GiKYx5mgjx9JIJVsdmvwwNsE0KgTrZkA8JbtVlewmcHVD kpJdjbZSubpsv6dk9yYs+Ui/Tt2WMJO2JMyEzQkzbmPCjN6QMCPWJcyXayRX tx6rzQw3z57ERJt24xOQnMZge5y7OJZKoPQVp0/CKOUZSgp7XgsNx4mRcN2Z jGQBW1K2uZGsUv2Aj8uGSVapfvz1/WAakizhZrCEm0GlNocl3Eot4aeGQ6WO gkoFMduNh0qdBJU6BSp1OqzgmbCC58AKngeVCkv43cVQqWIJ/+AmvOQu/BX9 lqHj4k+BWOrRse6rG2bt0Wt2v9IF5TWhKOv0XKHc5BxJhplccEjH4B4zteSc mVZ20cyouGxmVl43s6vkkvMOyYJ7Wp+55KhQcLlHwTX61b7ta9dwbte5SE5D oyUAdt0l8VA5lYOfuawc83jiPh+vBWiFaEU0rVjMKfwlZxJSSEl1pq16UybL iWO03CvmzF2PhWmOffozRjSMORbCaLHqslSt3ZJUZPQsXr716PhrjNl4Z8jg tXrTGbweH9cSH9FWKR+Xg49L9ydsyYf5e+Wjs3dBbUJ1TiObF5ycCE6OByfH gJMj1yfMcHBy6JqEGbwqYQasSJi+yygj5WyGPPMbpLNep5fXmK3JOrG76MV6 KuesWSvjKMx6/ga/Xnd/CLHNM1wj1J8fvBEv5LuRaTTWaG0Go7U5jNbmUHst B3lqD0ZraxitL8DX7ACjtTOpvamq9mC0vg619xaM1neg9t6H0fqRGq3f/2aq 7+8CZzMecjZjrF/iTEB7pCspV2mcZzkczKVJsdU5RRXW3JmUU+I+atXlpOIL ZnLpZTOl7JqZWu7yX6h+y5yDUm+I6g4tOqIcpNUIXyXsMnjSguvV/XQBoFMu hk+LCdzasjPOaiUCHkDLwelctDx+vHx+vAK8FqIV8bniM1S+87SLA+Hy1Mro K8rItyw/6c3zx10MNRZFt3iIbqID4yHKWVPV0s4eIVP17si4qp8EsANtu0e7 TYUB7dYR7dBW5yZsUHMJNOAiaMAF0IDzlHIzQbnpoNxUUG4SKDcBlBsLa3UU KDcClPtybcJ8sTphBoJy/UG5z0Wem95A3wdA4btzKU3lksn88sodMlSEv3oh Y7K56jFyBIONKECttglRW0q7G3bnioCAwr/bPLPT03CppjRUxUVl2VCgpxns zmZQb81hd7aA3dkC6u1RtTufJvU2UtUb7M5OsDtfhHrrNk3V22xVbwtUvS39 H5GPd7A29/G5lB5j0lxHONhzBVyMCPZIzNV28MQDxWZCTlmIh2MKvjZjiy6Z 8cVXzYTSG5aHUyukhhLVuaS6SlRfaT7QurCGi9LY8iSkEkPhoBOSDsTpOXZy Ul1NXuGjQiQLP/fhwbLRDhBBc5iETEr8KZ9rHRWcJjVYiNcitGLb9HIl8jNO 5TQCUibxURHkTTem5GWcXzNS2aZW8vimqacNJaH0r1KGf3b41mlRQM31aOvy NbINjbgSGnE5NOJSaMTF4OdC8HM++DlX+TkD/JwGfk4BPyduhXkKfo4GP0fC RB0Gfg4BPweDnwNWQh1CE/RRfn4I++s98PNt2GNvQmu8BvusJ7RIt0lBubPM sdcZsMJYek0zzy+WAjHtAOz2y618w98yFD+s8dolWANmtsEbwGCrOS15nbFK E5Ctrwf2KdhLn+X31TXtkeQ52mXGNubTDAZqc6jPFjBQW8JAbQX1+bgaqM9C fT4/StUnDNTOeOCuePDu6IBXSH3OUfWJDnofD/uRdtj3vhmD/7Yuz9Fnby3P sYEX87lglh+SzB06FlYc5Vy5OcVVxron47JFlQ7LllmS4bnnzYj8i2ZkwVUz qkjpez/Xu6aStFSaloqHUhHRmUlUpoPqSy215u2xRDC5Ymc1bcIPZbWibT8Z lKLZjUfZi0Zc3o+WjXaA7NIc1pu5pwMuF9DpQnYYi7wyT3Eq3KgULdGaBaWU vsMrVMtP2MmT8iB8K6zOCLHaJhKkIHYav94VaefSYZXuTfMMKujZidwNzF7N /2HHE227pTe072alt11FvBb0XgPNuwr0XgF6LwO9l4Dei4jeaPOyNEi0B+ME ek8FvSeB3uNB77GwdkeB3sNB76Gwdr+AtTsQ9O4Hen+uhl5v0jsLZes29MwL oxT4XybMUyDBEyDDY/0T9SxfyfwkM/RV5hRzmWI5XcOWB1PRUrst01q4TZd4 XpXu86yrY8RnqxCs2+kUc4ckxfxibcWcHM5t+o4azPc4ndwSRvFjqpOfgVHc Gjq5LYzi9qSTYRS/OFl1MoziV8HqN2CG9CJzhMySJTdltGww+Y32Vf8lvz4Q JnxEmMipa89fpZS6VS5F6CwIH6QIzS055BYQTjpQZNX04H1H3dgMyblYTzk4 LprndhJ0vvViNZBEUWCm+THJGySabzwuN7gFbasnlXZqlao9J4Xm+9D2o2Wj HUDLYa839xSX6cFrPloBWqESvJA0ctFJ5vwJKVdIR4yYHnM0T/eiu5bTgf2s ssEFeI/g/aVUtIS4/O2AzSrNrOea7zO6Klj4kSo3gdmMtpsYjbajVNnsMvu+ ZTaC1RvA6nVQ2GvA6NVg9EowejkYvRSMXoy2EKxeAEbPVUbPBKOngdGTd8CQ hjE9DoweDUaP2Khs/a55jwKWMCDfhCH5KgzKHgBxNxiYL1KAE+qqPQU8ldFP g9FPgNGPD2RGm0dJ3ZHag/prRl7k++JVMpcojvOacItUJ6nQmGp24l+I6+0d z8kKsES3+jswyK/bzggp7mSz207WJCtunWNt+jbuFnfZ7AO5ayhvm1D0HKzt NnjYdnjojnj4LqSr0Rnd0SmvoHNeRye9hc56Z4HqarG2//zmxKYKEj179jTF xcV8hvbvra6ujiJ2k8ARvr9uVteauklOfqCEI2H2fDjFtLiRjsm5JWYCLHHZ FirdDAaKhuTLNgS0HQFtSyA98qDT2fPQFhySgkZUmGVpjSzMXwmOrEZbC9qs B4U2om3W+9mGe9uOtgNt14mAzFlo+9D2n/TIjN9zibB5TNh85X4B/6+QFTEV wi3SJjw+LmUkYrQgK57M46+Ux3HlcZmmbyiPWSmnEY9tppwfespPUsmS6ZBe OxVXVHIFfcHeCiHxLrSdtrj17czhLdDKm9CrxOH16OG1yuFV4PAKtGUYgSXg 8SLl8Lz9ys+HzXD4vUNhVw+G8h0I27o/lO/n8H0/1VxSgiHBkWBJ8CSYvgy4 vjRFTE0yOcn0fF45/ORQUWStKIYKxdaKOPypcvhD4TCzhZxUn8M9lE3dLI91 m9VOAZfJBI85bc1UViXcRh1qVtW0nEv/4D7ZIYLDyVr61eDOHIdxt81x183h Qjf/BE8Bdd2yL54K6vrxwYk7bsJOuw33pUuXTK9evcyGDRtkVzcW+7+IMqmj Ev+8hHgb6VlDXDwiXFx+6Gto2DPO46XEPnuAh6JibjMf7LxqPtgV9MvH8Lg+ hSD/bL9sFzTggGwfRFtKEVWD3R3uYHPbHuQ1zwRa51R7tEVbAuouA21XoK06 orQ9mnCO0WYwZivaNvBoO9pOtF1K5T14tCy0fSeUtmgHTjramjynXPPJ+y0g UhYyH4mtxced6j3uKr/YRZT+ZA0HsBxn407vyofxW9yxVjfxrRU3TiJwsj0d Y/pmSDmAyqCIDJPXpi7VNzughLdrn24BgTeDwBvRNoDA6wqVnLeZufvVKcZQ Td0NPQvLeQJ07Vjo2tHQtSOga4fBeh4C63kwSDxwnS18cqdpAYg27ydRH4r+ cBSICPieR8DAThYKvKxq7SW1m9OENR3c6McDJepIFnKJnX3czk71PRydE5+k QUkO0NEU9nGzd9Bwm82hQVtAg7aE7GgBO6AlZEkr2AWPQbY8qe5v6+FiP5Ad QfYE2RXdJoud8QqM5ddhLL8FY/kdGMvvw1j+SI3lB1OzVqo0pbFOpX3v+/bt a27cuBGlS4XCUkUqeR412Ru261noWMtGMuXRX+H1LEsPnuccXDrmlR218axx 2cWOdnaPvde3wJjC2L+9nXd14z3/aKc32uXrs31CZTtBNxw0HlUoG7aMB8wm uTJG9c1MIJMmhOYBwQuA5kVoS4DuZUD7Clvr4g6zDvRYD7JsRNt8TBmMtgNt J9oupdZePFnWcWUw2gEWVjkn7M0Qg/M4HTefeZv/lZSdl9LzhZz7QEUyi79y XP6K6GhD4nG3wMXNuNLymsBwdkT2OCwqJOQXHw4Ho5MVsQSjeVkM14GylT2I xlTxTKuug8pmV0VCd8a4y6xFJ69GZ6+E0l2OtgwydAlk6SIo3YWQq/MwKHOU zNMxUFNA5okYuPEYwDEYyFHbrCtwt+kPEn8ON/hTXdD4Pq3sgBZ+C1r49XmS CvAytPBL06GBoYU7QAu/AOQ/PyaYU3lsiHqYt0vKbG/NQLDctz6yZzwz97sq ObsE/FcfWY+Y5X/bkObFa7pY0p57TB+Twf9R7Zh1t2j32Cre5u8L9clsIPOh FaRYKyjeRweIw0/Hc3jQNiNgTcNP7ggTpAv85K7ojJfRKT3ROa/NFLeD3A9y Qz5cJJ9jhf1n9Hx/Jr8x6xspvY8dO2YefPBBU1ZWFlmT7S+d+SwTR3fUXrx2 MiD7OiU86etVIPyKmitm2aELZkn1ObOo6rSbGpiSX2km5JQqx+XcKxtk985e Wy04GprPwfABANNgAGsoADYMYBsJ4I2B4hgPlk8Cy6cEO5/MAV7nAccLqpng VhWvAP5XgQlrwIx1aBtAnU1EcLStoNc2tB1oO495BMfPLLR9eKL9x4Ogag5+ z6XGRM4jvubTSwG9EK/rM6/pKFZ+2zI7dJSyNq6tkktdmEu6yE7kxvk1LSC2 kDvG7I6HjOwYs1tkAHPbK5HQgOF9L5N4Bwzq7WWqjCEhN5WIMl6Pthb9uhrk XoU+XkHERlsKci8mcqMtwDjMPaBaGmMzNcve3HfMSBB7OMZuKCT2YGjpARjP viB3H5D7YyU35fG8DXK/QUsrgdMewGs3Wt4F9dUROG43UbL5nlNyPz5Msv2a D5JUhcy+CXnARjLn+mZtr5ip1lU0L9Osk1rYMTKoXWyc5qaU1BmW0Epi8p+D T9LxUG0LOlmPv5WkxyGCWkIUteojfv2j/cJ6/Hno8RdGqh7HA784QfX4VHQM yPwG9HivOVB58zgYyEFBo2q8FpetV3zixAnzpz/9yVy8eNGcO3fOPPTQQyY/ Pz+K1j/3znGlBZ4mJVrfFtLkG06EKy7QsYqiTrwW3FZcOOcM9ZnFNWZqQTX/ b6zGthu6DBCI+zeAjLeBkPeAlo9g330C1fAZVER/oGkQmD4ECBsGpI0E8sYA heOByElA5hSgdLqidk6QFL8YIF+CtgzQX4G2CmRYA2qsQ9sArmwCo7agbcU9 b0fbgbYTbZfyce8xoTkd+/HzANM6h8icS0GrPHrJp5cCLhp6jPq5SD9M5eJs ybgS+nPpsYQX7AqzO01fQ0yusaK1pNZclWeG21Awl5zTgqR07MPPLNLge6so P3UPpN8utJ1Kcjq2oss2g+Qb0X3r0dahK9egS1eB5CvRvcvRlqKrl6AtBtEX os3Ptch4yEwBwSdheCbA5BoLDT4aQzYCQzcMGnwIhnEQhrM/iP45iP6pVgR9 H770OyD6W8Ds61S2ABh+GVh+CUTvPE2y69uC6K3HyfufgFJ79EshegsQvXl/ ydLnYiRUMuHDhNUHUe5zMtk52djyXber4rUDxPJ6aq17LPesdXnq74ct9Vc9 dd3LU9cfKstVXT8Kdf2Yr66/VHUNa70jWN4FNktXPHV3iLlX0Auvw1p/C+Lv nbkyk2fVdd0Up0BX7969qaA2NzLYr1y5EkXxv3CeN556s63vcMqr76CVvKxM XHn0hllec1X/J6+zSo+ZaYWHuWY9v++OIJx2m3kLo/8uUPAhEPExkPEZyNwP aBkIMg8BmYeBzCOBpjFA13ggbWKRZcBdZh5QuhBoXQzsLkVbDmCvQFsFFq8B 7tehbQAHNoEZW9C2gj3b0XYcUQYfDe48C7/vAxH3c7T5AFvMOXjN1RbJ4zTH Y+YyTTaV0Evp0Uj+pit/S7Qikf5k6loH1o93OZeZqud5FfSyNfVqP37u41gY KAzBSBzeg7ZbWbwD/bNdFyFsAYs3gcUbiMFoa8Hi1ejLlWgrwOTlaEvRv0sK dGh+Zuah22drjZZpMMWnYEgmgszjQeQxGKZRIPNwmONDQeTBGMIBGMq+IHIf +NUfr1VtDSK/vUwWfNLCzx4gctc5siC0IyD8ApXLorJZSuTHqJwWYN/yC8m6 ICI3s0TunZDkQ2uT9wpW2Uf44/Kezgl/4ipJi7NVLqHthiEj3PrvEckjLk1S 7XCrvl0QTNV3c7LFP5FwfCtV3xSmf0rnrJ4fJuq7A2zxzrDFX5ogU+9Ofc/0 1PcCp76/G8ntqPnnnwY0SwuRF01CaBlcaW9BpXjRM4qPmikFh8yE3Cr+1N3B 5xuYdzC2H8Ay+xg07QOa9sP4DwRNvwAmhoGmI3PsWNxjJgJGkwGnaYDYTJ0F nQdlshBQXAxYLkVbDpiuBHRXo60BtNehbQD0N4GuW9C2ghrbaoKZ5V1KmT0g 0F60LLT9xLID9JJDL7nMtzzdEyifuV3AgebCowFJi47SVszK1PpESGFePLTG Lo1fG4SDWIeC+mE+K+0tUp18YqRlZRbaXpp4I0reZnbhdaeScpuSchNIubFU 1OpatDVoq9FrK9FWFNtL/5VZjN5ciF6dDyE4J0+dYtjQU9HzkzECE8DKcRiN 0WDmSLByGFg5BCM1CCPWH/7Q5xuhWsHK3spKKnvwFlj5+hKoVrDyZar7OEfK JLQH9tpQXUiw8mllZSuwsgVY2RysbDZQVtFk+qz8QDnwTsKFqW22u+8lhxjZ nkPT7RIcUdLtFImDjSKt6FRxaOs6eDPFHINupjHoFrjFlt9Et072dOss0a3v o3s+Wngz+vFgSYlZcTA2WWWpCjPOuYm3szFsy1+uVsNxBU3H1lw3Sw5dgdt5 0SyoOmfmVkjSx9TCI2ZivlTsu8/PyXwfQ9t7a0IpLmJpJGAxBmQcB5hMBFym ADrTIeNnKRHnA3ILQcbFgOBStOWA5EpAczXaWiB2PVC8EW0TkL5Z0yG24ud2 8GEH2k6dWN0DpuxF24cbzz5Si4j1Q0QsUAJSZdjCI6r0iuhTxeyu0oJym2aU YenorbxTYc22Liiarhy168+VoTGmZzpXyLSHLcQfY3reZfbjdd9BIacS1OxB 241GDN1RGbBzM7ppI7prA9p6tLVg6hoXD/ylWYEuXQaWLkH3LkI3LwBD56HL ZytDp2EYpmA4JkF3jgdLx4Clo8DQ4ZCdQyFDB4OhA6A7+0J39oF8/Ri680Nl 6NsroQHA0FfB0O6AXldAsMscqZb3Ahj6PBj6DOD6pDK0BaDcHJBu9oUsS+XC KLTs+5Mkhr6dSI5jW/ll8z2YZZ0cSZmj5Nq2E/Vox4l+D5QoJWDaOhIdPKJH xa+9IJZLwNSaEk11BpiDWKo4aV47peIcJ4rz5UmSu/ZaasUJGXGrmvNhn2R2 F4ENnOe0nqsmrD9Ru4ittURoQmfJ4atg8SWw+Guw+KzI6+KvzOSCGjPmQJW7 Gzun3BsI+JSQALk9APL7C6BkGBAzEvJ9DBA0HpbYJKBqKhA2HUibVaRkBhoX AplLgNSlaMuB3JVA8Gq0tUDz+upgGcImoH4L2la0bWjb0XYqU4jIWQGZyQAm cubQSy695LmoUr5StZ5YUiWcf0FvKXEVAyXoRIdVqQFrY0za+lLbTBuXRtc7 0a0FYrzDmepUpSzTFm0vReWIs/XNLrzuxHNux/Nu1UDzZvTBRrQNNoP8QbMG XbQKbSW6azlIuxSkXYwuXIg2H905F906SzMup6GrJ4O4E9D140Dc0SDtSKjW YRiSIRiaQRii/hiqzzFkn4C0H4G076+Tz761kmu8SibOPebpiVIWlo7m4GfT L6VQUS1+fpTETz8fS21au8qeSaUTTCBbGrMuLZmYLrPSmrQ+LaPyoS0tIxxW +eb7QgrVOquPQ6E+qQq1NZ6u7c0U6uxaCvXWWfljnWSiw27rsZ4SFIiJdwUb P3ml2Veo3lnKnLxuFh68YuZXXTRzKs6bWWVi9k4pPGrG5cp2aX/uJV2/j4Ht jQHuAwXbF5J6ICT2EEjuYQDDSJLmAMh4AGUSADMV4JlOICpUXgJgCwG2JQDd MvByBdoqG3G63awjaqJtRNuEthlta7XQcgfaLkvLw0LL/TVMywY6yZ+vFaGp 2eK2UrgsTQxYLdFSwrOzyk2PkaJRg6BwsTV8laNxvlacr2156nKdVf273dfQ somv+w9RPUKPo9z2oO2mJ8LT7UDbTk9albDZuhvA03Voa9E/q9FWor+Wo9+W Ud+BqIvQjwtA0nloc9C3Mwvk26eQcYO+H0/GDkg6CuMxHEQdCpIOBkkH7LTl qOqZV2Hrdl8KLEINdIY66AD8vQAt2nqGLfh4W2o29kqEZ36sh9k1WOQZ8jDb 3xBGaiZGlLqkjEiv4hK/LyrBOYmOdAvulmSpgs2IfFSV5BOQK09/cWtK8s0U SvLbt0zHH3m5GLTxmt04inWictBuIGV327EhXtpEyu62M6fyAm/AZvXt+HzZ SYcOWTMhy+Y/oKgC/Jg+ELz9tokgJoFMgnkUxn4scDCBrC2yusDJ6cDIrIKA j4uApyXebO4qwhywt0YxuJ50BnTIJrQtVeoVpptskOCAthxHtlyyRPNqAGQi Yz1XoL1QKVlkKcXKtMTFfpSWQkUXCxLaelSM69xMsV5K+EivDRzjeYeFGt1U xGPlAWZrNlvCRMp9aFna9rIlTKSMm934/04VODKy32JhREJpPfpgXaX0DeQW y69lZdJ/i8nmQF9Sn84tFltkhsq9yejzCej7cRiH0dmupGN/DNPnO8TE+QjD 9/6mIE/mtdUAJSjaDcbuiwBhJ6iFdgBlG6iKZ0HRpwDYxwDcluMV/wB1JsCd OSSY4iPK8t/eFR+wVpaUBITs9vNcdLC9tDiTUfMa1cKVidz7XcIy/+0bGLV+ RMgZtp5LSuHeDJU8pDHbQ2N2gsZ8sY7wLmnMDxd+U47+MDAy7wkpSCbmV942 WLoV1lLFJiUVLjh0w8yrvso7JNL+o9NKxZAdm3dURu8hP45Lzstn8Ef7QV0O grocAhE8jIKEUJdjIZ7HQ11OAiym5Cg184PaByTqSeQHq0xuJwqabao1dmnE ZQ9BmCCNu9uPZrnJ0K/hLUHjxIUYkSLGdmU6a69kasaEZJ5aVF6yjym8iweE PKyfSNPqoLZAr72sUpElgo6sZSK1bLndGFMxXYiobQ/+tPtwEDrbfkgMdDo2 48k3om2oFmuBDHoy7MnAJ0OfDP7FZeIAkCMwD704B21msTgJNiIwCr0+HL0/ FAJyMATlAAjMvrskjEfhvA8xYu/RpPkG+V7ala07LNmuy6E64H52WCT7EbaG ungaauMJQLMVjLrmE2ozkgq+qzK1O2hGkrJ7onaUtlPgTzpiWlrGouzc9jes bVprGUFdCjSCkS28aVZPk3Ky4gO3zLYfeOeYZDwxspIXp/hE481+j/B2pFYh UkbgvOprZnblFTOj/AKvQ+fxk/L3smfgx9CAn0ED9sNgDaLJsx0SS6CYwtgs jjHY7JplwAGFJ8jjWU2hC7R1wAsZXJvQNleyHcb22E6fYQeVYYeCmZFsD8ox ArZsEJrBPlue+m/5aica0o6F9GCis4g/VuHFA4o5m1PeUcsOZWXHISLNKqTf io54W2odCTZdzPVEAImDbL5REhDfZlGRpY3M6T363t34ubNGQlrbiHRqcm/S 8NcGiklTbJqmk9BJK9Bhy9CWUAy7XEJoFEqbW2rv/naOe4+DWBsN8TaC5qBB vCEg3SCIv/4Qg59jrD4F6T7CuL2P8XsH4/jWxoQNHNAeuS9CE3aCsdoOmrDN AtlL96lZsrduS6iFZhNdcnTm8ARvvMiUS4rH2sw35hsnNUCzdUN7SSnVWctf d7we5pzlW0rOddTv/3Fqg9VqwSSDlbIom9l5ES9H6bF+6kdqeKf1sESgFceK Vux2c60YTdO7Xd7A9wNldSctG+f1bbSEnBl51DHSbcG9QPUGJexSFZZZlVfN 9LJLZkrJ15YZX2QddgLgpx75w6FMqSdEQUAK108HMGblyqUpYEhxCIpHUCCR GLtKg4zE2PUUgESjkMYWCkxSgNIytjpgLB3E2P2H1PTj8ElMAim5h6K4SkcB UbnQmZb2iKJpehJN1SiNMyfTQwy1G9/FmKcZwfb1R0IsjZH2jrFre5/Zp/En e9Asz260XTRZi/PbafJWZ4aYpYdktmg92lp0wOqDMpu0Ap2zDG0JOmuR9bfv MrPRlzPRppdKEggd46Ehx1KyJwg7HOMxFOMymHK6MU59IUz7QKh+DC35Icj6 3jbrhKTJpgtMNbCkt0ZaGgPlnq3Y80YKxl0Hga6BatdcDlH7oBZ2upqi9LtF kKtW6Of+9ki4vCFSqnQ0jSKYVWp9a7uHbSA82o2UQI1zDyff1D28PzXJknQh R1IYGDFeUZouvKoRXtEitHmeiqGs2hmV1/V/8jpob427Ivua9YM1xg/wvDPN P9M89HjI1kkYsikYuukYwlk6Z00zZjRzthQUW06zajS7ViL0WlfGEUKzSelF 0cNtlUqvKjdtSmHGLI097ic2RZCrfipyWVfN14U2NtPAszEtc0TfeefYYy6i KZVCnlKhaZR8VX5Ep1xLqSOWUhTs2X/EojVLJ0t9Ou3U/AeaXKVJ1i1Ku424 3/WHJWeCcidWo608KDkVNm61EJ0zH500Bx02Cx03A504FZ05WTk1Fh09Gh0+ gpYuQQl+gYEYeEBgcE+QSgKgfwwWfKjQfxu/v3nVLWfO7Kbnu4AtndE64e8d rqIxc2w2Dhl/AV9sHXlx3X7sFJOjZB3GYFNv1Upyzl1K5TTaU06TkpTTrFrK 6dZ586AX5CTeLJIWI+o0VGZMLLlsxhV9baQnjIYtOTooy2dE4/RZK+kYlJYx GKbG0K2SczWSMqhhhozfLXlZU2GezKBsa0sbyuUi2lBWSJFMRhNtaPprXalM hxFtthBtKoIdHnZqStnuKplSo+m1fRq/j3MkP85TcTkS4jfCnrRk9ugkQpIN Sbwp5lCLKCLrgil3YoIryxWZ+K/Hc480D5nrkeUAkYWZlX2U4sZ07KfkHzRK AtqLtgdttyYI7dC0v22aBrhZr0OpgZQJvPawHcOGZhkt6qGVAdWSQDwXXTGb Fv+gm6aVc56xmVjqpMvIwgChRtO20vRvmW9fAS0uQcpfBmqvutn0LmBBZ7RO xIgrwoz2aO2uGV+p2PiGM+Lo/7zVkIok4smPnF5xPPFCGL5uSV5b0grG26Nk vNEkQH+ZVQ/pllHfWLfI1PYtkcSbO2sY6BNtcw9LPYM5h2SdJJUPmlnlPK0p 5TfMpNJrZnzxZTO28AJ0/1npuPudjrlHdY4j0TpJUBxMC/82S4byqO2SzEhJ jZOheyg/ahbs/bk+iaB/lmGIV2iaFWV2UJbH+lKZV95kEyzLZc6ZUrV2VHok qlISsQjeT9NexKJ6zKIDhwImEY8si5Q+1rZjDlnSFFsTzSNNBquZDNYwlNJm W4FM3ceYP2k8p5+jsykHbKn775lszZijzLksNMqF3YO2+5jkx+7UtPhtRyV/ drNegtLn1yuRVuPeVtXIKjhaSrNEV8fREhtaajOHFrDTQnZ0zxR01aQyseh/ FOQEA/Ovfw3gXoSQvxzwoAt40Rmt4xXiAdgSV65cDWQnbwgU8CXYHEhmyZgU L1rF8kOnSBxhkkLzqZSJJQpNZJMyeUb37Go7srYy6XGT+N+tE+UBb+UF+BAn QsTMLBbFtI54Brp2WmUQl0fXmgkl18yYwstmZP4FM/SAkuMuR44HvSkySssn cgwEOb6AlvlyC3Q/NMxoaJhxIMfEPZLeP4PIkR2QY1GekqNAcg9XBeSw4UTK jNqMtoW4Ua7c0LwMSm/cI3nLzA1OurI5HjFiB1tneB672XaeZ5jJjnZpkjgS uDIcg+d8lLSwQklnOsQp6ZOyP7lxMijO5XrZnzFO/L7dZOOV0sD36eoPWgWy B223Lv3aqUvBtuuqkS1om44lrCNB6z/XHJH1oCvRltfI0m6eMsHjzD8o1dBI rE2vlI/9zM9XyHzlHBB6AaL9opvryOwMTdERiqTDZdEa7a84FkBz1CJCh5Cy CIXW4pqeY9fwB0T6Tko3361e0Pyrp7X4sp9/xZpiYpKmmBWpKe69ZfyHsqWo EMYMbTH6X8xMq6LYGlXJmAJsTQbOJur6gHElZMpeM8PzL8M1vGAG7jvL12nk iCDT0bKQ8ZNVCfMZyEAL0QaBDENAhmEgw0iQYQzIMJ4qPlDlByIDzK3Z2RoA oDUxeZI6r2SwIQrKsqe0wA2lkiLIZECjbHwihM3OJzLsrU2GgAvQFzlecoWv KwI6pCfTwQbnjqiPn+b2I9afcf4lzgnQVmek0aumR9NqxXRa3GT8I4fXRhw4 ThOH2bosap+ug6T1kHvQdusqZ1rtvOO4rJ207KBiBuuVdGvw/byO5KgUPliq ARwK3szHE87V1Vu/CLGj2/kwbEkxXI4xI2z4iyyqYBNcJkXHJI1QO84cs7x4 NbCc5BIPhELN/pr4R61C+CKFQtDleexdgA+vz/Ty/YPleXXwIeb+bjuAQE6l YSaz5U6vt5lJeJ1ULmVjJgBftHZ9nK61Jht1WN41+HKXzcD9F8zneyRtIsMR 4a/4+8SQphWYtBJzAIgwmAoUUaGiLbJac9wOWcE5hYgAv2MmEUFXeNKisMV5 wTzIykJZX0LrTNbqwjLKXKc1KJTFTutRiAnblQW0KG2PZUJ1pFrg8XBOe9xl HOWz0RSpE2K6JRx75Rb/PviZD4AjNdYTcV6/ly7rdIHdfF3MKOt4adGfbNdM SwCJBdm69nefrubfi0Yr+3drgY6dJ5xi2Hpc6nhsojpcuLzdgG+11ularjML 5DUu1JmFXwYeBYDcOYB+Zgd4Fu0vK+BVIbS/GoSmGoYqr/HbkudVJAzlcP+m vu0d677ey4voqQBbKyv7Yfg8pbL/ech+qkvVATjvPF5lPy1DheHz6gxdvQac vztfVq99pF7Ct25Z+N/l7MMMM5YsizElFHcZVSz1VEao8zU0j9aGXjP99182 n+0Vr5p96Uf4KjL90Ae47qu4/gK4/hK4HgFcjwGux++sjWtbT5MwTYsfaYUz rZVymKaqBUWCa8Y0lSQBprd5mGYzJwWm6QgZO4Lq9BCq7ZwMOwJxsWo83B4N RZiKjtk/WGnOS1zSFNBUOqLgeMCAfF6sTkvU7zW5eM3RchO0iL1OUGsZGapA s03LS20+oag+nrxhbBpH6ZcGzHsksPnhC3c+DZSeCUDd/pL+vGxEot8uoO5w NXhPsgQPo9k6v6F6KjSBaeteu8mVu81jg1Ryf6mS25YpGqcLq2HJdJ8aSO43 54QXVveWUkX33DKg7/Dl+LACXxwZEm7DeNKXCpEMzZeiJMbIenvZsldWSX8G KPdbI5UvqAoGVcMYCSiP3S6L6+0u1zOzggX4C3NkcX4IygWyzndNoUB5g0LZ iuZkIyUZynTsr/YNlQxZ5KRGijVU+NE4LlTAExGF3jyDlclxWdZRZG0QH8eM YFv7pFBhWsDwzbfljdK4ZEqONv7GbD69XwsjUYGkvScTNpeWCqHt0PqHDsFe wYq1mmax0iL5NyEbpOMJYFKqQLnk6/YikFkQ27hOx+syGA1qp5lYqKr7SdLX 1fKymydQJa1PvDKY/WzCW4Z5cZLUFKOaH1Rj7I3ZXPMj7ZsBspFTLzGqhZNm Bua41TTvbb/k3vsHfk138OsP+A0C/IZuCDLACXqTdkrRFqr3MEsLps3PlpoQ BD+qEbE8T5aVE/wIelRHYn2RLD+PkqJkGViH0Q6Ak6TVvtOIx0nGHx0uNKmJ HnYNg1oUAB6vAoyrm8jIw7AX2iodAr20AHrATAFByaHvXkGfFtA7oMXysrW4 HhXZy9Jze/BzF9pOtB2nFH8nwxUF7eoSvr/fBrhrBEwdQzvtxEZm+4tiCFiv kDBH0fbOdiq4QXjSyQJOg4OU3ySdIEsXCXC0RRarfWviUpXGQVKk7mkVlH49 N5nPSTe9IBjfhZr/YLETjAK5WwJiUCEKf/gQuvij3X42UTqXe/lwdyAx39py 1fynm6Iy3zdfAorDIQlHbZFaQRO2B3CcsSeA4wIfjrkCRyphsroghSRUOO7w 4MgjqS5bFkOQABlnOFKAL5uNVkJk4zAi1WXL08y/fM2FYMiJNEwnKMYCSzQt wONxbjEt3eYhUdFIdczz6IXqN6aHoajlXK0pupfqqGs9dSrhTOWct50Kbz7G GdoC+d97I5bZ/iu0s0FkwuHvMsfpBH86A/RSwkUmukfIPIWf1c8Cw/sCmddX ah89OpArj3GdNTpcodCxWihUZSGX/50ZlBR8G3r6PejpD5dE6eloIKY7rwjI fgNYenOL1B6i36kO0eubBaeZOktKRx/apwBicSDE4hcQiw6Lm4HFrYpFiMep u2pjcTHVmlTRyGJRsWjF4gZPLLJWLguifb5ojMLifh+L1so8bNGTpwhkARCs s7TukMVhuo/D44pD69WkUUnQAIenHA6pOHAu7y2TIyWEGYNWkFGZ8CzdSWOP 7qzBODwdriO18aR+5t9CCDyuUstDYEe0TlckWtzFoY+kn0Ngz7C2pZlDfpvd G7C3ReC9pvnnUqKWat5R2fjH4fM8pcIvVHh6olQFpOqAyWVqufj0kqD49N11 wc+mC6TTa5rMBuJopbMldHwGkPWzIFsLkNFmGRsVZFukGKkPstkKsoUeyJJ1 L3swqns329htfVcZZqeWfPJDVFlk8e2jF8/24+l0jkLZVC46eKbbreIV/Wqj TRm+UcfQOmEtQS4yS1Vn41x/Nt/VjqfK03czqqimfI6Umedy83Ts05+1cOVV 67YLqHH8MaRY23tOSBSUvOwNN83t7S9JB2PoIy1c/qk6IPe42uWPUdlmFWD+ 7gMdIcC6TJb65S9DgPWEAHsNjsabKsD8HQhqQegez36rLcue59f7+RwVlu6/ UgpNW/SM2Cila6mE7USIqClQl9OhLmftVcttv1Ty8tGTrCptD272LTcfPr7j 4IsoOx/GoRyaC6PsxJzDgeOYqzkS+XYeq+CYBZE1zwLPwNeKJJG40S46BfSS T9Ioj7YkIODcxtCxx37dVCtLN/KhjbZok0uCzQ5b1s6Krv8KQNMYoPEssc6X ebZK5M71cJFNETxycxlO3ihOpBx2X8XL3abVYC5lxiXN6KBtYtpC3LSHuOk0 SXaq6Apx0x04eWV2eKuY9yBuPhRxc1cyVO53jvcLXtzbwmLQatlmgLYbGAlY jNkstcqpZjnVLp+RBAuqqkrVVT0LSrrlWyGltdlTXNaeT4WKfV62wX5ZlESJ oDbuV+PKWh1JBEuTOcpR4PuIsUA5pTMMGBJaw5qkiuxBERe54jaMyZO9Kmgj mbPWKM7mnZx8gOw96/SeLXuoG6Q2q2UinQwC0F2uBMCglDLfHH/N2UJxBUit 3Q/6ca10Acid5nGqAT9cddEYqYPXYaLsIfQihEg36KEes3SXrvnBLl3vL40G xnecDHneiwP3hbYZAG0zeI0Uqadi9VS03moaKn9NZbCpHPZsBcYCDxh2dUiU OePHy7aqrCDzOhkZMVU2JCcIERL+4GzmmmA9T44a0LmaKmJLvFj5EBgtVkzE Q2JCNjFQ0SH7GlCL6x5CBIw8t7kXHQ14v6Fs3QDMg0YgO87ql7QMoYKctxMu 1SSzKwzll6+Hs5qsY9bL2SY2naRZX6mlQjVVWg6WmgtUXtvb+pSqInaeKlUS qVoib6A4z9tAMdj+9M5kFHzPoSAtQpM8yq+387nPIGD6rbgFTWLRkaXI/p6T GFSfmYCxRoHhfC4rNjxgbFdgWDt3ryYm2aS+ferl79d1Gm651xEHDVdZxE4A s2df4MKihAnb5P2FtOmMwKLwtHr9wEEBqZB82kaKECGB5RzdiDFbN1aNwsMu 3TiEjscDFXKnBJK6SMiax5vw0ONGrciQb6vy8saPOVXcrimmyngth0gBrSdG qKRobNpAMrSbJEX1ukzTLXFnB1vivglMvB3sZF0LEw85/7pxBCb+qBEkOiLV CKTFGEiL8dsCNWKXqc3bJ0W5qcD+UtodJzewS1d7oOBZowhQ7FBJoZlqMVlS Lne6z1tfxOtua2RJvAcIxgNN/efZiU6ur8xBRQksMgoK1BCNq8YoULMhnzVG PmsHAkKe7sOZQ3vpEhbqBWjQbbL36s71u60UeSqAwV2wHk4Z/8jsCRi8ciMU p7Fmpg0M8krXPprK3F/jMDLyjWTv8mmyd3lX6ILu0AWvUDVz6II3oQvehi54 T7cauSN52H/iREGDiGH/T43X2GGPUhI2Ah1lOSS7Iys9n9d3SXjYS3XK3JoO lVLjY7fW/KBjL/keWfSyj4yF/ZpFS0all/HElfx0Ojtfp/UKHN0LTlpLkQY6 gweaBjlfOZsvg2xNkXOkikKcTx5lBcRzwWTHfZD3F8KDnLRvIJ/TGQpaBmK3 zG06QDa8bg6CtwTBqcAWHc/AKGw9QcjOiaW3Jw9kUPwtqjTcn+hVonffDoS3 p9pT2Xy+I5nsDqz3ImdbrASvlLpJdmrYLlHaa9e1HhbC0hoCIiylP9MIUnan P4ZUbZXGj6Zi893Y5XNdHjLs8rWpvc9yOv+sHTXaJLd+bWkdHjl+b9tQqP/l i6DjFf0ypevbSVT8OKAib08+UAotNYe71xKW2mMjdcQgj1vDUms72UYa6psX wc5uYGeP+VJejcqsUWGnd2Qvglpj+gs/UMpndEj/y4tHJatoa9X7KjpkwPmx 0YhRtjNFa4uCifxNmtJC3LRzIJRATMtaqGCAXeq5l1iZxYsnebkIzWFmc7Dp gE7zUEpJ7nFnWFNAnQZVhzPNjabuqppnm925vKHJPQ+UoB1Ay0bbj7bvfJiT ODqEBrYH5RvCa3vtmhLjzoB+VrbC5qLlIk2p8uwQqc/TUun3JOj3DIyu1pOk Bl6H6Qk7f9ONitpScVvo1zcgaXtBTL67Uj52W/KABjP8MoKS+p3KL0s1gnTM A0ejRtCftrZJSZSQRBl6tmq6W5R0MBi9GK+3ayCr72qEn1RfhvhJ+dbMz2O2 XKqQ7ITMiGggOo/M6Dy1l5xff04Giw4MWIxHLD1qvEzn0ID1PA+b6BIU4pVg wMQOktIPtGqVCrPAgW4K5jWDA91CmUdFlqjYUmswry0s5PbQi51n6YBlmB4L pU4T1WvqBd68u5o/1jh5rB6pU6D+jl8fcONH2/WRZhyyLsX47aw9fjbcssSL CNP4rdY0mnVBkI6KW22pCMrmhIaQ9OEezmunMbTVgWI8fnEZPYxc9lfBEm7K AcjVrSdkCiHutntzLrLsbpzOY8gimcZSxzMmoylXs6O555xioyt3ju79SQmO r1+A5rssLv3tsv6RBg9iM5Oq7EBstrDbq0BsPgOWtQbL2sK1aQ/XphNE5ovz 3Cz/q2DZG+jyXujyd7QCbaPk0ft1oI3DolNmN+/l//t+b6qBs3GymVY5ZuvA 6QQ7FcxeoaSz6bB+yrgdOTpo/S6tkN+pVWNoLfkeXeYa44FrwKuAaHGDrW5K R7bmH+U4RZjD890060ODx1HS0xLxipHz6hkvGawCrbC0AhPDxZ3TIyBdOgwU zzlRsskgNuZxyqSqZaPlFp6ANHwaBHsOBGsDgrWHausEV+NFqLZuC12e0RtU unB1ijH6345h/8onZBmU1We+rTlsQ5KLoaHv6d78ynza+ycnGBi7DIrSldcI m8IDo8s0eWCqpbKGNzAxHpV6Ur5SF5vs0/GghOFsnrQ9wIHIAxp50klh2UAx w+1SnKsRBX6Lug0xtkrS2S5J1mB8568FAE6npYsi+tT+p1XEtmLOszD924Al 7eDsdcQIdIEy6rpIqujYYXhzTUCABsnD8H/cMPwLn7hThmG5bFLoe/5uBkKn uSbbKVflxlxwA8NgTScqM03lpldq0jjVy6QlSet1Nd9GXd5uR4EKSNg6Z7uo 1ALTYg/ns+718vn2UfRvPxkR2Rzgoe63k58xnn5K58mCHNtckI+oEHf24H7u 6300GFn8B6uKqBfeCpjRUFbAfRb0PRdPGCaMyFRGPDpRpnFsn9sLuRlvv8// NZVl94/8KmmHn4MF/cGCQSqeaKZxBFgwGiwYh+6fCBZMBgum7UlYX5syM6ls /5I8qfJNdYJpMcuqYun+tbqYcr3t/kqpZ0UHVbKgihZUM5IKuO52JeL28hwO pcdnaQYwJYzpPkYxzn2QZ+EdRM/ojsB0pLnQGTfqaq+/ffX/XtDfdwPn10Ma wu/nllDtj0E7PAncPwvcPw/t8AKMsA7Q611gUHeF/HgZPddzlcTNavX9/3V9 L50tWTafr5S9wQatlf3Chm2URKsx2xK2SLhNF6RjHqSNnw9OxZi5s9HRq2jl Ki0MLwsWhlMph41eZ1MVAy7SqVNou3QNGy3F2aPrEOyWM1kcpaDEpgzOMdmv E/wsis5o1Av9G+d4VDpHpKws2evr5Y8C1N0p+FWTqRmkeUtI88fQp0+hT5+F LHkefdoOsqQj+rQLVeRCn74MNPZck3AwT0/u27/mHyn34XygzsAjW8ci1u5z CW6TNFdzepbX+Tna+bpsy659XKHLhlfZzi+XYlFUKIoKJW0+6KJorqi4LH2K 8YKPOGe079UkyBjnkaVzSs++09rOWFGyj/o7i1TtXo4NUfjPCwd8HjxLPfME lOMzgGlrKMe2gGl7mJ+dlkn9iLjrzHiqzkyx9+GDLmInu48/yN/2qaYnDFgr W2YN3SjbaI2G2hyL/pwAmT0JMnsqwDwd/TlTkwapfPiCPOlTuwybqhwst5UO yqTo29oKKTi1wS7SywgqQB/xtlygPt3FYXlaIbBbk0r3kLzYy/Ii63Qg0bPO OFFDPbqHXnarGTPEhS7SRUQEGUZBVzVROPkb0T3kwFYvAmxSAeLbfK4P7bW9 WvvMyxcepX1GC0Im6eqo6YpBWn/LfYb+WqRL15fYPiuR4nhUtGyNW3Mb5zIl mw5ZBNFa7oZc5Z7W29ECI95zStdT7NIU3N3A4J5TztamRJ49OumtHSWA9ves xjEp3FfG/I3a5Embfv3YdVI8opN4qZJdPpaUVO0vFrCrZmgJGW0gMV1BNQcd NC9Pau0uLJTyGUuofAYVvLG7+DQya6iAWZVUM6ZCERs1dWpzTbCXBy2+2s7O J60ySadce07stCnKu3i2bxc5obt5LsemA+w4o081ih6mUbI3bsI7Iv3U9cdf ejYpPXs/gGPg+mBd6TAYQbQDDi3OHrdbnt2uLaVjdq7UF15QKKVLF7sK4Xdy hbaVFVIgak2V1FOn6hi0/YF7eFrBfFRWnPnbCu7QGc845RTihc2d0BanSqzB 7nkbh+VJil1jfu4e/S98O3C1PPoAffQh3qOPto+Ox56Mx56mGwVRSeV5dmeC e8xireXHtTVtzdsqqdZD9UCoiAEVM9igupB3aqK1dl/Jk2/VTPZtbO1to/jt NnZZ3cZUdsr+E7rxxvTI94cfOcUuGn/tHjkqpYLrsenMD60ZswsoaZ8j2gaF tkPhJfo7pbIF1XSfCPEwOdte6XYzF6M/v0hq8C3SGqO29i/VP1lVLfVQqIgD rU2nNerrjzhWb/SWLG6mTVo30/aQm0mKbuYu0AQXvtO33YBLtUeJgfHj/ciz dD7GiPJCaYzogI2yGQRtCjFsR8Imy0+mavW6/JOqMs6lqp5U3bNEKqVSTSWq rbTM7g1wUDbiWX1Y9txaC+yuc+bjelYDtApmg64b2EAY3sgvmqbdw42cbDlo utRpKnzbO/exOjdy898ywzAcIzEcozEc4/ZJbWB+IK3jQ2Vf5+CB5pZIJbYF GJJF5VpjnUrSVMvOQisP8UpnfYg1R+1va9lSWKvLH9axH7juRPIddnCD8Wt5 oG5OXT/oxY56r5Fa/30xEANArcEYiKGQpsMgTUfukYLG47xamVO1WvlMPMTs YikhNw8PMR8PsAAPsMhusHLQqQxaqb1S16fGeA1enEtg2yPGxT/jnAJvj+fc 3Ytrbnq64fiOF0ChHQro7j8HG/pv0TpnWkpwBO1wgO4f61XenaJlm2cUyV4T s3Hnc9D9tN/EfDdrkGYWH5SF5UsP85arMV4xmMaLpqhIMP1cfkxsuVYOOJKk aV6vk9N36ysdVL39EyqEuEkKIQ6ESPsCdz90t9SntXWDx1GBafT7JFt0mmpo Uuk+WxuinpmHm59fJWUkFh6UFfG0Bngxu7BL6BGWKB/+5Lr2Kbnhp/lHulm4 cKHp3Lmz6dOnj3nttddYUwf5GlE2TMPAZ2pseuNJPgWC+uJJ+gNBg4CgIUDQ l3iSEVR1NzvYamBCvktAoSpLM9D9syqk+AWt359Ls6zzCEHzOWNr/uEAGb9z /d1ebv8pFbFnz541P/3pT01VVRXf+iOPPGJ27twZ5BpEGRiNPbn0IR7g481B Cef+GIpBVMc7yy2KG0f7g3llOKbg5qdSqahyKTgwo1KrR8yqln75tevsHuG7 LSgoMA8//LA5f/48n3n66adJMQQ24x2BAV/fDMqS2nBfog+How9H5EopqjG4 l3FFTlpPLOV6B9wma0HzJq6/3vHvAPbv/7/z58Hh9e3bN0g0AuskVbj1vIio 5WNoACbQ5qOQ8x9BR9KBjqaD3bo0CeisKZchJ2JNB0btDOiFibNvQgxSh4dA F2oI3Lx5E1sIaOIameBAuIgLfBheIzCeWk5A7oHqALqo6yzkLK6+i5ArHCdc RjrLDeyCqZgpRlNTE9SXAacYc3NzUIrRhbuAE2ElM/geuZojEPeAi1ExeMgu QM1I27ZtYygqKmLo6+tjqK6uBpttiMtbsFQJGrSBAUG4i9dA1E7HKFPSkK7V ZYU7ZDtEObilyQzJtUDRwxBRsOJMCLsTGgQ4+sk3UVXh6ABCVdVDnQRqzhUW FjIkJycDeRByw4YNcGfCnI7cR4KYB+mtYnYOoBb0YGkno7kQR5MSTRWOVthN zPAZZY+yGRgBVdB8og==\ \>"]], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxdlmlIVVEUha0f/VDCCKGywayoEK0goonYlQZFZdhEWNFgUTaoDWQjjTa8 yokojdBEoTCISgXFakGDSllWNjlESkrmK30XrR+ZUcHeT1oPHhfuueecvdf6 zt4neH384o29fXx8Mv7+/z3jwiNS6vc6MjOndHpQyV3seRZY2ee4I4GhAdeX 3CxCVm1LwP40R865AgevSs6A37jDV+IuOOKjPxoXmi+0viSFr5kYFuNIae35 sAcND2TM0YAa9zxHpp0oqmncUi4LjyX/jhxt31fK/U2JZ1v7OjJuQVJvpFTJ hp/7mx+3e2R9Ssy34QdeSvrUzSuuVnsksTstqr7+ldwNb4p2LnnEU1y57Z3r jQRI9qRd+zyy0/Xp19AXb6XQlZkWPNYjqdm1GSW3ayR/+69+qXXt8jAqckBJ VZ1UxPYbduRqu+5fLxkvznYHfmiTxhDfU/HZH6UqepHbldUm4107FnbNapCy GUHNc5O/SUXEsqSCjkad91UKnjWsThj9SUqv5LZcu+WWrYWFg9Yea5Ln3y/u fdPUqvE1y8CwiKVdwV9k2pDX9z6c/Cz9PUF+vitbvE97b9/ZPFvH1rV9bF+L w+KyOC1uy8Pysjwtb9PBdDGdTDfTcf68kKlHyt7K07Zbj/wSe3Q3H4Y+8e91 yLdaYstOh06p8Hh9vfA+My9opCO774/Kj51cLnGbR1QfDO/hJOtinrtzjyMT OlbmxzzKlK7XN37knOvhrmr2qq2d6d5x2LhxbPN1ffy/fiVsf40PFp/GD4tf 84Plp/nD8ld9YPqofjD9VF+Yvqo/TH/1B+aP+gfzL+3OppzuM01ovLw8YU6x 2/yH+a98wPhQbmD86HsYRzoPxpGuC93HuIFxpHHBONK4YRxpXjCONG8YR6oL jCPVDcaR6grjSHWHcaS+wDhS32Acqa8wjtR3GEfKBYwj5QbGEY2D5oPWB+0P ig8UPyg/UP4gfUD6gfQF6Q/yB+QfyF+Q/yA+QPyA+ALxB+ITxC+IbxD/oPMB Oj+g8wY6j6DzCjrPoPMOqgegegGqJ6B6A6pHoHoFqmegegeqh6B6CaqnoHoL qsfec9arPHldW247qJ6D6j2oH4D6hbcOmJ/Ub0D9CNSvQP0M1O9A/RDUL0H9 FNRvQf0Y1K9B/RzU70H3AUSP8J9UmNlT9+k+AbpvgO4joPsK6D4Duu+A71t/ AN0lSK8= "], {{}, {}, TagBox[ TooltipBox[ {Hue[0.67, 0.6, 0.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152}]}, RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", "kx", "]"}], "+", RowBox[{"Cos", "[", "ky", "]"}]}], ")"}]}], "-", RowBox[{"0.1`", " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"kx", "-", "ky"}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{"kx", "+", "ky"}], "]"}]}], ")"}]}]}], "\[Equal]", RowBox[{"-", "3"}]}]], Annotation[#, (-2) (Cos[$CellContext`kx] + Cos[$CellContext`ky]) - 0.1 (Cos[$CellContext`kx - $CellContext`ky] + Cos[$CellContext`kx + $CellContext`ky]) == -3, "Tooltip"]& ]}], AspectRatio->1, Frame->True, PlotRange-> NCache[{{-Pi, Pi}, {-Pi, Pi}}, {{-3.141592653589793, 3.141592653589793}, {-3.141592653589793, 3.141592653589793}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], ",", GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJyFmX1QlFUUh3eXfTM1zC8KC0rUzEnN0qamcLw3hzKdrESdMnMcK5PSpExl JMvMoEbTRMy0zFJxtElLKPObc0SJFCWlBPOr0FCDFJEYipDahvtbpt9ME//s sMu+7733nPM857zEPZmcOD7g8/nS/T7fP6+6YuGnt7x9Rorj+s2a+UNAl+XN zPIC56TvoHs7zMoIaHTvhBF/xv0inWX2gB6jArqqMDJ2fHWFfJMwMu2LGr9+ dbbbiKgLlfLMkuTW1epXu3J7/I1bf5W70ia8vvs9v864e8Wcoq5VkjshZV5F pF8z0ya8eamgSvbOeePpkkqffjl3WUZcj4uiaYPSGot8+voNcbXz36uWpvd9 KntnTI7aWy19DvRML27v06b7VsuhI4tNbGj5806d7xI/v0ZGjE7pk/1Go+SN u3NM9toauSd3eYfY5xvleGPbGfdJjYx6Zdut6x5tlLK6+x4cMK1WmtbZIAPq SgamvlYrC37Mb5f3WYNc3LJ/UuncWmnlfTkkdk2DTC/aNKRkeJ2sGNi7b31F vZzt9c95/CGDeze9RrvXTvT7f72P7+E6uC7u0+vsX4Pmn6+X3e0PxncbVidZ A1pvaMhqXhfWiXVjH5ntJ6w5NLU2vG+cw878nQvO+JrPDeeIc8U549wRB8QF cULcEEfEFXFG3JEHyAvkCfIGeYS8Qp4h75CHyMv188sjqtpGaNP+y2WPL+Pk /aMjdKHuD5yoPy05Mz5JPboxQl8cVfPq2N6npLx4ky9je4Tbb5mLf4R2mDW9 ZsOxMvnt/e4vlF0f1Muzk35r/PBHuXp3+5emjgm69R+XM8cuTGmzJqjXJK5Z ujD7iAxNON0/9kBQezYk7xhaWCKF5/fkLPg56NZzWCbuO1F16VpPD8+e8+bR YcWSdFNUdJcYTz+PaVvQK6pYNo8bPnHyDZ5bzyGZ/MiVd2/v6unGjv7+L757 SIZOq/i0m/X0sYfTG+7p/60k5UbekpToufXsl+mdb1/VZpynizsFFi2K2SdL 69rEd5/i6aSidW9VRBVIy7GTu/6S6rn15Ls88TTw+6bSp5buks7ddq3uv8TT xBaDr/v6plw5+vbakZHLcP0dMr5067qk5Z5mFF+bW5e+TVI6J1f4P/b02086 xd182xaZ0iLYIyYL198k09Zmz61b6+kjK19+PNOXI3VdPp4Yvc7Tv1LGLtp8 Kls6jllQHliP66+XxwctT2/8zNMPrjhS8Njnq+Wq0pSf7s/2dEibdw5vvStT 5ra+cdKiLzz1uR/63ND3TfDZJ66O3BC+vnl3aer3vtD9B+Yvy9zhzzFlJd/l Jof2c/Pp0vqO6dvMufN9x8xq3q852bZwX0LoPK78KP3Pfd1zDZ2XWRiIjr/u 1dB+E2cPC8oeM3XehcSU5vM1dP6G4mMofobiayj+hvLDUP6Yy0sqawvOhvPN UD4ayldD+Wwo3w3Vg6F6MVRPhurNUD0aqldD9Wyo3g3xwGQtvpzXapdfN/70 RN+ZFyoN8cQQbwzxyBCvDPHMEO8MvOF4aOAN5xFD/DTwhvOIAW+dRwzx2BCv DfHcEO8N+cCQL0z0f/zu/s6Qjwz5ysAjbh0GHnHrNOQ/A4+4fRryqSHfGvKx JV9b8rkl31vqByz1C5b6CevyRFzeWOpHLPUrlvoZS/2OhVdcXlt4xeW9hVdc XVh4xdWNhVdcXVl4xdWdhVdcXVp4xdWthVdcXVt4xXnGwivOMxZecZyw8Irj iIVXHGcsvOI4ZOEVxykLrziOWXjFcc7CK46D1nFRHCctPOM4auEZ5x0LzzgO W8dlcZy2jtviOG7hDcd5C284D1h4w3nCwhvOI/jc4HN4A9+HN3B9eAP3hzew PngD64c3nEewf3gE52Wcl3Ge8AbOG95APOANW9CuPCEm5IXCg5Wl+V3D8YUn EH94AvlhkB/wBPIHnkB+wRPIP3gC+QlPIH/hCeQ3PIH8hydQH/AE6geeQH3B E6i/j04ePPGo/5y546ElK4eH6hOeQP3CE6hveAL1D090vGq3F/jAD57AE+AN PAEewRPgFTxh4QXXN1t4APxzfIQHwE94AHyFB8BfeAB8hgfAb3gAfIcHTPT/ vD/43x4IXxf3cXNMeF1YJ9aNfWBf2Cf2Dc7Dj+A8zgnnhnPEueKcce6IA+KC OIHz8Ds4j7gizog78mBg6s8PHCitQL8BzofzCnmGvEMeIi+Rp8hb5DHyGnmO vEcdoC5QJ6gb1FFWfp+3vJSg7VeVV176wLFwnaHuUIeoS9Qp6hZ1jLpGnaPu wQFwAZxHPwnOo98EV8AZcAccApfAqTDnHcfAefTD4By4B8477oc5CW6Co+Aq OAvugsPgMjgNboPj4PqWhBbpI3OauU+fC31f6PpC9xdan9D6BZx33Bfav9D5 CJ2f0PkKnb9QfITiJxRfofgL5Ye4eSHcR1C+CeWjUP4K5bdQ/gvVh1D9CNWX UP0J1aeA+84D4b4NfRzqHX2ee75g8XyBeCHEEyHeCPFIiFdCPMPzE/BOiI9C /BTiqxB/hfgsxG/p9D99P3lAyB9CfgnPIXieRb4S8pmQ74R8qORLJZ8q+VZz 3r9c9FWI8+1aPje9IDS3gfOY68B5zH0urgbPkcj/Sv2BUv+g1F8o9R9K/YlS /6LU3yj1P0r9kVL/pNRfKfVfSv2ZUv+m1N8p9X/h5wZ4jgDO4zkD9ZNK/aZS P6rUryr1s0r9rlI/rNQvK/XTSv22Uj+u1K8r9fNK/b7SPKA0LyjNE0rzhtI8 gv2B80rzjNK8ozQPKc1LSvOU0rylNI8pzWtK85zSvBd+7ojnQjQ/Ks2XSvOn 0nyqNL8qzbdK86/SfKw0Pyv/P+FvLz46FQ== "], {{}, {}, TagBox[ TooltipBox[ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwl1WV7EAQUBeCN7u4e3TC6u5vRDRtdo9noNululO5QUgmlQ0HpbhSUVEIp 3z1+eM/9BefcoNDwkL6BAQEBk0TUjUZ0YhCTWMQmDnGJR3wSkJBEJCYJSUlG clKQklSkJg1pSUd6MpCRTGQmC0FkJRvZyUFOcpGbPOQlH/kpQEEKUZhgilCU YhSnBCUpRWnKUJZylKcCFalEZapQlWpUpwY1qUVt6lCXetSnAQ1pRGNCaEJT mtGcFrSkFa1pQ1va0Z4OdKQToYTRmS50pRvd6UFPetGbPvQlnH70ZwADGcRg hjCUCCIZxnBGMJJRjGYMYxnHeCYwkUl8wqd8xud8wZdMZgpTmcZ0ZjCTWcxm DnOZx3wWsJBFLGYJS1nGV3zNclawklWsZg1rWcd6NrCRTWxmC1vZxjd8y3Z2 sJNd7GYP3/E9e9nHfg7wAz9ykEMc5ghHOcZxTnCSU/zEz5zmDL/wK2c5x3ku cJFLXOYKV7nGdW5wk1vc5g53ucd9HvAbv/OQR/zBnzzmCU95xnNe8Bd/85JX vOYN//Avb3nHez7wkajyBxKN6MQgJrGITRziEo/4JCAhiUhMEpKSjOSkICWp SE0a0pKO9GQgI5nITBaCyEo2spODnOQiN3nISz7yU4CCFKIwwRShKMUoTglK UorSlKEs5ShPBSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGhNCEpjSjOS1o SSta04a2tKM9HehIJ0IJozNd6Eo3utODnvSiN32IGu9w+tGfAQxkEIMZwlAi iGQYwxnBSEYxmjGMZRzjmcDEwP//wn/5n6WX "]]}, RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", "kx", "]"}], "+", RowBox[{"Cos", "[", "ky", "]"}]}], ")"}]}], "-", RowBox[{"0.1`", " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"kx", "-", "ky"}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{"kx", "+", "ky"}], "]"}]}], ")"}]}]}], "\[Equal]", "0"}]], Annotation[#, (-2) (Cos[$CellContext`kx] + Cos[$CellContext`ky]) - 0.1 (Cos[$CellContext`kx - $CellContext`ky] + Cos[$CellContext`kx + $CellContext`ky]) == 0, "Tooltip"]& ]}], AspectRatio->1, Frame->True, PlotRange-> NCache[{{-Pi, Pi}, {-Pi, Pi}}, {{-3.141592653589793, 3.141592653589793}, {-3.141592653589793, 3.141592653589793}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], ",", GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJx1lW1olXUYxvc85zk7Z2iHfRD0g4OmLGs4cInUMPEiN125wDldNjBm0bJ8 W/OLYnP0opsGsqDFoZZUkoIDlRZrGsxbFJ35vi9tuon4BqO0+YJGqahwX2dw QR8OD+fwnP//vq/7d19X/jtrFr4XZmVl/fDk8/RZ25zcG70W2ISi0kX/5edY svzPJQ+efD9dcXbz8LWk7ShpnRWrDOxOftPY+U1Ja7lb3dn2VmCpBXU1L76S tMrz/b0j7we2YSjKm3o5YdX9zzYsqw+s/UrxvEvdCeuZvPHlka2BRWtbaj+o Tti8pUunTNwR2GdftIZ98YR9eWbXrJMnAises2RPczrb+vo/nJ0aDOzftt11 39dnW2/p4k2ddwKrqZr8893Z2fbtC6sLnpkW2uHvro0tPha3VO4n4xqrQhvp Prnyj61xGx7Yc3Pc5tASH5UPrnkpbn3505s+Hghty9mObWmLrOBh3r2eq6GV /DowvGBfZEd2fbWy90Zo1y/cbEj9FFl758zP3y2L2cTXr6+aUhLZtv2ppl/m xyz99V/rGosjO1VT+M/prpgNPspdX3YwZo+OHqoYPjD65O98j//jOTyX9/Be 1sG6WCfrZh/sk31TB+pCnahb64Qj7c/VZtvbx1b/VnJlVFfq3L/9RNvzOQlr r08faNg5OifOjXPkXDlnzp0ckAtyQm7IEbkiZ8Id+N3fB9/388Dz/D7wPq8H rMfrBev1fsB+nDuQQ+cO5ND1AfVxPUE9XW9Qb58Hqpbfn1tQGVp3+Y95Ocvj eGN6aZiuy3AIcrni96G/b4+P41zp8bnV34RWdm7vrTkHI3C+Pn9w/s4HyIfz A/LjfIF8OX8gf84lyOf4wo6elq4YyOmbuZMe1FbEMNS5sGj/tAynILd+D8jt jIs5rxbeCEFuvU6QW+8D5Nb7BvfRuQU5dh1Bjl1nkGOfA8itcwpy63MFufW5 g9w6FyC3zg3IrXMFcuvcgdw6lyC3wi8at69Kn/k0aUVdG483Lxo9l/fIvkD2 CbJvkH2E7CtkvyH7D/GHjO6cg/gJxG8gfgTxK4ifQfwO4ocQv4T4KcRvIX4M 8WuIn0P8HpIHkLyA5Anoi+6TkPwBfdHnAskzSN5B8hCSl5A8heQt/scXyR+E Twi/EL4h/EP2A7I/kP2C7B9kPyH7C9lvyP5D/AHiH5w/OYT4D8SfyBc5hPgd xA8hfgnxU4jfQvw4Uzf7EH/P9E0dJC8geQLJm4zunIPkFyTfIPkHyUdIfkLy FcrZY7pafjo= "], {{}, {}, TagBox[ TooltipBox[ {Hue[0.67, 0.6, 0.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}], LineBox[{41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83}], LineBox[{84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122}], LineBox[{123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161}]}, RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", "kx", "]"}], "+", RowBox[{"Cos", "[", "ky", "]"}]}], ")"}]}], "-", RowBox[{"0.1`", " ", RowBox[{"(", RowBox[{ RowBox[{"Cos", "[", RowBox[{"kx", "-", "ky"}], "]"}], "+", RowBox[{"Cos", "[", RowBox[{"kx", "+", "ky"}], "]"}]}], ")"}]}]}], "\[Equal]", "3"}]], Annotation[#, (-2) (Cos[$CellContext`kx] + Cos[$CellContext`ky]) - 0.1 (Cos[$CellContext`kx - $CellContext`ky] + Cos[$CellContext`kx + $CellContext`ky]) == 3, "Tooltip"]& ]}], AspectRatio->1, Frame->True, PlotRange-> NCache[{{-Pi, Pi}, {-Pi, Pi}}, {{-3.141592653589793, 3.141592653589793}, {-3.141592653589793, 3.141592653589793}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]}], "}"}]], "Output", CellChangeTimes->{{3.561272154187893*^9, 3.5612721983195066`*^9}, 3.561384817912284*^9, {3.561384908984756*^9, 3.561384916255368*^9}, { 3.561384982045293*^9, 3.5613850429093246`*^9}, {3.561385134889752*^9, 3.56138517600985*^9}, {3.561385525250626*^9, 3.561385614393333*^9}, { 3.5613856557813177`*^9, 3.5613856625404387`*^9}, {3.5613857293978786`*^9, 3.561385750499514*^9}, {3.561465217798296*^9, 3.561465238854514*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"FindMinimum", "[", RowBox[{ RowBox[{"spectrumSq", "[", RowBox[{"kx", ",", "ky"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"kx", ",", RowBox[{"Pi", "/", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"ky", ",", "0"}], "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"FindMaximum", "[", RowBox[{ RowBox[{"spectrumSq", "[", RowBox[{"kx", ",", "ky"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"kx", ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{"ky", ",", RowBox[{"Pi", "/", "2"}]}], "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.56138482038549*^9, 3.561384958077444*^9}, { 3.561385888914768*^9, 3.561385889065825*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "4.4`"}], ",", RowBox[{"{", RowBox[{ RowBox[{"kx", "\[Rule]", RowBox[{"-", "3.3769834394151586`*^-13"}]}], ",", RowBox[{"ky", "\[Rule]", "0.`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.561384898951572*^9, 3.5613849932389307`*^9}, { 3.561385036183872*^9, 3.561385044209424*^9}, {3.561385136716756*^9, 3.561385148102613*^9}, 3.5613855390059633`*^9, 3.561385817804062*^9, 3.5613858898229523`*^9, 3.56146522054114*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{"3.6`", ",", RowBox[{"{", RowBox[{ RowBox[{"kx", "\[Rule]", "3.141592653589793`"}], ",", RowBox[{"ky", "\[Rule]", "3.141592653589797`"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.561384898951572*^9, 3.5613849932389307`*^9}, { 3.561385036183872*^9, 3.561385044209424*^9}, {3.561385136716756*^9, 3.561385148102613*^9}, 3.5613855390059633`*^9, 3.561385817804062*^9, 3.5613858898229523`*^9, 3.561465220542581*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"mmPoly", "[", RowBox[{"k_", ",", "t_", ",", "\[CapitalDelta]_", ",", "u_"}], "]"}], "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"u", "*", RowBox[{"\[CapitalDelta]", "^", "2"}]}], ",", RowBox[{ RowBox[{ RowBox[{"-", "t"}], "*", RowBox[{"(", RowBox[{"1", "+", "\[CapitalDelta]"}], ")"}], "*", RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"k", "/", "2"}]}], "]"}]}], "-", RowBox[{"t", "*", RowBox[{"(", RowBox[{"1", "-", "\[CapitalDelta]"}], ")"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", RowBox[{"k", "/", "2"}]}], "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "t"}], "*", RowBox[{"(", RowBox[{"1", "+", "\[CapitalDelta]"}], ")"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", RowBox[{"k", "/", "2"}]}], "]"}]}], "-", RowBox[{"t", "*", RowBox[{"(", RowBox[{"1", "-", "\[CapitalDelta]"}], ")"}], "*", RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"k", "/", "2"}]}], "]"}]}]}], ",", RowBox[{"u", "*", RowBox[{"\[CapitalDelta]", "^", "2"}]}]}], "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"mmPoly", "[", RowBox[{"k", ",", "t", ",", "\[CapitalDelta]", ",", "u"}], "]"}], "//", "MatrixForm"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"spectrumPoly", "[", RowBox[{"k_", ",", "t_", ",", "\[CapitalDelta]_", ",", "u_"}], "]"}], "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"Eigenvalues", "[", RowBox[{"mmPoly", "[", RowBox[{"k", ",", "t", ",", "\[CapitalDelta]", ",", "u"}], "]"}], "]"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"k", "\[Element]", "Reals"}], "&&", RowBox[{"k", ">", "0"}], "&&", RowBox[{"t", ">", "0"}], "&&", RowBox[{"\[CapitalDelta]", ">", "0"}]}], "}"}]}]}], "]"}]}]}], "Input",\ CellChangeTimes->{{3.560878030911656*^9, 3.560878162692728*^9}, { 3.5608782139360247`*^9, 3.560878232323215*^9}, {3.5608783075763187`*^9, 3.560878325484539*^9}, {3.560878461582103*^9, 3.5608784659223003`*^9}, 3.561465223545443*^9}], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"u", " ", SuperscriptBox["\[CapitalDelta]", "2"]}], RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "k"}], "2"]}]]}], " ", "t", " ", RowBox[{"(", RowBox[{"1", "-", "\[CapitalDelta]"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "k"}], "2"]], " ", "t", " ", RowBox[{"(", RowBox[{"1", "+", "\[CapitalDelta]"}], ")"}]}]}]}, { RowBox[{ RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "k"}], "2"]]}], " ", "t", " ", RowBox[{"(", RowBox[{"1", "-", "\[CapitalDelta]"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "k"}], "2"]}]], " ", "t", " ", RowBox[{"(", RowBox[{"1", "+", "\[CapitalDelta]"}], ")"}]}]}], RowBox[{"u", " ", SuperscriptBox["\[CapitalDelta]", "2"]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{{3.560878144644986*^9, 3.5608781638490057`*^9}, 3.5608782326828327`*^9, 3.5608783259236526`*^9, 3.560878467112557*^9, 3.561272208606682*^9, 3.561465225063211*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"u", " ", SuperscriptBox["\[CapitalDelta]", "2"]}], "-", RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "k"}]], " ", "t", " ", SqrtBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "k"}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[CapitalDelta]", "2"], "+", RowBox[{"Cos", "[", "k", "]"}], "-", RowBox[{ SuperscriptBox["\[CapitalDelta]", "2"], " ", RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}]}], ",", RowBox[{ RowBox[{"u", " ", SuperscriptBox["\[CapitalDelta]", "2"]}], "+", RowBox[{ SqrtBox["2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "k"}]], " ", "t", " ", SqrtBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[ImaginaryI]", " ", "k"}]], " ", RowBox[{"(", RowBox[{"1", "+", SuperscriptBox["\[CapitalDelta]", "2"], "+", RowBox[{"Cos", "[", "k", "]"}], "-", RowBox[{ SuperscriptBox["\[CapitalDelta]", "2"], " ", RowBox[{"Cos", "[", "k", "]"}]}]}], ")"}]}]]}]}]}], "}"}]], "Output",\ CellChangeTimes->{{3.560878144644986*^9, 3.5608781638490057`*^9}, 3.5608782326828327`*^9, 3.5608783259236526`*^9, 3.560878467112557*^9, 3.561272208606682*^9, 3.561465227378603*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"temp", "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{"1", "-", RowBox[{ RowBox[{"(", RowBox[{"1", "-", "\[CapitalDelta]sq"}], ")"}], "*", RowBox[{ RowBox[{"Sin", "[", RowBox[{"k", "/", "2"}], "]"}], "^", "2"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{ RowBox[{"\[CapitalDelta]sq", "<", "1"}], "&&", RowBox[{ RowBox[{"\[CapitalDelta]sq", "^", "2"}], ">", "0"}]}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.56087858770709*^9, 3.560878589498406*^9}, { 3.560878921837324*^9, 3.56087898792273*^9}, {3.560879031367496*^9, 3.560879031942479*^9}, {3.5608790881042624`*^9, 3.560879091895104*^9}, { 3.560879411737743*^9, 3.560879413500278*^9}, {3.5608795420904913`*^9, 3.5608795723123426`*^9}, {3.560879717583178*^9, 3.56087973214649*^9}, 3.5612722149781647`*^9}], Cell[BoxData[ RowBox[{"4", " ", RowBox[{"EllipticE", "[", RowBox[{"1", "-", "\[CapitalDelta]sq"}], "]"}]}]], "Output", CellChangeTimes->{ 3.56087896000423*^9, 3.56087899742389*^9, 3.560879040279393*^9, 3.560879093246065*^9, 3.560879415513611*^9, 3.560879547943315*^9, 3.56087957847836*^9, {3.560879723520071*^9, 3.5608797344062233`*^9}, 3.561272234987927*^9, 3.5614652317852077`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{ RowBox[{"temp", "/", "4"}], ",", RowBox[{"{", RowBox[{"\[CapitalDelta]sq", ",", "0", ",", "1"}], "}"}]}], "]"}], "//", "Normal"}], "//", "N"}]], "Input", CellChangeTimes->{{3.56087903370472*^9, 3.560879045797982*^9}, { 3.560879079993515*^9, 3.560879127254171*^9}, 3.560879417314517*^9, { 3.5608795542242117`*^9, 3.560879590071542*^9}, {3.560879814343442*^9, 3.560879814603434*^9}, {3.560880593549741*^9, 3.560880617731062*^9}}], Cell[BoxData[ RowBox[{"1.`", "\[VeryThinSpace]", "+", RowBox[{"\[CapitalDelta]sq", " ", RowBox[{"(", RowBox[{"0.4431471805599453`", "\[VeryThinSpace]", "-", RowBox[{"0.25`", " ", RowBox[{"Log", "[", "\[CapitalDelta]sq", "]"}]}]}], ")"}]}]}]], "Output",\ CellChangeTimes->{{3.5608790434827433`*^9, 3.5608790461083717`*^9}, { 3.560879080802948*^9, 3.5608791275518503`*^9}, 3.560879418293083*^9, { 3.560879549529092*^9, 3.560879590440173*^9}, 3.560879815052548*^9, { 3.560880594017044*^9, 3.560880618252158*^9}, 3.561272235143017*^9, 3.561465231912627*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"spectrumPoly", "[", RowBox[{"k", ",", "1", ",", "\[CapitalDelta]", ",", "0"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"\[CapitalDelta]", ",", RowBox[{"{", RowBox[{"0", ",", "0.25", ",", "0.75", ",", "1"}], "}"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.5608781952473707`*^9, 3.5608781997443857`*^9}, { 3.560878375288394*^9, 3.560878383693701*^9}, {3.560878477863977*^9, 3.560878511197093*^9}, {3.5612722406769114`*^9, 3.5612722917279453`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[{{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwBwQI+/SFib1JlAgAAACsAAAACAAAASkkOQ/shCcBPATf6YzSBPju1fPAI HgnAUFDG6R2TXz8sIeudFhoJwNeVUBzYkm8/DvnH+DESCcD2sP3YsZJ/P9Go ga5oAgnA7mD/RJGSjz9YCPUZ1uIIwFid8TFLkp8/Z8fb8LCjCMBiVxoHUZGv P4RFqZ5mJQjAlj9KmHeNvz9x1PoSkxMHwPa1l8KsZ9A/yl0a6OQTBsD3j9mX wErYP/2+qrA6GQXA88LQ8cHu3z/jsvGRUQkEwPOKJPTaCuQ/NqEG1I0LA8Dh JTY9ZcTnPzwi0i6L+AHAv5avcUuz6z8cew59jOoAwEzdUlPFcO8/0JwxWGbd /7+itHlkO2fxP89os+c1u/2/fBBLcFgn8z+mKdE4UL37v9fzl30OtvQ/aCex wYC1+7+UXu0QArz0PyolkUqxrfu/51AMaPTB9D+uIFFcEp77v4kcPGDVzfQ/ txfRf9R++7/ronxuiOX0P8gF0cZYQPu/dTCKs7IU9T/r4dBUYcP6vy39BmwV cvU/rt+w3ZG7+r+NbkfK4Hf1P3DdkGbCs/q/pkQg4ap99T/02FB4I6T6v1EH Ojc7ifU//M/Qm+WE+r9+h2p7TKD1Pw6+0OJpRvq/BtTkFjHO9T8wmtBwcsn5 v+TadTcAKfY/iEx2AvnA+b+a38l+HC/2P+D+G5R/uPm/5VnVNzc19j+PY2e3 jKf5vylpXP1nQfY/7iz+/aaF+b9CJzXKtln2P0bfo48tffm/QEpOk8Zf9j+e kUkhtHT5v1kvtcrUZfY/TfaURMFj+b8XfLmC7HH2P6SoOtZHW/m/b8h9AvZ3 9j/8WuBnzlL5v0mg3e79ffY/rL8ri9tB+b/U8r4LCYr2PwRy0RxiOfm/iTRo OwyQ9j9cJHeu6DD5v8+P/NUNlvY/tGKeODAq+b+q0v4Z0Jr2P8VCeFU= "]], LineBox[CompressedData[" 1:eJw12Hk0Vd37AHAZKpIKlRRNehMy1UuodqSRkKRCpiJR1Jt5TIlkeImQqQzJ FMpMeZAhU6FLEkLG+5qKe+9B7v7t1vr+zlpnnfX555z9POfsZz/7bLd00Lfi 5ODg4FxGTnL1ZI071G2aB9s33Ep2aUywVLO54rlxHvpuL9/Jm86EssnVDM41 8xBGrbPizmGCrf4lkbVsCqL75HcyS5lQzY0zohgUXGu+mTgBTBAtTlUTm6TA +piq70AtExo2z5hK9VDQJ9/pUdfGBMlh/xeaZRTQ4+xVvMaZcDdaRrnpNQX6 DR7D1tNM6DrV/uFsBgVNW2oYOgwmBOSITZjGUND+l6m66DIWjLgUKLo5U7D6 zS63BBEWpPINwitFCnLU2gQMT7Bgu/yh7g1ZLJiS4WcFp7BAW388SpZczZBE cn86C1wdn5w7HseC44XXvinmsOBjyWSzUxAL5mQkWO0lLHBXTwSaHQsujZs1 LvvIApo+Tn0swwKun+HRmygW+DtVOQiQPNywWfmvnBaJo+wYz/LXDFhas033 xwQFm+3KLVyCZ+Hn1BG7i0oLwG4UfDFz+ydwlngbBZgswh3Eb3CdNQVdPUn7 Us/9hpJ9LZWMQjrMZqgk0o4sgfzGkJOCaXRINwgR5tdcgvQF7VbZKDp8N972 Tv3EEsRUNX+/5kwHJX7V1JdnlsBFt5n9VYkOLJ7SmstGS6Bk13SwongcJO5K 77xzZwkKkhtK/EvHIHZiZulI6hLkrqvL2/huBA5VVzSYcrBB33Td6f6sEVgY EDptwsUGZqbJj/TYEQhwskm8sJwNBzVn16u6jsBrmX3VJ/jZ8MF5m4fJvhGI FNWZWS3Chv5v7seSMoZhRFmkWEGODevS5LqlooYgdb2KR4cxG+6oPuU67DAI Bznf1tzLYUNk5OYeQ9NBEE5cqTeWx4aCqYQChzOD8PDZqWKtfPL85GSrJOlB 8LVki/CXsMF1VXY999gATCs8lrhTxQbvnoqgJvMBcB/oVu7+zIaH3kNCl/T7 YfFZiOIqFhvSu6wnbqv3wymd7AnpeTY0KI7XPJLvh2vzBV6nF9nANzrp9Fag H7L5Jnf6YjaIPpvKRVHfQYze60lbgWGXuvCBloA+KB11OCIkgkH1gdnJMdse kMrIEZpRwtBAeb0w1eqB3emV4VkHMFy8Ec/ZId0D+iXxUlaqGJzOfX1bNfEN tKZOZLcfwpC3/ZxCnP030D17fyJKE8PuiuOiOv90Q1ZZ/qmasxiEWXsn8t26 oOiOct1rWwwpttqnpIy6oOV+p538DQyKfbZpz1W74MqS+J5XNzHo1b40D1n8 Ao6duvTntzAERWzvsPb6Ai8Pv/a77YyBU359xSbfTnii0sFT7Ith2ub3vz4P aWC11JTcHoWBlqOwVseaBvulGavlYjCUzVmHbdGkwUqZaeXApxj87raFleLP YMgxW68Uj0E0Ji181vkzfLke1uGchEGzXi/imlU7RCpffvwoC8Oe1f5CSkfb YdL20vfqbAwC58ojuLe3A69/zjj1CsPXvl2RST1tMLlllZJpHgZ75kLkt3Nt IO0qk7W6EEPMrhdRuhqt0Ps5eA6/w+Bl171BfFsrJI4JrhYGDLWWW2W/Ln6C as2UgV2VGIzc52SF7nyC8vbICo1qDA8yEuUDLD6CgF7yMYs6DN0rZvc5HG6G Ht7drgofMdyviVNFVD1clb3EEOvBMPZRJcKqpB6sZP7G34h1vn75L8i1HvYm vlgd00vinRJK6KLqwFhh/QG+7+T9bQzGt+drIUtruqpzAEOvrWdN6sJ7kIun nq0dxaDhJCrWVPYe6OuHJ3OI031KnH66v4eOlFKkNYbBMXLur8OL1bBGaW7K axwDX8WNwC+LVTCan+be9B/Jx46yeOEFgJDPEmjFDAYVZeYZC3cA5seT9Q+I ubUV8auFCjgk+kGf8yeGOKdMixOL78C8uvQOg/jDh9i/3H+Xg/2+mJ73sxgi eju/1HmWw9PMGm/FOQymvwQDhZbK4MHEOolnxIzNQf9lL5WC2+isyz8MDDsc PPK+s4sh7fg2zWUsDJP3iy1kfIph8/t4thlxScysoBsuAjmHFW/fEutW2zkJ chTBCcswdIvC4LneRPXYsgLQZHbawDyGE1Ix/4X75oOQgZSqwAIGQUSL71uW DxIK6gLGxBk22tiF8w3E26ZVTBF3lh+syeTKg3RaK2IvYtjiZtn3iz8XPJsd ptV+Ywh219ofJpgDkkXehS7Edl5i/Y1i2ZAt3+c3TtztvVzJZmcWhM3uDt26 hOH03ekgnj2ZYMRPe3WOWOp+lfKR/elQMXxcvog41i8zpFflJTyqXhExRMzn H/HDHaVB4d6t/OvYGOgPrf4tPJ0KT/acUL9KbPRIZ1hfLwVKK/WXHhE3Bimr zZxPho2zmZ9yiTNCeUelLJ7DTdcDxbPEituG3cJaEmH12+vNgpjEv7N4V1NX PBzy/M6SI/61K7CNZygW7i9Eq2gRt0kaex2ZjoGsJ+HhV4nzpPfu8ViIgs8N jdiDOEwW0wp5noChvIZfOPEthba7M2sjoNuHKf6CWG9/ioz0lnAwDB75VERs Zk/Pa9IJBZ4T66LriMUdQ1eqWz2CyxVOjjTiPjdF8yIPf5AVF7LpJ07w6SyW fnwPAnPHbtOJS/gY4hpnvaC5ixH+i1h5w6GPMt5OECmm+oEitjvKtyhraAef xAuFl4hbC/bnrzS/APmx1i6YmON/h+ua/LY/TnA5Nq4XfwVlhdzwYf8Zb55R 7aGk2yhKqEpi8U/8qYIbzjm6oY8K2v0M4gxtq30FKXcR84DAmyli+vGqb4dD /NBM1IrYYWIpdTG/BueH6GfngZjuP+NRc5MxMA9G/yQlZ7cQd8ba2k5LhKG/ 3x77UkHMjI6pKNj0GGnw7RTJId7wpE7QXSAS/Rek5hD3J77Hc9aIKwp9MA3r 8Se++O+Ocm4qGtW/22F+i9g1WG9N48RTxLNsbv7Cn/z4ZxcbdCYgh92Xbm0n 7rrfvUq06RkyPDOjzUXseYQ7b/r7c7TU04x+kO8h4ZAidyEtGUktM7VJIJY9 eCpn46cUlFG9IdGFuELV/KJ7QyoaOiFG1yXuUw7NRhVpKEJFrHaBfJ/2Si8M k0teosPvNhu0ELP3v+XgyU9Ha/f9M59ALK5IN2h8mYkSrBQDVIjNZI4vGYTn oHlzw9xLZH4cjEkLZT7PRSG3buVvJOa/x7VW+2IemmZauHwm82188krS5LXX SK6277AmcXKtRI18QD4qb/vUzEfmZ9giLXjZmgI0Ory/tYjMb2+FB+fbowrQ +lPxEebExgnDI3fSClGR7SOjV6QeCDul8RbXFiP139Hj0qRecGYZtgecKUGM M9WTtUwMM/3L4y52lKCWsZ1vLhO3aF+TWRgqRfWumR7+pB75S0jqHuJ+i0Qu xAu+I/Xs97hBo8X2SuSfoH+hYhrDLPcr2dNWlWjXoTLL/cT0rTwRihmVaMJj QDZ9iryP84XGXApV6IFTFG/gJIbCqvWTqUeqEQ4saZD7U2+fdq4ZM6tBKx+c 8143gsGqQNaxNaUGLTq+ir0yjMHkk39XyWgNkqK5uOYPYdDiUU4KdKhFLXH/ umr/wCB5O1pR2qcO/TgpH3ylH8PAyYvn7RM/oHy3Qf6/ujEcHva0aOn9gBod O4wtv5J645t0U0asATV9kiyO78KgX0Z/QI9rQMuVtkes+oKhWtqryPppI5qw yR9o+0zyL5C80SyyGTX+jhriaCH1hM6Y2H2sFUly3BwYI+uj+YGVd75cbUU2 bfs6R95iCPUXnff3a0WLbZu+DpaTfOxAPCPvW1Geyn3ejlJyP+OHYqkabeiu aviGZLLeCrWI6mw70o4W66Rm+sh6PZeLckXUaOhY0KYtQ2T9b5ZWE7x1mYbk 1CX5Akl/kPJSyaneh4ZIb/FaOpqM/9leNecaGrIUvyFnG4nhdejm+s9nOlBJ w8qhplCS35usvlDzTsSzTUZrx30Mo1K5Ajz+XUhsR0TrZtLfVKRl3jZJ70Kr qEhpVxsMUTvSaPmNXeggV8fRdmsMx0UTYi3XfEUjJoHZPlcwpPIG/VUZ8xXd er3VEkxI/GPWhz2yulEC/y23dh1S/1+I2/9s7UEqjaEHTypgKFqerZ/+qwfN l6d5WsmR9fCairKZcC+Srx18fHcvBu09BhwtF3qRbscZjbw9ZDzZgY/T+3qR keHLPMZ2DEn5c0VmE33ob5GkcRFBDAXmw3jkfj/arHi+rmqGDR725SfPPxtE wWZHnF68ZIMGYlwVyB1EbbyRkldekP5yrZxvfcUgchy+yrk1hQ0xr5NLVfoG Ub8Jn1R4IhuK5gKlxMV+II5KdMbsCRt+uV/kH439gZqjQjhT7rHBNoDxyTVq CBX3Gko2kP754nO5C/EhI0hhuqYsZiUbrAMaOL+30pFK7d7ay2pL8N5PWjq4 aQo1y+lZt13+DabrhquFL/1EnLho85XrizCrWn94wHkW2Uw7qxdoLECuw+p5 y1sM1Fjo5aiyfh4mPsuzfrkykN8B+vVRss+TOmDAuOfLQCY18xERfPOQyhH3 M/kxAx3OfRgwgimIDZekDxYw0NXlW1jOdAr88o9+s5xnIF7a3zoaQIERy+2d 5T0mEp9pjnhwjewTjRPKfz1iohlvzd4FCwpoUFl6L4KJrGbar9mbUKD7cEVR cioT/XO9SV3vLAWam57kDNYx0Z79+sJYlQI5tbxnlqtY6ECOcQivAAXcPiO+ lpEsNMexLIX2hgX2d7jOW8Sz0K5zDG/HVyzourZN0jyVhY6m+/YLkv1etp7R x8sFLKTrVPa3VgILDHZ8FL1EYyFPN1HFzAAWpNQW5usKU8jhpF7FdhMW8Je1 ++tsoZBPyMktmYYscM6ZvnRGgkKFP47yKJxlwenoPRxa+yn0pjTJTfU4C37Z JGgfN6CQbk8YQ02eBRr8D4YPRlJIOxAFzHOR53Mkl6jFU2hteVyFLZsJGxgV QaqpFFp13su/m2ICvZdSOFBAoQWv/Q2Fk0x4nHvDex+NQl7NChLGX5jwOyXw rGIPhej1LuOVZP9sHZMmoTBEoV9Mfo1dzUxQ9e1vlJ2j0Jx/UM54JRNSnZYS 9v6mkMkNyfenypkgYCt6W4Z7Hu0J9biRXsgEV1NlTWn+eaQ72pfJk8eEQX2D jVLC8+hGYLa3RSYT/vc/AP3//4D/AwimT+8= "]], LineBox[CompressedData[" 1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAtGKeODAq+T+q0v4Z0Jr2PyAwq5Am LPk/DCkZfmyZ9j+KJMhjJTT5P39jFqvCk/Y/9BjlNiQ8+T8OkkFvF472P14N AgojRPk/0E31ymqI9j8y9juwIFT5P85BYUoNffY/nOpYgx9c+T+oHM9uXHf2 PwbfdVYeZPk/5ckwLKpx9j/ax6/8G3T5P3/XO3NBZvY/gZkjSReU+T+HR2s8 X0/2PywHpfztm/k/6YPy/L9J9j/YdCawxKP5PzyFGmcfRPY/LlApF3Kz+T/a r6Y52jj2P9oGL+XM0vk/hRAp4T8i9j80dDqBghH6PwJt5IXL9PU/5k5Rue2O +j/NWtOK5pj1P0sEfynEifs/W0ZP6T7d9D+uSW3Y7qn9PzhfIOIsNfM/OJq/ xc6l/z+Om/jox5XxP65i0kAW5gBA+U/mtk+A7z9mIFQrQfQBQCE2es3Bwus/ suMHtUbwAkADbeN8kSnoP0oUBSaLAQRARhvlymEo5D92SjQ2qgAFQNq8XZh0 VuA/yajyUsX6BUDP1B/p9w/ZP2h0+lYfCgdAC7JzHKiy0D+bRTT6UwcIQNv4 5/repsE/qq1Xl74LCEAljHaLX2DBP7gVezQpEAhAmhIXyd4ZwT/W5cFu/hgI QKu/CmHZjMA/EIZP46gqCEDV+lY0f+W+P4bGasz9TQhALMwuyql8uj9yR6Ge p5QIQEMbLQCRqbE/ga/EOxKZCECqP/Q5UhyxP5AX6Nh8nQhAkrP8JRKPsD+t 5y4TUqYIQG4fvH8c6a4/6Ie8h/y3CEAnv35Q8X6qP17I13BR2whAkkhQbT+q oT9tMPsNvN8IQGWNUUCij6A/fJgeqybkCEBHhJigB+qeP5loZeX77AhAPUOg +oZ/mj/UCPNZpv4IQC3uCs1uqpE/43AW9xADCUAf6BTxSeqOP/LYOZR7BwlA 2eES7bN/ij8PqYDOUBAJQCdTnCyCqoE/HhGka7sUCUDmjOE4zn96Pyx5xwgm GQlAvXKrE5aqcT874eqlkB0JQGiuvyu5qmE/SkkOQ/shCUBPATf6YzSBPtkP crQ= "]], LineBox[CompressedData[" 1:eJwBwQI+/SFib1JlAgAAACsAAAACAAAASkkOQ/shCcBPATf6YzSBvju1fPAI HgnAUFDG6R2TX78sIeudFhoJwNeVUBzYkm+/DvnH+DESCcD2sP3YsZJ/v9Go ga5oAgnA7mD/RJGSj79YCPUZ1uIIwFid8TFLkp+/Z8fb8LCjCMBiVxoHUZGv v4RFqZ5mJQjAlj9KmHeNv79x1PoSkxMHwPa1l8KsZ9C/yl0a6OQTBsD3j9mX wErYv/2+qrA6GQXA88LQ8cHu37/jsvGRUQkEwPOKJPTaCuS/NqEG1I0LA8Dh JTY9ZcTnvzwi0i6L+AHAv5avcUuz678cew59jOoAwEzdUlPFcO+/0JwxWGbd /7+itHlkO2fxv89os+c1u/2/fBBLcFgn87+mKdE4UL37v9fzl30OtvS/aCex wYC1+7+UXu0QArz0vyolkUqxrfu/51AMaPTB9L+uIFFcEp77v4kcPGDVzfS/ txfRf9R++7/ronxuiOX0v8gF0cZYQPu/dTCKs7IU9b/r4dBUYcP6vy39BmwV cvW/rt+w3ZG7+r+NbkfK4Hf1v3DdkGbCs/q/pkQg4ap99b/02FB4I6T6v1EH Ojc7ifW//M/Qm+WE+r9+h2p7TKD1vw6+0OJpRvq/BtTkFjHO9b8wmtBwcsn5 v+TadTcAKfa/iEx2AvnA+b+a38l+HC/2v+D+G5R/uPm/5VnVNzc19r+PY2e3 jKf5vylpXP1nQfa/7iz+/aaF+b9CJzXKtln2v0bfo48tffm/QEpOk8Zf9r+e kUkhtHT5v1kvtcrUZfa/TfaURMFj+b8XfLmC7HH2v6SoOtZHW/m/b8h9AvZ3 9r/8WuBnzlL5v0mg3e79ffa/rL8ri9tB+b/U8r4LCYr2vwRy0RxiOfm/iTRo OwyQ9r9cJHeu6DD5v8+P/NUNlva/tGKeODAq+b+q0v4Z0Jr2vxR1jdU= "]], LineBox[CompressedData[" 1:eJw12Hk4Vev3AHAZKpIKlRRNugmZco1lRRoJSSpkKkMUuuY5JZLhEiFTGZIp lJnyIkOmQockhIznmopzzj7k7O/b8/x+f5znPJ9/9n7X2vtda717r5WTgTU7 Gxsb+xr8w/++jGmnph1MZP+GU9Ehiw5WanbXfbcz0dCdtfu5s+lQNbuRxr6J iaKILdacBXSwN7gqtJlFoPgh2f30SjrUc5I5cTQC2bbfTp1BdBAuz1QTmSWQ zUnVwJFGOrTsXDCTGCDQkGyvT1MXHcTHg19oVRGImuSo4jdNh7vxUkptrwlk 0OIzbjNPh76z3R8u5BCobVcDTZdGh5ACkRmzBAJ1/2WmIbyGARMeJfJe7gTa +OaAV4oQAzJ5RtEreQIVqHXxGZ1mwF7ZY/3b8hhoToqXEZ7BAB2D6TjpDAYy B7H04WwGeLo+uXgqiYFOldp+ky9gwMeK2Xa3MAZakhJjdFcwwFsjFVEcGOjq tHnrmo8MoBiQmY+lGIjjZ3T8DoIBwW51TnwFdHTLbv2/MtoEUKtOcq19TUOr m/bo/ZghYKdDtaVH+CL6OXfc4YriMrBa+V8s3PmJ2Cv8jUNMV8AFeA1vMuZQ 30DakcyLv6HiSEctrZSKFnNUUinHV0F2e8QZ/iwqyjaMEOTVWoXsZZ1O6Tgq +m6y553G6VVIqGv/butORYq8qpkvz6+Ch14766siFTG4KhuuGa+CokPb0Zry aSR2V3K/i8sqlKS3VARXTqHEmYXV45mrULilqWj7uwl0rL6mxYyNBQZmW84N 502g5RGBc6YcLKDnmv7ITpxAIW52qZfXsuCo1uJWVc8J9FrqSP1pXhZ8cN/j Y3pkAsUK6y5sFGLB8Dfvk2k542hCSahcToYFW7Jk+iXixlDmVhWfHhMWuKg+ 5VB3GkVH2d823CtgQWzszgEjs1EkmLpef6qIBSVzKSVO50fRw2dny7WL8f3T 063TJEdRoBVLiLeCBZ4b8ps5p0bQvNxjMZc6FvgP1IS1WYwg75F+pf7PLHjo PyZw1WAYrTyLkN/AYEF2n83MHY1hdFY3f0aSyYIW+emGR7LDyJZZ4nduhQU8 k7Nub/mGUT7P7P5AkgXCz+YKIe47EqEO+lLWkXBAQ1C5I2QIVU46HRcQIkH1 gfmZKfsBJJFTILCgSEIL4ffCTHsAHcyujc5TJuHKrWT2HskBZFCRLGGtSoLb xa9v62a+Ie250/ndx0go2ntRLsnxG9K7cH8mTouEgzWnhHX/6Ud5VcVnGy6Q IMg4PFPs1YfKXJSaXtuTkGGvc1bCuA913O91kL1FgvyQfdZz1T50fVX00Kvb JOg3vrSIWPmCXHv1qM+dSQiL2dtj4/cFvVR/HXTHnQR22a01OwJ70ROVHq7y QBLm7X7/G/CQgqxX29K740igFMht1rWhIAVJ2kaZBBKqlmyidmlR0HqpeaXQ pyQE3e2KqiQ/IyO2xWbFZBKEE7KiF90/oy83o3rc00jQataPsbXuRrFK1x4/ yiPh0MZgAcUT3WjW/ur3+nwS+C5Wx3Du7UbcwQXTxCsSvg4diE0b6EKzuzYo mhWR4Ehfjv12sQtJekrlbSwlIeHAizg9zU40+Dl8iXxHgp9D/zbRPZ0odYp/ oyAiodFqt/TXlU+oXitj5EAtCcbeS9ICLp9QdXdsjWY9CQ9yUmVDLD8iPv30 k5ZNJPSvWzzipN6OBrgPesp9JOF+Q5IqEM3ohvRVmsgACVMfVWKsK5qRtdTf 5Dds3a9f/gvzbEaHU19sTBjE8c4JpPQRTchEbqsyz3f8/LaHk3eYjShPe76u d4SEQXvfhszl90gmmXi2eZIETTdhkbaq94i6dXy2ADs7oMLtp/d71JNRCdpT JLjGLv2lvlKPNikuzflNk8BTcyv0y0odmizO8m77D+djX1Wy4DJCEZ/FYN0C CSpK9POW3gjRP55pfoDNqSNPvlquQceEPxiw/yQhyS3X8vTKO2RRX+lCw/7w IfEv79/VyPFIwsD7RRJiBnu/NPlWo6e5Df7ySySY/eIPFVitQg9mtog9w6bt DPsvf7USeU0uevxDI2Gfk0/Rd1Y5yjq1R2sNg4TZ++WWUgHlaOf7ZJY5dkXC Ir8XWYZknNa9fYutV+/gxs9Whk5bRYEzQYLvVlPVk2tKkBa91w4xSTgtkfBf dGAxEjCUUOVbJoEfKMlDa4qRmJwGnwl2jp0O6cH+BiXbZ9XMYfdWH23I5ShC 2ZROYK2QsMvLaugXbyHybXeaV/tNQri3tkIUfwESL/Mv9cB28BMZbhXJR/my Q0HT2P3+axXt9uehqMWDkbtXSTh3dz6M61AuMualvLqILXG/Tum4QjaqGT8l W4adGJQbMajyEj2qXxczhs0THPPDG7JQ6eHdvFtYJFAfWv9bei4TPTl0WuMG tvEj3XED/QxUWWuw+gi7NUxJbeFSOtq+mPupEDsnkntSwvI5uu2pXL6ILb9n 3CuqIxVtfHuznZ/E8e8vP9DWl4yO+X5nyGD/OhDaxTWWiO4vx6toY3eJm/gd n09AeU+io29gF0kePuSzHIc+t7SSPthR0iSllOsJMpLVDIrGdpbruruwOQb1 B9BFX2DrK2RISe6KRkbhE5/KsM0dqUVtupGI6/SW+CZsUdfI9RrWj9C1GjdX CvaQl7xFmU8wkhYVsBvGTgnoLZd8fA+FFk7doWJX8NBENS/4ofY+WvQvbKVt xz5K+buhWBHVDwS2wwmeFWkjB/RJtFRwFbuzRKF4vcVlVJxo40Fil+0a/z7H PaDmuam4649TPE5O6ydfh7yIWwGsP+stMm48lnYH4gTqxFb+xJ/Jv+2iqxd8 lNMZpmHn6FgfKcm4C3Rlvjdz2NRTdd/UI4JgIW5d4ji2hIZIUIv7Q/jZq5zQ /2c9al5Shhbh8E9aen4Hdm+ivf28WBT8/fbklxpsenxCTcmOx6DJs1+oAHvb kyZ+b75Y+C9MzSnpT3yPl2yAIw4+mEUNBGNf+XdfNScRD83v9lk4Y3uG629q nXkKXGuWmJf/5Cc4v9ywNwWcDl513ovdd79/g3DbMzA6v6DDge17nLNo/vtz WB1ohx/4fUg5Js9ZSkkHiTVmdinY0kfPFmz/lAE59dtSPbBrVC2ueLdkwthp Eaoe9pBSZD7UZEGMikjjMn4/HRVfGKVXvAT1dzsNO7BZCm/ZuIqzYfORf5gp 2KLyVMPWl7mQYi0fooJtLnVq1TC6AJgWRoVX8f44mpAVSX9eCBHOzsXbsXnv cWzWuVIE83RLj894v03PXk+btX0NMo1D6lrY6Y1iDbIhxVDd9amdB+/PqBVK +JpNJTA5rtBZhve3v9yDS91xJbD1bHKMBbZJyviES1YplNk/Mn6F64GgWxZ3 eWM5aPyOn5bE9YI9z6g75HwF0M7XzzbSSVgYXpt0pacCOqb2v7mG3aFjK7U8 VgnNnrk+wbgeBYuJ6x3jfAtCl5P53+F69nvasNVyby0EpxhcrpknYZHzlfQ5 61o4cKzKSgGbupsrRj6nFmZ8RqSz5/DzuFRqwiFXBw/c4rhDZ0kords6m3m8 HsjQihaZP/X2ae+mKfMGWP/gov+WCRKsS6RdOzMaYMX1VeL1cRJMPwX3VUw2 gATFw7N4jARtLqW0UKdG6Ej611PnBwnid+LlJQOa4McZ2fDrwySMnLlyyTH1 AxR7jfL+1U+C+rivZcfgB2h17TGx+orrTWDabSmRFmj7JF6e3EeCQRX1ATWp BdYq7o3Z8IWEekm/MpunrTBjVzzS9Rnnny99u3lsO7T+jhtj68D1hEqbOXiy E8TZbo9M4f5oobze5cuNTrDrOtI78ZaEyGBhZnBQJ6x07fg6Wo3zsQ+4Jt53 QpHKfe6eSnw9k4cimZpdcFc1els67rcCHcK6e453w0qTxMIQ7tdLhVAopEaB k2E7do3h/t8uqcbvfI0CMhriPKF4Psh4qejWHEABPFu8lozH6392WM29gQJW ordk7GNJeB25s/nz+R6oaFk/1haJ83ubMRRp0Qtce6S0990nYVKikI8ruA9E 9sV07sTzTU1W7h3T7D7YQMRKetqRELcvi1Lc2gdHOXpOdNuQcEo4JdFq01eY MA3ND7hOQiZ32F+1CV/B+fVuK2SK45+yUffJ64cUXmevbl1c/1+IOv7sHACV 1sijZ+Rw/Vmbb5D9awCY1Vm+1jK4H9qqKJkLDoJs4+jju4dJ0DlkyNZxeRD0 es5rFh3C68kPfZw9NAjGRi+LaHtJSCteKjOfGYK/hdKmhfhJKLEYJyfuD8NO +UtNdQss8HGsPnPp2SiEmx93e/GSBZpAu8FXOApd3LHi11/g+XKzTGBzzSi4 jt9g353BgoTX6ZUqQ6MwbMojEZ3KgrKlUAlRkR/AVgvnzZ+w4Jf3Fd7JxB/Q HhfBnnGPBfYhtE+ecWNQPmgk3oLn5yvPZS4nR0yA3HxDVcJ6FtiEtLB/76SC SuPhxmtqq/A+SFIyvG0O2mX0bbqu/QazLeP1gld/AjtZtvP6zRVYVG1WH3Ff BLt5d40SzWUodNrItHKmQWupn6vKVibMfJZl/PKkQZAy9ebkJiZIKBvS7gXS wLSBGRPDw4RMtqSf6Y9poF74MGSCJCAxWpw6WkKDG2t3MdypBAQVn/hmxaQB N+VvXU1EgDHD653VPTqILrTHPLAlIN4kpfrXIzos+GsNLlsSQEG1lfdi6GC9 0G3raEqA3sN1ZemZdPjnZpuG/gUCtHY8KRhtosMhBQNBUpUAGbWiZ1YbGKBc YBLBzUcAZ8BEoFUsA5bY1mRQ3jDA0YXjkmUyAw5cpPm7vmJAn+0ecYtMBpzI Dhzmx+e9fH3jj9dKGKDnVvW3dgoDDPd9FL5KYYCvl7B8bggDMhpLi/UECXA6 o1+z15QBvFXdwbq7CAiIOLMr14gB7gXzV8+LEVD64wSX3AUGnIs/xKatQMCb yjQv1VMM+GWXonPKEMcxEEVTk2WAJu+D8aOxBOiEQgiTA9+fLb1CLZmAzdVJ NfYsOmyj1YSpZhKw4ZJfcD9BB+ogIadcQsCyn0JL6SwdHhfe8j9CIcCvXU7M 5AsdfmeEXpAfwOfMZo/pWnx+tknIEpMbI+AXnVfzQDsdVAOHW6WXCFgKDiuY rqVDpttqyuHfBJjeEn9/tpoOfPbCd6Q4mXAo0udWdikdPM2UtCR5maA3OZTL VUSHUQPD7RKCTLgVmu9vmUuH//seAP//PeB/dxLThA== "]], LineBox[CompressedData[" 1:eJwBIQPe/CFib1JlAgAAADEAAAACAAAAtGKeODAq+T+q0v4Z0Jr2vyAwq5Am LPk/DCkZfmyZ9r+KJMhjJTT5P39jFqvCk/a/9BjlNiQ8+T8OkkFvF472v14N AgojRPk/0E31ymqI9r8y9juwIFT5P85BYUoNffa/nOpYgx9c+T+oHM9uXHf2 vwbfdVYeZPk/5ckwLKpx9r/ax6/8G3T5P3/XO3NBZva/gZkjSReU+T+HR2s8 X0/2vywHpfztm/k/6YPy/L9J9r/YdCawxKP5PzyFGmcfRPa/LlApF3Kz+T/a r6Y52jj2v9oGL+XM0vk/hRAp4T8i9r80dDqBghH6PwJt5IXL9PW/5k5Rue2O +j/NWtOK5pj1v0sEfynEifs/W0ZP6T7d9L+uSW3Y7qn9PzhfIOIsNfO/OJq/ xc6l/z+Om/jox5Xxv65i0kAW5gBA+U/mtk+A779mIFQrQfQBQCE2es3Bwuu/ suMHtUbwAkADbeN8kSnov0oUBSaLAQRARhvlymEo5L92SjQ2qgAFQNq8XZh0 VuC/yajyUsX6BUDP1B/p9w/Zv2h0+lYfCgdAC7JzHKiy0L+bRTT6UwcIQNv4 5/repsG/qq1Xl74LCEAljHaLX2DBv7gVezQpEAhAmhIXyd4Zwb/W5cFu/hgI QKu/CmHZjMC/EIZP46gqCEDV+lY0f+W+v4bGasz9TQhALMwuyql8ur9yR6Ge p5QIQEMbLQCRqbG/ga/EOxKZCECqP/Q5Uhyxv5AX6Nh8nQhAkrP8JRKPsL+t 5y4TUqYIQG4fvH8c6a6/6Ie8h/y3CEAnv35Q8X6qv17I13BR2whAkkhQbT+q ob9tMPsNvN8IQGWNUUCij6C/fJgeqybkCEBHhJigB+qev5loZeX77AhAPUOg +oZ/mr/UCPNZpv4IQC3uCs1uqpG/43AW9xADCUAf6BTxSeqOv/LYOZR7BwlA 2eES7bN/ir8PqYDOUBAJQCdTnCyCqoG/HhGka7sUCUDmjOE4zn96vyx5xwgm GQlAvXKrE5aqcb874eqlkB0JQGiuvyu5qmG/SkkOQ/shCUBPATf6YzSBvrO6 izQ= "]]}, {}}, {{}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange-> NCache[{{-Pi, Pi}, {-1.999999827517028, 1.999999827517028}}, {{-3.141592653589793, 3.141592653589793}, {-1.999999827517028, 1.999999827517028}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], ",", GraphicsBox[{{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwVkWlQVGcWhln73laWYRlIGJoIggtCBBFKgeIEQWSRsDphWBWaLa4RhBnG LQKWsY0dBlBJEKJNIBJlQMJSw8A9kIkQo9LYSKGAfE23oEgQjN3Nbba5OVVf nXp+fc/7HvvUo9Hpejo6Ounc+2OHhpgELNrzUaTzxxDwaTk5R9vx0cUtLJzi 2MX+9XUrGz6OV1/dLuBY8OXfwhyt+JhlUNPiz7EJ27vgbs7HDLG+NJfjVaFX LZjw0V0lKGzleE5aExO+ho+6J7Y+4ukSIL4Wugk8PsYpghvTOR74/vOGLD0+ jrVGbJJx3GM5l5C3QuNh65XtEXoE7p5N5hdpaTz/ZmLwKceSmQetJWoap1cP 8HL0CZTF+Qir39LYrmrutTEgUPy/W2Z3Zmn86tyk1QDHeW7vMf+ZplGQPzpf bkggjla9PzRBo79jn38YRSAkN61X8ZxG8caGJh+agDcZyJ1/RmPtoR0Sbz4B 2/aGfiMZjTf7glfT1hIwdhScsumnsTflcNplIwIrYpHzpl9p3CzO8e015vJl ZhUH/ETjauxVP+GfuHyyoW1RDI1vVnn7+8y4fLCbJHdwvo+XJr0tCNRYO/gU NHO+HydZhlkRyOwdmWuU0JhhE3XIWsD5eoRWdVXT6Ft3zHvWjkBwdXvYg29o TMi+v0e2joBzfnntVCmNzb/ZrOlzJDC7ISLRrojGbRviLia4Ehj/Vyff5SyN 2aGFjZKtBKQrW9p2nuT6PD/zgnXn+h2izffl0uho25Em9eL6Ot/TKxLSGBK9 +6WjP+fz1u1ExX4a39NJuTcawPkkVzvUJdKoNK0puBnE9eV18lRPLI1neiqC PtlLYPmFpwcbSOOOKaEoPY5A0e5bVRlONGK0Z7xxDgEUFUR+YM/d46HN+pk8 AksDYXrDtjReq48UPSsgkJM8mx5iSWO3QxI9eY5Aar6Hq4s+jUv8xzGtpQTg VmfHPKHwl9SkVrd2AgVvLh+uH6Uw5oxUqN9JoNVz/wdpwxS6iFVjym4CH/bo FQ72U5hkZKCR/crdc2RPaFsXhcHxQa4HCAGt0ePhk5UUVu/aV+NsJAevGMlF z2sUtl2/a6Ewk8Pxilzf2VIKi2seJN2ylsMrJ+tvU0QUdqTkBaSsl8OwX2Lm rgLu/9PjFUd85NB6bFJFxVHIvHx4xPiIHD4b1JqXWlCofCI79HRUDleiI+LL TCk8B3ZbmxRy+K9UcqN8LYV/LtaF0mk58B7udbumT6HVv8PM8hbkUPlzVfj1 33l41NPSoMVyAvpad12ok/GwEnWCjSImwK7i4nJHKQ9X7uWY99yfgPtJNi+V Fjwc/f3nkYMjCoio9gWtKQ9Pu7fv81cqYJAkXzE14mHORu+vBb8pYCxNEuht wEPtVNRfp1cUMJftckP8zhAL/zEqlDkowTrPL977iSHG9f/w8bODShBeTn0g vmKIM1NNWz7TewHLXfWN3u8bYtAT9/grMAmKu/MlUXwD3KAWteCGV+B1gzf4 5Vp9NI11L3CjZsDX4fGHogVddBYMLaz1eQO2/zQ5dWlaBxeUN8MNts2DtNI9 LmNslenUUsY+dW+hP6t5yrNjmaG6Nz+6sO0d1G4e2BHZuch8sbdw57qrKsja 2NR9tmWRGbbsKCqoVIGzU0lo051FJlaU+kp2QwUN66ISzasWmfN0+VLhbRW0 WQ+cGTy9yESm3tn5tFsFfYYD9+I+WmTu2Zh/8cmMCl7LpbEHftIybL5XWvVH amgYbxwr6dAy6tn9bSO71XBs7KuMnmYtcz8oxtw6TA3vhiP/vr5GyzwPjH52 cZ8alvql37wo0jKKRTtJxqdqMOmSTmQHaZkmpWflbKka3L6WHjv+C8soug6l +E6q4cLePD0WWSaw3E/S+1oNZOUvZWfaWcaJ+N+JmleDOC2z7VIdy9h9u90s dUkNsy4ry7XFLLP5aDAv11wDQeMSsesplin6bl22yloDVSUh9j/msoywRHnp hEAD4eqywO40lrmdXGZ5fJMGar73HtqTwDKieo/8WVcNLMWTzEfRLLPmrNO1 bA8N3Ga2iEb8WaZee9A80U8DBscHbFN3soyfZ/6nsgANJDrmN7x0Y5mS9btO h4Ro4MfUqh1uzizz3Gsm9nq4Bv4P0dUodg== "]], LineBox[CompressedData[" 1:eJw113k0Vl3UAHAZGoVQRCoqmVLUl6IcJE2oJC8p4TUrkiFkTiSZhQwZExJ6 zZRtnkIImRNRZOZxr+m532mt7/vjrmf91rrPvefss8++ZwsaWmsYMzIwMKzh 6++vCzFuXbt7GdoqP4WLaxNgKGf2rwvPMvTXf9qdokNAydR2GiP7MnTtFt61 8y4BFho6vBx0Eib+23RqwZyASmYqPYJGws7Ks7f1rQngK0yRE5gigdt5v0yT HQEN/LN6Yv0kKMSbsyW4EyAy6vNGuYSE4p9BUqdeEuARKSHz+QMJ4kXvl6Oj Cei+1F5/PZ2EKiNX27V4AnyzBCb1oki4NFnqVJpBwNijPGknBxL2xwSAaDkB KVuH4b00/v+8TVrtBAGCx8727npHAAcdVazLk6CqMR4hmUyAFDl2pv8cCY52 L2+oxBDgoL/kXXyRhJaiqSZ7fwLu6D10fKBBgrPia+iwJOCD1O/vX4xJ6NCg UkIlCECnRy5pviDBx77Cmi1rCei2/ncfdOM4lJxn2fiBBg//K9wwcG8Z+C1L DR69WIDRIidb49gVoDdyvpm1mYO+/vYL4ZmrYItYNc2JaWg8xT21GLIGRceb y2n5E1D3P7SgXKt1yN5Rm8PzaQxiLuab/iNIBw29HZeH3o1BSdyJDUIH6bCU cXskLXoMeAMyoiaE6XBGeWGnrOMYjLI/LreXoEO9w/7Ht4+PwZbnMGkrQ4eh PufziemjIMfP5MmuRocdqUd7xSJ+QtZhyckKBzrYyr5ikrcehovbT7JvqqZD eDh/v5beMIRe3vpBuZYOedNxedZqw0DzcbnpUY/fn5RknCg+DF0ljm/mmujg uC2zjvn3DzC/8Pz2x046uPWX+X/W/wHhpNP63Bgdnrn95NLRGILpdvG6/k0U pHWbTNooDsHM6c2GvVsoaJAer35+bAgC8uuWO7dRsPXXlP1HtiGIeay8r46d Ar746WwU8R1uiAWdDeGh4JAi96lm30G4o96cVC1MgezTuxd/W/TDPiXdxdRz +Hmk6xu9K/3g7yPDqXKeAu17sYyd4v3g3W9mOaJCgf2Nno8Vk30QP3j9C+9l CnIEb0jFWPUBSlzSsbpGweEyFT71h71w+F6tfvVtCriJI5O5Tt1w4YnOfX47 CpItVC+J3eqGPoO2T572FEgPWqQmyHaDsA2vypgDBddq3uoHrH6Dzdcz19Od KPAPE+w0cf0GZCv/xj3uFDAe21m227MLSFl2kww/CmbM1oLcn3VATOpEkXUc BR1ZUhzqJh3gX+C+u+A1BSWLJsF7lDtgj6ia3ko8Bd4ebcHF1FcwShIKd0nC 8YlKDVlw+AotvB/fm76lQLnuWpipcTscUTTy7M6hQHS7D9fJc+0AHH941z9Q wHajNIxZsB3uibCE7culoGfwUHhifxvoqQdL6uVTYLW0Et53ow10vLQZKosp iDr0JuKqUiswqKwsH6ikwNWyd9fe/a1Q+sM9W7iKghrDfZI9q19A20JI5XA1 BbecFyW5bL9AzXbTXUK1FDxNf33M16AFSv+NUKA3UNC7aeG4tXwTxIYZpV9r o+BJdYwsIutAxGLL+TuDFPxuOR1mXFQHcX3dBuzfKVDv+fbH37EOHIK0kgGb b5orrpusBY53IuF8P/D68bygbJZrQP13pXjJCAUDFi7VKStVEKAoIJLwmwIl ez6BzyVVkNlB+Z0Yx/nnXmQ/51wFLkat7HXYduGLwvKrleAlz+E7NoHzr+ye 37fVCuBaGhFin8LxECqJ5V4BaEG8mzbNUXBaZknNwBngdQtnsis2s6o09X6l DDKs9QznsWPsMwwurH6CQq/ay13zFNTXRws7r5XCwOBshe8iBWEDXd9qXUrh 8YrfoxlsvXlOP671ErizIH3tJo0CGr//n8z1YqjyjLDgX6JAyPpxznd6IXz7 06MUQlAw9aTQQMK9EBw7hTkmsIuiFjidqAI4cOYKgyJJwdVKS3tOhgJ4OMNw aRzbZedt2fMb8qAs2+7xgRUKLohF/QnxzAUR1Ta9+9icqCN2cEMuuPd0GuVj p5upUo8Y/4OK+IputEpBV+mZ6gymHAj0jLwrv0bBHifDwXnWbIjd1XTcEfuF 85UTwZxZkFDJdTYH29JVYKhRIBMYXzZN863j9XbbeNLswDt4f/hkpBr2ZY8Z fxbRDOhLT7ZzwxZ7UiGjcCINeD66tPRiR3tnBAycfguXPv24vJGO18MnbMQZ pYJ68Nm1o9gTz4yD8i+nQNti87or9q3n6qMa15JBbW1NLQm70V9GbvZmEryu 4PlajZ0euOWXmEECmHVvdGGm8H7dP+oU3PwaClK64gWxOQ8UHvrcHQtPD/qR Z7DnD/m1sfyMhkqTPT5a2G0iuq4KM1GwGB140Qo7R/yI6OOVCFDcMYi8sYMl qY58lpdwR3bLvSjsB1JtHrMcYZD6lq05A/vaiWQJ8T0hsHnblGEp9l2riZzP 6oHAKZN8pBF7r13gZkXj5zC899iRb9iDTtL6BY99QK4r1GAYO869q1A81Asc Qxob/2AXbaXtVbruCk/fdJktYMvsOtsi4WYPc74FcsvYlue2rkpqWcJQi/m5 dezWvBO5m/X/AX6pWXcKW9X8cnIll0Op92Bkx1/HPTo/fi32X6RTYx9J/zve nFs1ZxNt0Mgm+4erf+efwrnrhp0TKvS54LWEna5qfDwv2QOFxUzVzmBPqFT0 yQd4o85yU4Vf2GKKAt4NDs+QTUjBdP/f8cg5SWjqv0BEfW9bK3ZXtIXFzMFg FHiuc7wSeykyqixvdyiir6eezMXe9bKW05ktHMXsvF6U+Hd+oYsmiCkCGdV3 WAViawcJlTKTkWjc7vgtJ2zHF9fYGydfoavRVs6Gf+Pjk1mo2RWHfGc8dI5i dz/p3cb3OR5llevycmG7KDDnzHxPQJZqfKw0nB9xZ6WZ8zuS0I5zV0JzsSXP XMri+ZKMDmhUHgzGLpPV13ZuSEGi5sKTFtiDMoGZqCwV8RqW7+bHtjr5Riup 6C1imll1n8X5Sz/xkYElNw396TnKX429V3pCs/FtBjLyCZg1xr4robKuGZKF Wr09eMLxfjkTlRq4lJCNUkab5bSwWb2YOFS1c9CdtA3Ku7DHp/5NnDL9gOJH pBiC8X5MqjlYfcw3F40zaYlY4P0avNrxYgN7HpLb6nCPH9tN6unN9og8JCma Gd64TIFu3OiYbWo+ejdmHyKEzW2fuqWwphB9LL5wthjXD8Z3Wu2+akUoI+l7 kg727NDGGO3OIqScWj9J4PrTrGoqsfKzGFHdWUcksX0Oilw9y/wRvf1SauSJ 69fauGajgWA56jT6k105S8EC83vJy8blKFCxSU8Re2IfS5h0ejl6Khgx/2kG r8fNfF0mqQpkzbWjIWeagvyKnVMpCpVo4eOwtOskjuerLvbfd6vRLwdP5g+/ KDDOk7RrTa5GrgMum9iwb3/x6S76VY0ETYRnzcYouMIik+hnXYO8NUsf8o5S IGITKS3uXotGPzvL6w1T8OOi9k2r1/WI1nVz3bufAvlRF4PmgXq0hTzwsrkP 1xvPxPsSAg3ItJ7Q5sbWKJl4OhHTgFTejRnF9lBQKe5aYPKqEelbGgVFdOH4 syXx3A1vQhkCZnLHW3E9maBNHj7fioJWBm+x4e+j/qnNtt+MWtEpjyPBeyoo CPThW/bxbkW8/XYLIuU4HkKIZayqFQ09/h/lM2X4ebrPBFKU2pBuuhOHWgkF XM186vsV2pG0mI4Rz38ULGajbF65DlQl+8PragIFTeJynA/udKCb9BdGW/F5 IPntSfs6d2y+0kNV+PygEX9EzqG6A8Wqsl+QjKHgQyB/3Ve1TjQdV7T5z0sc 3/vEYKB+F5p2y02kP6fgl1g2G4tPN6r2lNkQZIvzPTXD5nZaN3q9xWz7xocU RAilduQ2dqN7xutrzg8oUOGLizZk70E55t999O5TkLLFX7g8qgd1fr14idUU z/+3ifzjd73oXHPQW8ZbuP6/2Ws119qPHI2KGnXlKSjYmKmRNt+PDBn30SLP 4O+h6WmZu9wDSDlzhq9dFtcnUU2G5n8GkOpFUx0FGTyeTL/QtMEBZGs2/Ib5 GAWJuYsFdycHkfkdqXgJQQry9EepsSdD6H74uyOrGyh4bFV68Wb8MGLW1xKM /UQHJUQzYsseRh6SYm7upXTYynHUs65sGDkpbD5gUEyHqA9JxacHh1Hl/ifn 9+XToWDRT2yvwAiqW+qd88mkw7yzNuuv6BHEJvBpG3MMHSx8aV8cI36i+zI5 ZgX4/KydcPSf2IAxlNkicZtFlA4mvg2M31snEBOXtmis+TpUeYuLv/g8jQKN vOItYtZAb8doJbfOHPrJtD/DvWgVFmTr5H84LKBHIVm6X96uQLb19mXDBzT0 7VuYwXzIMkx+PUbMO9KQIdPmnu0ByyB2SpPm5UlD2Rskqg8/W4YUhpi5pFAa UugIJrTcliE6RGRiOA/f7yj3I8liGbxzz/UZLtPQwSv2J+aUluEW4fTJ0GsJ JessvrCcJyFSN650/jm2vIGbFu7bOqC82CtsCe3zdlxEv0m4+mxTQVLKEhpp 6nnANkiC8u6XWcO1S2iP8HDxqwYSjsrlxBtuIxCwTGyxSCCB2X3M0zCcQJrP yl7RVEmwsmW6aRBLoP/Mj7ttw/1Wt+l+Ef0UAnWPVh7ej/uxzGu3Wu7kEYg1 eG/T+dMkaAq18Ol0EKjh2XVTr0MkJNfk517lJlFawGfNinUCWEvafdT3kCg/ 41RNFYn7uKwZHbWDJDpcEMpYs0DA5UhRhisnSCSUsG2sapyAebM4VRVNEt23 4NTL7SRAifXp6JlwEo0oWT7ReU9AJkNSkVwsiVYCKPrFNAJ20cr8ZVNIRKm+ uiqD+8aJAVLqVB6J0mWnbDheERCafc/teAeJNqZFNuR5E7CW7Hddup9EHIZd q9G4vzWJSj0o9ZNELupKmzycCZD1HGqUXCSRwcnSdyoPcL9qvx53ZI1E4Zmd 50Vwn8lmwWcjwbyMjl45VbrZhABHPRllcdZlFBBkwfpbn4BhDU0eMe5lpKm8 eLpWl4D/69fR//fr/wtCPhYF "]], LineBox[CompressedData[" 1:eJwV0As01PkeAPDxmPn/J/KOvJI1CCVbwpb1/bKV10omTbUeXUR6SMRuGrdw XVnJ9UrcntvLo/XaaLbStrpEUcIl2678Zoah3WbVhDFM2tnfOd/zO59zvuf7 so5O5MaqMxiMA6r4+2+Kvujh4qiAV25vQi8EyWG5y81Cu5UKyE1/+27Xl3LI 43TG2LoqoOStU9laXzlMLR1z43gqQDNsv6m2jxwiF6svstmogMmwdeliTzms mdnQsDxUVW9VhahgjRzO/77zX1bhCljfvXk8epUcWCOpvGV7FLDjfM3TdSvk 8LKjXmmeooDYV63eQ5ZyyKyw8TcpVUD9DH9Qly2HldR1pfScAlr2nDef1pDD UIpdQ9tVBUTx2kJ+WZgB560OJsm3FNDq511ycWoGXrJWj3X3KcBw5EKaBZkB 15T1mVn6cyA12R4guT0Dki0hd6QFczCQVv+gOWYGAjVPOLR9Ow9v3DkrY+5O Q51/wtCf1R/gfZvYdsBrCjz++6D92fWPsFrb2FDZI4O66D40ljBwyaai/FqP dxC3PNTJe0oNp4fFMRO+k/CDmGre/FYdDUfKOgd2vIEAI6bdKTVNNGhrdx/0 fA1fB7i61TCYaKzLt5k8IYHJLyqvFGsyUeYYwatMlUD852a6fJqJHda3BTEH JBDmwpgI1GPi08O1dq95EkDj7gqplSrfb8VFe2cJaIliPrgAEyMzDL86NjwG l9NK2gT/ZOLCjYDUJhiDx1UybvscE90ruYo8o1GY7VC/p/5R1V8qfd2/aBTs xg1sUIOFQ4GlZzlqo5Blu/b9XS0WVtoyo4elYvC8cqSkwYKFT8Yaveo6xNBw bqr/nBcLm7IjLv2SLobygpnQ5CwWKty2f7wvFcGjWtb9+hwWCs6MNJuNiWC6 29hWmsfCM81MjczfRMDVcp/eW8LCIItDl/Z3iUA795szEddY2Gv2sOxWtQgy MmcH/B6x8JSg+kvHeBHEp8zxrBZRuKabrjeTCqE27KSDkQ6F3UBNbJIIQeZj pKQNKLTR6nHjjwiBr+/8ncyUwuz4pADNPiEU1EX90e5AIT/45d0igRCaJzpP HPSncKlunvf1bCHM9WznRgVRODpyWu3ocSF4CUQcXgiFO4+EVW8/KoTOfysf wy4KfV+Fjn56UAi/feJiZLiPwo9eR5MTQ4WgHnG26k4uhY2ezasW2QvBdyOH X5dP4cLPq1KKrIWQ79QYdLWQwiNck0SOhRCWzD2R5ZdT6PSHeVOCvhBWnF3w /EcVhb07QwcKlAS29Mb2sjopbNVJNDceIFDyo+zqfBeFfXF1sZHPCQxdOvH1 2x4KLQ3KbW91EYg6VGH+8gWluneOa9ZDAilaT2Nrxylk+SQ8FTQQOLfJdW4b RWNx49YLef8hUFO74+xPWjRuOXa+wekUgR+X8F0d9GjcnbLRbjiHwOBY66GF pTSK7mknJR0noJcTLK5ypLFpiseKOkTA6s/kDMPVNMo376vP2U/AmVdmeXwt jdKQffb34wgE2g3v2OZJ48yCtyB8N4GcR/u7PwTRmHSzvHFvCIEzzgX74rk0 2i4udl6yhcC1skZWP49GGbfr1/4AAq1xs1i1m8ZIntpU9kYCSlZOMzeJxtzw 9YECDwJaidXc+6k0moiD+ZPrCJi96J60P0ZjdMc2l8/WEnCvNHT8kEVjbGBq sJozgWTf7y5WltKYFjUYFcshkFnftsGggsYa7fK7jp8QKDSZGEq/QKPFFZ0R teUEasedDbk3VPv2W9aMmRNoCeY2tNTQuJhzebfMlMATQWqQfT2N1f3VC3pL CUycbDmpFNBoZZxhlG1EQD45wtnbQuO3+ZvLhwwIsHZqPOz9mcYW7kkr0Cdg syJAeeMxjVkWPwT76BBYU5hQof+Mxojuco0RbQI4W+iW3qe6/0HZ89NaBCI7 XxwO+ZXGKw7OXdZsAgku84tbRlTz+GiqUTSB9PJlN+1GaeR/7xq9wCKQx/Dx K5qgcci7VEapXBEfOzb/hkadbc3NNkwCVc9zs+Le0bj14HhdiCaB2x7fW/VO 0yi0cBcWaRBov9zTsmGORt3/JQSPqhP4P/1+140FGh+G6yv9VBYfNpbrabAx InzP6wdqBGRDn5XyKTaaZ8Wa+qvM8I74VKLFxvd3ek6PMgjoVmc826rHxtkP pn7FKi/Tv3bgnhEb8fNv/Lkqr0zroO1M2RjgO1jMUXmD8PfrhZZs1G8Rctgq B/jrfDFvzcZTjL8fgb8AwBcLtw== "]], LineBox[CompressedData[" 1:eJwVkXlUk2cWh1nzfVGWITDQMoQKggtCDSIcDRwogsgiZXXKsGoIW10rCDOM WwU81lgpA6i0CNVQqFQZkLKcYeBe6FSoVQkGOSggb0gERYpgTcIXtvl6z3nP Pc9f7/P7XQfR0eg0Az09vTT2/bFDQ8wCFh24KNH7Ywh4t5yco+256CoIC6dY dnV4fd3alovj1Ve381nmf/m3MCdrLmYa1bT4s2zG9C6487iYXmwoy2F5VexV 62fGRXc1v6CV5TlZTUz4Gi7qn9j6iKNPgPhY6idwuBinDG5MY3ng+88bMg24 ONYasUnOco/VXELuCo2HbVa2RxgQuHs2mVuoo/H8m4nBpyxLZx60lmhonF49 wMk2JFAW5y2ufktju7q519aIQNH/blncmaXxq3OT1gMs5wreg/9M08jPG50v NyYQR6vfH5qg0d+pzz+MIhCSk9qrfE5j8caGJm+agJAM5Mw/o7H20A6pkEvA rr2h30RO482+4NXUtQRMnfinbPtp7E05nHrZhMBKscRl0680bi7O9uk1ZfNl ZBYF/ETjauxVX/Gf2HzyoW1RQOObVc7+Pgs2n99uktzB+j5emhRaEqixcfTO b2Z9P06yCrMmkNE7MtcopTHdNuqQDZ/19Qit6qqm0afumHDWnkBwdXvYg29o TMi6v0e+joBLXnntVCmNzb/ZrulzIjC7ISLRvpDGbRviLia4ERj/VyfX9SyN WaEFjdKtBGQrW9p2nmT7PD/zgnFn+x2ieftyaHSy60iVebF9ne/plYhpDIne /dLJn/V5KzhRsZ/G9/RS7o0GsD7J1Y51iTSqzGvybwaxfXmdPNUTS+OZnoqg T/YSWH7h6cEE0rhjSixJiyNQuPtWVbozjRjtGW+aTQAl+ZEfOLD3eGi7fiaX wNJAmMGwHY3X6iMlz/IJZCfPpoVY0djtmERPniMgyvNwczWkcYn7OKa1lIDf rc6OeULhL6KkVkE7gfw3lw/Xj1IYc0YmNuwk0Oq5/4PUYQpdi9Vjqm4CH/YY FAz2U5hkYqSV/8rec2RPaFsXhcHxQW4HCAGdyePhk5UUVu/aV+NiogCvGOlF z2sUtl2/a6m0UMDxihyf2VIKi2oeJN2yUcArZ5tvUyQUdqTkBqSsV8Cwb2LG rnz2/9PjFUe8FdB6bFJNxVEILx8eMT2igM8GdbxSSwpVT+SHno4q4Ep0RHyZ OYXn/Oy3NikV8F+Z9Eb5Wgr/XKTvVzqtAM7DvYJrhhRa/zvMIndBAZU/V4Vf /52DRz2tjFqsJqCvddeFOjkHK1Ev2CRiAuwrLi53lHJw5V42r+f+BNxPsn2p suTg6O8/jxwcUUJEtY+fzpyDp93b9/mrlDBIkq+Ym3Awe6Pwa/5vShhLlQYK jTiom4r66/SKEuayXG8UvzPGgn+MiuWOKrDJ9Y0XPjHGuP4fPn52UAXiy6IH xVeMcWaqactnBi9guau+Ufi+MQY9cY+/4jcJyrvzJVFcI9ygkbTghlfgdYMz +OVaQzSPdc8XUDPg4/j4Q8mCPrrwhxbWer8Bu3+anbo0rYcLqpvhRtvmQVbp Hpc+tgqdOsrUu+4t9Gc2T3l2LAPVvfnRhW3voHbzwI7IzkX4Ym/BznVX1ZC5 san7bMsiDFt1FOZXqsHFuSS06c4ixEpEr+Q31NCwLiqRV7UI5+nypYLbamiz GTgzeHoRIkV3dj7tVkOf8cC9uI8W4Z4t74tPZtTwWiGLPfCTDpg8r9TqjzTQ MN44VtKhA83s/raR3Ro4NvZVek+zDu4HxfBswjTwbjjy7+trdPA8MPrZxX0a WOqXffOiUAfKRXtp+qcaMOuSTWQF6aBJ5Vk5W6oBwdeyY8d/YUDZdSjFZ1ID F/bmGjDIQGC5r7T3tQbIyl/KzrQz4Ez870TNa6A4NaPtUh0D9t9utxAtaWDW dWW5toiBzUeDOTk8LQSNS4vdTjFQ+N26LLWNFqpKQhx+zGFAXKK6dIKvhXBN WWB3KgO3k8usjm/SQs33wqE9CQxI6j3yZt20sBRPMh5FM7DmrPO1LA8t3IYt khF/Bup1B3mJvlowOj5gJ9rJgK9n3qfyAC0kOuU1vBQwULJ+1+mQEC38KKra IXBh4LnXTOz1cC38H92XWvY= "]], LineBox[CompressedData[" 1:eJw113k0Vl3UAHAZmkMoIhWVTCnqS1E2kiZUkpeU8JqiSIbMUyLJLGTImJDQ a6Yc8xRC5ikRRWYe95qe+53W+r4/7nrWb6373HvOPvvse7aAgaW6ESMDA8Ma vv7+OhPjljV7llFrxecwMS0CDGRN/3XmXkb9dZ/3JGsTUDy1g8bItow69wjt 3nWPADN1bR52Ookm/tt0euE+ARXMVFo4jUS7Ks7d0bMkgLcgWZZ/ikRcjgek G20IqOeb1RXtJ5F83H3WeDcChEe93yoVk6joZ6Dk6VcEuEeIS3/5SCKxwg/L UVEEdF9uq7uRRqJKQxfrtTgCfDL5J3UjSXR5ssShJJ2AsSe5Ug52JDoQ7Y9E yghI3jqMPkjh/89bpdZMECBw/Fzv7vcEYqdD+bocCSrq4+ESSQSSJMfO9p8n wd7m1U3laALZ6S15FV0ioblwqtHWj0B3dR/bP1InwVHhDWo3J9BHyd/fvxqR 0K5OJYeIEwjOjFzWeEmCt225JWvmEqJb+9171E3CRPEFlo0faejxfwUbBh4s A595if6TlwtotNDB2ihmBegNHG9nreZQX3/bxbCMVbCG7Rr3iWnUcJprajF4 DQpPNJXR8iZQ7f/QAnMs1iFrZ0029+cxFH0pz+QfATqo6+68MvR+DBXHntwg eIgOS+l3RlKjxhCPf3rkhBAdziot7JKxH0OjbE5ltuJ0qLM74HTnxBja8gJN WkvTYajP8UJC2iiS5WPyYFOlw86UY72i4T9R5hGJyXI7OljLvGaSsxxGl3ac YttURYewML5+Td1hFHJl60elGjrkTsfmWqoOI5q38y33Ovz+xESjBLFh1Fls /3aukQ722zJqmX//QPcvvrjzqYMOrv2lfl/0fqAw0mF9bowOz11/cmqrD6Hp NrHa/k0UpHYbT1opDKGZM5sNerdQUC81XvXi+BDyz6td7thGwdZfU7afWIdQ tJPS/lo2CnjjprMg/Du6KRp4LpibgsMKXKebfAbRXbWmxCohCmSe3bv026wf 7VfUWUw5j59HurzVvdqP/LylOZQvUKD1IIaxQ6wfefWbmo8oU2B7s+dT+WQf ihu88ZXnCgXZAjcloy36ECQsaVtcp+BIqTKv2uNedORBjV7VHQq4iKOTOQ7d 6OJT7Yd8NhQkmalcFr3djfr0Wz972FIgNWiWEi/TjYSseJTH7Ci4Xv1Oz3+1 C22+kbGe5kCBX6hAh7FLFyJb+DbudaOA8fiu0j0enYiUYTNO96VgxnQt0O15 O4pOmSi0jKWgPVOSXc24Hfnlu+3Jf0NB8aJx0F6ldrRXRFV3JY4CL/fWoCLq GzJMFAxzTsTxiUwJXrD7hpp5Pn0weUeBUu31UBOjNnRUwdCjO5sCkR3enKfO tyHE/odn/SMFrDdLQpkF2tADYZbQ/TkU9AweDkvob0W6akESunkUWCythPXd bEXanloMFUUURB5+G35NsQUxKK8sH6ygwMW8d/e+Ay2o5IdbllAlBdUG+yV6 Vr8iLTNB5SNVFNx2XJTgtP6KqneY7BasoeBZ2pvjPvrNqOTfcHl6PQW9mxZO WMo1ophQw7TrrRQ8rYqWAbIWCZttuXB3kILfzWdCjQprUWxftz7bdwrUerr+ +NnXIrtAzSSEzTvNGdtN1iD298JhvD/w+nG/pKyWq5Ha7wqx4hEKBsycq5JX KpG/Ar9w/G8KFG15+b8UV6KMdsr35DjOP7dC2znHSuRs2MJWi20Ttigkt1qB POXYfcYmcP6VPvDtWi1HnEsjgmxTOB6CxTFcKwg1A8+mTXMUnJFeUtV3ROhN M0eSCzazihT1YaUUpVvqGsxjR9um619c/YwKPGuudM5TUFcXJeS4VoIGBmfL fRYpCB3o7KpxLkFOK75PZrB15zl8OdeL0d0Fqeu3aBTQ+Pz+ZKwXoUqPcDO+ JQoELZ2yv9MLUNefHsVggoKppwX64m4FyL5DiH0CuzBygcOBykcHz15lUCAp uFZhbsvBkI8ezzBcHsd23nVH5sKGXFSaZeN0cIWCi6KRf4I9cpCwSqvuQ2wO aI8Z3JCD3Ho6DPOw00xVqCeM/6HyuPJuWKWgs+RsVTpTNgrwiLgnt0bBXgeD wfntWShmd+MJe+yXjldPBnFkovgKznPZ2OYu/EMN/BmI8VXjNO86Xm/XjadM D75HH46cilDFvuI+48ciko760pJsXLFFn5ZLy59MRdyfnJt7saO80v0HzrxD lz//uLKRjtfDO3TEEVKQWtC5tWPYE8+NAvOuJKPWxaZ1F+zbL9RG1a8nIdW1 NdVE7AY/adnZW4noTTn3tyrstIAtv0T145Fp90ZnZgrv1wOjDkFNb1B+cmec ADbHwYLDX7pj0LNDvuRZ7PnDvq0sP6NQhfFeb03sVmEdF/mZSLQYFXDJAjtb 7KiI00o4Utg5CF7YQRJUex7LK3RXZsuDSOxHkq3us+yhKOUda1M69vWTSeJi e4PR5m1TBiXY9ywmsr+oBSAO6aSjDdj7bAI2Kxi9QMP7jh/twh50kNLLd/JG sp0h+sPYsW6dBWIhnsg+uKHhD3bhVto+xRsu6NnbTtMFbOnd55rFXW3RnE++ 7DK2+fmtqxKa5mio+f75deyW3JM5m/X+QXySs24UdsMhzyXZrhxZr8GI9r+O fXJh/HrMv6BdbRtB/zve7NvV5xKsYGST7ePVv/NP5th908YBCrwvei5hp6kY nchNcofQ6KmaGewJ5fI+OX8v6Cgzkf+FLarA71Vv9xysgvOn+/+OR9ZBXEPv JRB1va0t2J1RZmYzh4Ig4HzHeAX2UkRkae6eEKCvp5zKwd79qobDkTUMonfd KEz4O7+QRWNgCgfDunaLAGytQMESZjICxm1O3HbAtn95na1h8jVci7JwNPgb H++MAo3OWPCZcdc+ht39tHcb75c4yCzT4eHEdpZnzp75Hg/mqrzbaTg/Ys9J Mee1J8LO81dDcrAlzl7O5P6aBAfVKw4FYZfK6Gk51ieDyH2hSTPsQemADChN AR6Dsj182Ban3momFr4DpplVt1mcv/STnxhYclLhT88xvirsfVITGg3v0sHQ 23/WCPueuPK6RnAmtHi5c4fh/XI2MiVgKT4LkkebZDWxt3sysatoZcPd1A1K u7HHp/5NmDL5CHEjkgxBeD8mVh+qOu6TA+NMmsJmeL8Grba/3MCWC7Jb7R7w YbtKPrvVFp4LEiIZYQ3LFOjEjo5Zp+TB+zHbYEFsLtuULQXVBfCp6OK5Ilw/ GN9rtvmoFkJ64vdEbezZoY3RWh2FoJRSN0ng+tOkYiK+8rMIqO7MoxLY3oeE r51j/gTvvpYYeuD6tTau0aAvUAYdhn+yKmYpWGD+IHHFqAwCFBp1FbAn9rOE SqWVwTOB8PnPM3g9buXpMEmWgyXnzvrsaQryyndNJctXwMKnYSmXSRzP151s v+9VwS87D+aPvygwypWwaUmqApcB502s2He+encX/qoCAWOhWdMxCq6ySCf4 WlaDl0bJY55RCoStIqTE3Gpg9IujnO4wBT8uad2yeFMHtM5b6179FMiNOus3 DdTBFvLgq6Y+XG88Eh6K89eDSR2hxYWtXjzxbCK6HpTfjxnG9FBQIeaSb/y6 AfTMDQPDO3H8WRO574U1Qjq/qeyJFlxPJmiTRy60QODK4G1W/H3UO73Zusuw BU67Hw3aW05BgDfvsrdXC/D02ywIl+F4CALLWGULDDn9j9LZUvw8nef8yYqt oJPmwK5aTAFnE6/aAfk2kBLVNuT+j4LFLMjikW2HSpkfntfiKWgUk+V4dLcd btFfGm7F54Gkd6dsa92weUsOV+Lzg3rcUVm7qnaIUWG7KBFNwccAvtpvqh0w HVu4+c8rHN+HxGCAXidMu+Yk0F9Q8Es0i5XFuxuqPKQ3BFrjfE9Jt7qT2g1v tpju2PiYgnDBlPachm54YLS+5viIAmXe2CgDth7Ivv/dW/chBclb/ITKInug 49uly9tN8Px/G8s5ve+F802B7xhv4/r/dp/FXEs/2BsWNujIUZC/MUM9db4f DBj30yLO4u+hyRnpe1wDoJQxw9smQ4GKiAZD0z8DoHLJRFteGo8nwzckdXAA rE2H3zIfpyAhZzH/3uQg3L8rGScuQEGu3ig19nQIHoa9P7q6gQIni5JLt+KG gVlPUyDmMx0UgWbImjUM7hKirm4ldNjKfsyjtnQYHOQ3H9QvokPkx8SiM4PD UHHg6YX9eXTIX/QV3cc/ArVLvXPeGXSYd9Ta/itqBFj5P29jjqaDmQ/tq334 T3gonW2aj8/PWvHH/onxH4OMZvE7LCJ0MPapZ/zeMgFMnFoiMffXodJLTOzl l2kIMPSMM4teA92doxVc2nPwk+lAulvhKizI1Mr9sFuAJ8GZOl/frUCW5Y5l g0c06OoK1Z8PXobJb8eJeXsaGDBt7tnhvwyipzVonh40yNogXnXk+TIkM0TP JYbQQL49iNB0XYaoYOGJ4Vx8v73sj0SzZfDKOd9nsEyDQ1dtT84pLsNtwuGz gecSJGkvvjSfJyFCJ7Zk/gW2nL6r5hTud1BZkWfoEuz3sl+E3yRce74pPzF5 CUYaex6xDpKgtOdV5nDNEuwVGi56XU/CMdnsOINtBCCWiS1m8SQwu415GIQR oPG89DVNhQQLa6Zb+jEE/Hf/hOs23G91mxwQ1kvGfd5oxZEDuB/LuH67+W4u AduD9jVeOEOChmAzr3Y77huf3zDxPExCUnVezjUuElL9v2iUr+P7itu81faS kJd+urqSJMAuc0Zb9RAJR/JDGKsXCLgSIcJw9SQJgvHbxirHCZg3jVVR1iDh oRmHbk4HAYrbn42eDSNhRNH8qfYHAjIYEgtlY0hY8afol1IJ2E0r9ZNJJoFS eX1NOomAiQFS8nQuCWkyU1bsrwkIyXrgeqKdhI2pEfW5XgSsJfnekOongd2g czUK97fGkSmHJH+S4KymuMndkQAZj6EGiUUS9E+VvFd+hPtV2/XYo2skhGV0 XBA2J4DVjNdKnHkZjl09XbLZmAB7XWklse3L4B9otv23HgHD6hrcolzLoKG0 eKZGh4D/69fh//v1/wUGO5i0 "]], LineBox[CompressedData[" 1:eJwV0As41OkaAHC3mf9/IvfILVmDULIlbFn/l63cVjJpqnXpINJFInbTOIXj yEqOW+J03W4urdtGs5X2XR2iKOGQbVe+Gdd2m1UTxri1s9/zvM/3/J7nfd6b RUQcL0pFSUnpkCL+/usjLrs62smZ185vgy75y3Cl4+0869VyJivl3fs9X8ow m9sWaeUkZwrf2Rev95Lh5PIRZ66bnFELPmik4SnDsKUqSyw3y5mJ4A0pQ24y XDe9qXZlkKLemlJx7joZXvx997/MQ+TMxo6tYxFrZMgeTOKv2Cdndl2sfLZh lQxftdbMmyTKmajXTR79ZjJMK7X0MSySMzXTgj4tjgxXUzfnJRfkTOO+iyZT qjLsT7Subb4uZ8L5zYG/LE6jw3Zbw4Q7cqbJ26Pw8uQ0vmKvHenoljN6g5eS Tck0OiVuTEvXmWUkhjt9R+9O4+i2wHuS3FmmN7kGGyKn0U/tlG3zt3PMWxfu 6sj7U1jtE9v/Z8UC86F5yKrXfRJd/4stz29+ZNZqGOjNd0qxOqIbDEaVYNmW /Jwq1/cYvTLI3mNSGaYGhiLHvSbwhyGqYes7FdAbLG7r3fUWffVZ1meU1UC3 ucWlz+0Nfu3r5FypxAIDLYHlxKlRnPii7FqBGgukdqH8sqRRjPncWEtAs6DV 4q4w8tAoBjsqjftps+DZ0SrrN/xRBIOOUom5It971WUbh1FUF0cuODIsCEvV ++rEwAheTS5sFv6TBYu3fJPqmRF8Ui7ltcyywKWMJ8/WH8aZVpUHKh8V/SWS Nz1LhtF6TNcSVNnQ71d0nqs8jOlW6z/cV2dDmRUrYkAyhG7XjhXWmrLh6Uid e3XrENZemOy54M6G+ozQK7+kDGFJ7nRQQjob5M47Pz6UiPFxFfthTSYbhOcG G4xHxDjVYWAlyWbDuQaWatpvYuSpu0ztL2SDv+mRKwfbxaiR9c250Bts6DJ+ VHynQoypaTO93o/ZcEZY8aVdjBhjEmf55ksoWNdB1xhLRFgVfNpWX5OCDoYa 3zIqQqmn/jytS4GleqezYFCEAh2H76RGFGTExPuqdYswtzr8jxZbCgQBr+7n C0XYMN526rAPBcu1sj1uZohwtnMnL9yfguHBs8rHT4rQXSjm8gMp2H0suGLn cRG2/Xv+CbOHAq/XQcOfHhbhb5846usdoOCj+/GEuCARqoSeL7+XRUGdW8Oa JTYi9NrMFVTnULD485rEfAsR5tjX+V/Po+AYzzCOayrCZbNPpTklFNj/YVIf qyPCVecX3f5RTkHX7qDe3HmC27qiuthtFDRpxpkY9BIs/FF6fa6dgu7o6qiw FwT7r5z6+l0nBWa6JVZ32gmGHyk1efWSUtw70yn9EcFE9WdRVWMUsD1jnwlr CV7Y4jS7g6KhoG77pez/EKys2nX+J3Uatp24WGt/huCPywROtto07E3cbD2Q SbBvpOnI4nIaxA804uNPEtTODBgqt6OhfpLPDj9C0PzPhFS9tTTIth6oyTxI 0IFfbHZyPQ2SwAM2D6MJ+lkP7NrhRsP0oocwZC/BzMcHOxb8aYi/XVK3P5Dg OYfcAzE8GqyWFjgs20bwRnEdu4dPg5TX/muPL8Gm6Bko30tDGF95MmMzwXl2 ZgMvnoaskI1+QleC6nEVvIdJNBgOBQgmNhA0ftkxYXOChojWHY6frSfoUqZn t5BOQ5RfUoCyA8EEr+8ulxXRkBzeFx7FJZhW07xJt5SGSo2S+3afEMwzHO9P uUSD6TXNQeWVBKvGHPR4txT79phVjpgQbAzg1TZW0rCUe3Wv1IjgU2GSv00N DRU9FYvaywmOn248PS+kwdwgVT9Dn6BsYpC7v5GGb3O2lvTrEmTvVn3U9TMN jbzT5owOQctVvvO3ntCQbvpDgKcmwXV5saU6z2kI7ShRHdQgCDN5zindivsf lr44q04wrO3l0cBfabhm69BuwSEY6zi3tHFQMY+nmjJFE0wpWXHbepgGwfdO EYtsgtlKnt754zT0exRJKYVLY6JG5t7SoLmjocGSRbD8RVZ69Hsath8eqw5U I3jX9XvzrikaRKYuonxVgi1XOxs3zdKg9b/YgGEVgv+nP+y5tUjDoxCdeW+F h44ayLRVORAasu8NKhOU9n9WJKA4YJIeZeSjsJJH6Kej6hz4cK/z7LASQa2K 1OfbtTkws2DkXaDwCp0bhx7ocwA+/8aHp/Dq5Fba2ogDvl59BVyFN4l+v5ln xgGdRhGXo7Cvj+YXcxYcOKP09yP4FzgFQTc= "]]}, {}}, {{}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange-> NCache[{{-Pi, Pi}, {-1.9999998382972146`, 1.9999998382972146`}}, {{-3.141592653589793, 3.141592653589793}, {-1.9999998382972146`, 1.9999998382972146`}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], ",", GraphicsBox[{{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwV0wlUE9caAGAMJJmgRlkEpSyNgLSALKIcQOpVBJQlKqKVJwgaEFCrKCL2 IRRU9PgIFiPLk7KJIIp9UspqBTI/iIUKlYStKAWilkpty6bCTGZI33XOueee 79zt/+/9RySJ232Yo6WldRK3D72/n3ArIxLAUq0PH4U21idPE+YCiB2MlH2w vejPIiMTAVS7X/LhYJtd/VeAlZEAnp2PNOViC+kOyllfAN15CysE2P9EuVYg oQBOTAetE2JPK8qDxboCKMsLP2WIrfI0WBTKEwASifo+wlbePV8VyxGA5YO8 fVbYbYbToYkaAhwNmjVrsWvSwgXpagK8kq52umGX/dXdIJsjAD3m1Xtj54Rs jCqZJcAizLI9CPtSe6Xe/UkCxlxH30dgJzqtJB++IaBgxNk/DjuEeL9q8CUB ylTpfhm2X0Jkx6tRArTC0o3KsT1UyoSZ5wTcfsy8a8Q2fVDVs6SPgIz121a9 wl5qZZZi0kMAW6AbocbWZEltP+kiIHCvXYf+IpxfTOylrY8I+LsuXOOLrewb XBdEEtCJDvwswW5DPqrwJgIqx6/JU7HLjVdvTKolQJh2lN+CHdMxPF1dRsB3 SdnOPhwcr4t/sbyEgAOJb5Yfxd5e8iCguwDn46qnfw3b9mxuxetsAg4ZZf97 DHtyzc4w83QCir6qHZZqU2jseovAPo2A8wODHT9gKzR2je7JBOzo3j4wgV0z SOjvTSBgtKsn2F8H39fltg5pFAH5nntGTLg4nlmnM/kHCbjf/kwZhB0SXrL6 ThgB0hV6r/+D7eGanNK2hwD7hE2nF7AXxje40N54nDRbPsujULpPZXG0NQEd z3t99QQUAmnSLgsRAQ4ByccOYrPKAM6QKQEGS0teVGOfDp887GeI852St+7V pZDkrMtae20CLrgHir9bTCFU2dI0o+JDpkZ5olRIoaSpr4/f+5UPDx89ucFd RqGGDQctIof40N5Yo3cM26GNc7G/hw/+4vwp9+X4PYe3+TfK+cDpuvn5az0K qZf0DiUX8uGvotqKtBUUcg0uy9hwgw/CDK1KGjs+P8FzMpsPL74xnz9tRKE/ rI1vRkjxeY2zZ74wptDQprAYryQ+zH88PP/FKnz+yd/f80P4UGTyy7NvzSh0 ql+tn23Ah7LgYomFDYXydu/cn7OMD5cjYssasJsVZaW5i/lwyrVAs+MTCvF+ DnS6oY33O75T++KnFCp8XCwuesuDzYdjEWVHoc4Gryt3+njQcas50NiZQub5 GQtN2Txob9JWW3tSyNt4zLsliwemsSuFKuwjuS6ZcikP9AoT1hd8RqE62a8m rRd54Bc83mCIcP1nOLj9eJoHPk/kGYZeFEo41xuvCMbzVV1rt22n0JMDJhO/ GfBgWnXbL3EvhXaWeCL1Mh64td1tE39OoX5VeN6yJTwQyrkea/ZRaCSyzNtD hwcujjmrn4fg//+IfWnWOy5UCMJ6xWEUMk7ctN9jgAtrcoOjoyIpFPW1pDsr jwvibG+zwHhcP/J71R6ruPCH7ta62esU6n7uuIQx5ELAVEipeQ6+j7m6mKbl XLBMUZQE5FLI04E09yS44DH29und/+J6KOrL/GxeB+TXJBNxhRSaO8fGbh7Q gR+OHst3qsDxuO0Q+cp04Hpl6IkvH1LoVc2MLEigA11vZbd0fsfvX8rrv7pY GwYc7EbNt9DIc3Wvg5RaBGdll0WSahqZnhOmZL7RAo4y5siQjRopCp1Dokf+ IQ2yD3XaFKtRT2zt6w1NC2Srpu5KkiWDKj5Vuu1qYcjoqz81xt1iUKzN961p 9QwpihOnRpYzyNZa5v/9fYaccbQO2FfBoKqPg8L0ixlSN3P67033GNRorEzt /4ohqeaR3cIaBnVylT+GbGZIS2Gh8/1WBv35QrHn0CM1aTVpqzOhwuvHqkdk TWrSp/xW3PBLBp0cuRbdVqsm5yU3FU9/Y9C7oV1fWparyTMGoafqJxjE9igK xtPVZO4vQtGFaQYJ5YqXR3zVpKR5oG+lFoucvlGcjP+JJufG6yPcLFh0JTCR QwNNOo47jwWLWKTSfJST+oAmme4DW+IsWZQVGdOYeYcmtZ9d+Pa2DYsm7TUL FZdocr27O1/PiUW+Y2VZa1Nosqv5aKbdOhYVy/xEdQk0ecGra8pnPYvEczne rZE0GaEa3pHkxqLyux6D20Jp0rb8uF+OB4vY/aqYp7tp8mbrjEWVJ4v+R9pJ h7fQ5KgoL/zFZhbpxCtNJe40GbQv/7Hai0VhVmerJpxocrxrD8/Qh0V1kmI3 J1uaLM7qYVp8WfR/yQZ9xg== "]], LineBox[CompressedData[" 1:eJw113k4Vdv7AHAVmkSJXFxKF+UYipRQraQ0GJKhhMTJcKNIosicKFOmkKlw yBS6ZsprHiN0QoVkKiKF4xxs9nd5nt/vj/Oc5/PP3mu9a+13EKM66FmtZWNj I/Bv9d+dOe7QILgAF7z/+tp2jgCq6r/X3AUWYOWAVr+ZJgHlU1sYa3kWQHPd Fa+72gTY6l3+a+sKCy5uaD2dcYGAGnYyM5rBgg0NW25W6RMgVEJTFZliwWnN BJteQwKahX+bUfpYoBVw/fN6YwL2jvqnnSxngfqUzUtLKgHeMTJKra9ZIPQz y+a+JQG9Z7uaLmSy4GRWDyvcmoCAXJFJs1gWzAZWBVXaEjB2t1DB1YUFv+Zi LPmdCKBtGoJXCiyIcqRcL3tAgNj+o593ZDPBukt4uZtGgJbeeLRcKhNSQxu8 atMJuHfnqb5GPBOe0SNb8jIIaC+deuccxIQZw6HigBwC3NSSgG7HhLrZGwOK hQTQ9UhahAwT1MKebvKrJcDfudqBO3ceYoT4xme+ETBRfoqD8zUDeMSTK5dE lkHYrsLibvAs3NUNbPaKX4aVFt60345/gOWr+oeHZwWcEJfBdeYv+Lz9FC3s 9gqUHmirYhRNwPdbZZ7b6SuQt60hX+DtGHSs9+JUFCdBz2zbucHsMSAbC4tc JEiYzzIdzogbA1mXkJBSSRKOnJzlV7k3BtlBwsXKUiQ0uey6b3pgDHY+sBiW lyNh8IvbqeTMUXiqP39nQYmEben7PlOiR0D1I+P18DkSnFSerTvmMARJ1O8U AXsSoqKE+y6aDcGVMZqyiAMJhb8SCx20h2CgQNp29y38/pQUq2TpIeB1bNpH uU3Cvc05jew/voFoR97pfS4kePZVBrWaf4N3m8w8eTxJeOQ5sv2y3iC03dL4 TzKEhIxe60lHtUHgPR8YtzWUhGaF8brA/YNQ0RSctIC96fuU8xvuQThf+tdC UxgJQs9/5aHoryArYjVrGkWChBrf4baAAdDeLN99OZ4ElYdXz/yw7YMjd6lS 6Rn4eSyPNDPNPtiTmOdmlUmC0Y2EtR+l+2DfaAWbeBYJzvqf3lRPfoGHZyOy krJJyBfTl4+3/wJ31asdA3NJ2FOpIaRz+zO0rmX8p1pIAh9TdrLAtRf2/HGT YwcSUm21zlKMe2Gy/VFfJrbCgG36C5VeUKxNrNCpIkG3/qV5yFIPBOs7cEVX kxAUKfbR2qMH2DLLGEJ1JKzdz18p6NMNnC5p75ebSJj+l3ji9YgOofwcvyS7 SKDnym/VsaZDTXzwiUrs8jnrsL9P0kHvFM8Lgw8k+Hl3hpWRHyD0aLizJx3H JzY9fNblA9TJWgQ0dJNwslE30saqC9rdkmT3fiFBaov/9kPqXRBw7Ql7Pja3 fkUku1gXvH5TOXSoj4RPAxJRyX2dQNW/VajWT4L9/GLUF/1O6BvSydL8SkKs RFr0+RMd4PRdsGX/MAkedp93iO7qgLgDwhszseupO+U+Lb2HqafvtXeNkGDs Nie33ek97PJjfN88SsLDzKT9ARbt0Cb6xrRnjITP62cPOBx7B9qFnAfRBAkP 6uJVEKsRyhuPbtP7TcKPduVIq9JG4Oj2WZOGrfOp52fQvUbYWGvJz8QW+rU9 sZfVAE+UO17G/sHnJxBMOi7Uw6uGOufOGRL6bd3raIu18Op6b5Ygg4QTzkIi reW10Fs32m6GneFV6vzHrRasphr4U7HvRM1JHluqAb/l7s1S8/j+Vd543LNU DRO0+RgKE8djd3kC3yJA1I8ZSfYFEpSV5rUt3ACORO53UsVm11IgXy1WwpkL Cd8cseOdsyxOL70FasEn8T7spqY4STeiAkZ/MtTTF0mI7O/uaXCvgI4Nr150 Y5vN8D7evlwOw8baOzmXSGAIB/3MWS4D/TkpXyr2bof7+V9XSiDfw6N/K0HC 1IMSCxmvElCqenlGBbs0dpbXlSwGnVdeH6nY52vsnHnZiiHNX8TgNbY7v6nK qTWFcNHYdER9mYTTlNif4T4F0LH1mKk1Ni+iJwysKYArKvGMAOzMf7XIu2v/ g5tPXgc3YXdXHKnLWpcP0uvLNdEKCX+7UgdmuPJg450SDWPsYDdNxTDeXHh+ I9/uDradh8hgi0gOeOj7HUjH/uzJeejff7JBRu1S91vsc97TQRxSWaBXxp9K x6Y8qFY6rpgBBTUa5SR2nF9WSL/yS/ho/R87H4nPwz9y2A2lw9GKpXt7sCce WT0pOkcDP37hr5rYxoE6o3q6qVCr9rPDFLslSEn1t2EK8NmFTN7Azgzd+J1i 8QLc3Y8mB2Ir7Bp1DWtLgltJGiqx2Lz/lEi09ibAQfm/lmnYMxKPOzlG4qB9 T/54PnbnXhOP49OxkBvDxfYGO19aVur+YjRUlEofb8AOkyPpRRxP4fTo5qz3 2LfkO71/b40E7rjso73YuoqpMtJ/h8Nxl41LX7Gv2k/kt+qEgo+q+NAYtuid 0A1qVoHQ27Y4M4k94KpgXnzfH2oOBMvOYCd6dZdIR/iCVHRP+Dx26SaG6IkL HmB1vG/nIrbSjqPtMp7OcPjFsx4C205905LcRTsYOMVTtoLdUahYsMH8EjCH j9SR2NobVn6HPPRV7b5Y+XPViXdPjesmXEMHveHSqnXzjeuPJjuilid8g8ur +6fx7tC/44pyy8UillbjqWV1oDDVG+Vf/X6TtXoeGtVfjoX4IU42a6c5bIqa iF+zyyNkgpJSplfXo+oqY2AejGqGw5bGsbvjbG2nxcNQ3cdjnsPY8zGxlYWC EchgVyalD3vH0wZeN+4o1PW7g42+ur+IOWu0LhrxxJSwtWIbPdldwc6KQecf mlGqse8F6/K0TD5DR3QbPYpX4+OfU2LQnYg4748mJ2H3Pvi8Waj1ObLJT7od ju1+nD1/+usL5HNT7OaD1f0fVWAvoqegKlrwV0tsuSNncwXep6Kh9W6XDLAr VcyN3Jpp6G2dysKJ1fNRCs1BlenIOlatXATb/lDaxZTSlygvO+TTRuwVxTds HAUZKG1b2W4Gvs+iChMGLS+zkPnZCoVm7KsyGssG4bmoX+jDWRvsI7HpofMv 8lC+7+Ob57C5fNdt1TLKR+UU6lMZ7PGpa8lTNq9RwJrwP1P4e0ypF6/bH1CA yNTQPkvssCV68BqeQpT+jBQ7ju0p/9CwK7oQcSvW2wlhmySOjjmlF6Gh7XZc 73A+4HNO31hSX4K4BRm+/2Cvzb7YFaBdimS9+3/O43zze5Az3uhjKVIdMLrc jN2mZSOzOFKGxhWkT9hh+4vvPX+U/Q169UxVKxXnL2LcoMVCrAqdo0ecG2GR MMv+Su6cVRXKCRZdk4E9sZMjUiGzCgnk9L+xxe41LDJZJ1+NJmrET07h/FpU zT9FO16DnivtiRzD+df+WTfPj6t1SEFG7FjWHAlWhXJ3OlLrEEXnrbYZtul7 /97S73XIZv2Va9uwNTmUkh871KMvH769uDNLwl7HGAVprwZUYphmvQ/Xg29n jAztk5qQbh+d4jJNwrFRd4u2/ibk82hH4y7sOJ/kmzIizWiDr29gyy/cb5VP PJyIb0ZXEngDhLFrpD2KrZ+1oH8Ec4wKJnH8uVMErka9Qx7RbHbl4zifTDAm 95zqQHkqfm8lcT00P7zBqceyA1Hr714pHiIh1F9owd+vA0k00SRPYU/sRhxj tR3oZcK8ovk3/DyTRyK0E53o2clw9WBcb7e3CensOt6F+Bg9ym9wvZ7LQ3l/ qdLR+bJWYXdc/99Jq/LeukJHB1fCjEZxf5D68pBzoxcdsf0jkaCNrfdcVtWl jo7UdOUPC3eS8DpUuPGD9kekzL+nMasdx/cmcyDUvBvZKyaYxDeT8J2Sx83h 34sWQ5LUaivxfU/PcjTN6EV+JyqebsGO3p1OL2jpReo/quYuviVBQygxjsrz CV1zFaCPVZBA2xgkWRX7CZ39NC28VIr3/8P62P3sz6iEOvKb8R/O/2mi9n86 +tDbpF+VB9NJKObM0cuY6UN8bYNxVmm4HtooK13l60evMs8/iaKRoCVlwNZ2 qR8VLqvXTKfg9eQ8jsgY6EfemgyD+OckJBfMFV+dHEArZf4XGmNxf2o+So49 GETRgg6dToEk3LevOGP4fAhZF13v2WuH6z9iWHLnDaF75rFrFGxxPdm6z6ex cgi9yr14Q+U67m9ep5QpDwyhW28o7Gdt8PrmHlNERYZRmxxd7co1XA/cjLi+ xw2jgsZKIaoJCbYBjPf3okdQ3YdhlwHcPxu92HcpIWQM7f7B+St7DwnWAc1r v3ZMIKtRGG3vXIFaP2np4NZfKEli1L3IZQXMto3W8F3+gy4orCTu41uBWZXG Y99cZtHVQoGlsy+WIc9hywL1FgNN+769tFN2GSY/7GfO3GOgsJwtCjull4Fy 2IDh68NAGw9dzRSVWgYaW/yflAgGCrBkc/xbYhniwvdODBUy0P5m4dvb8Tzi V6D+hbrAQIb1JtnTXMtgzHR9S/WdR5Y/xHwsJwmIMUmsmAmcR1lJWnNGE3je gaoy38h55KWRxqf9g4Dzj9YXp9DmkXP8jJniCAEnBZ/mDjXMoxXRgL3kFwL2 qeY/p25moqfVPuz+rQSwe435UKOYyKKtKsw0iwB7p3WGFglMNNwWumiL561e m117zWlMZDwzQHHF81iOrnH7lUIm6rnWNBiVQoDB7nahy3QmWqwQym2OIyC1 vqjgPB8LTVtyKkgFEcBV3uWv8zcLWQhsU1Z8TIBL7vRlbXEWqs4t3YICCDgX I8WmqchCNxYyxQzwPDjzb6KWhgELjXrksLnfJ+AE18PRI1EsNOZ6ha3WDr+f LaVUNYGFViQNBFqvE7CDURmkQmMh73HxdR9s8HzXz5I/XMhCROJek6FrBETk 3fA8QGehmZdBgqQJAUTq4wsKfSxkyBQf4cDzrXVsurj8CAtJpqgHcBkRoOIz 2CI3x0KWe8aNBA3wvOq8nChLsNCta6aPduoRwG0r5CjDvoD4K2UjJHTxfGqm dFKaawENln9wkdYhYEjPQIDCt4Cur9Qdktci4P/mdfT/8/r/AN8SKFs= "]], LineBox[CompressedData[" 1:eJwV03dU1McWB/AFdn+/WQi6IEIUpYQOBlFRQZB7KRZAiK6IoiJSRFSIiogF DcXQicEKGwt2EAOLxEqwBgUVJYB57uP5VIKFaAAFSWZ3f2Amc86cOZ8/5nvO vfdc65j18lW6IpEold1/3wsxRz3cnNVw9PsW7bXZAli5nSu2n6CG/mZRmS9z gW1TrJ27Gia5NPw6O0CAj5+/mmbrrQarj3Yvgv0EWGGoq28ToAbbPUcezkcB Jv/lVWMVpgaH4h8DlnoLcPjtkl2Wy9XQunpKy4oZAnDPN4dbxKmhZbjaM9ZD gI5GpWCeooYrdXE169wFyFTYBJrtV4OiYmBS2gQBJvCnhZ5DarCp/ONmnrMA qhT7moaTaugwVrofdBTAdb6TWfJPaghP29BcY8vyuImvmtvUIL8Reu/lOAHc U2ZkZhlpwCm/c/lcQwFehy642rNbA/JjRSY6vVoIFqc7NeRr4alsxTq5UgvV gUmq3rNDcDhz2YebDlrw+OHGnUenP8G+bM/unHMaqI5pQ9PXIpzi+/5ll5MG 4q3CXHw/6mDgA+91U2vVUNvFX5z9XhfVlo3PDgerIchEYl+oI8b6xVvflnVT sGmddSJXIka/F4ZrAt9QEL7LsfhWKsaMplt1A68oVPHEbKeRGCc+iPpvUBcF mVafrLcW49KceJneMwq/dcreyn3FmO+zs/lQO4WVynHVYzPFWBcQVrHxBoXU IPdplSIJvlmhm9eooNDnX35ir1iCWQlVfdWlFBJmjh2ZRiToX/bZzJISCsvc RN3BMgkGPUksWHuAApo2K3osJTirLUhjvoeCwe+xQ24gQYuksKzKPArHtu1r uLxTgrtJaMPWrRTGbOImHcuU4NFygx92bqGwN3HbkbxsCSaa20XvSqWQHRWV GvGdBEtUDxv2pFBYO8vFUXtYggntB99d3UDB3eiXQp96Ca6ZaKznsYbCvYp+ +R2NBEc8X1bZs5QCbdT9WfeTBO26tp8ejqBg/8bYBvU4tMWx92TMWXZTBuoM OLxdlVjosZiC94lN+2rGcZjnGMQfXEih5tDH9kM+HDZlXZ+UP49C6e6/wpKz ODR7t7xbDhTuVnHXlDkcJoj0q/N9KAw2m9r1FHBodaW3/NZMCnKD6YOr93Ho vv+S51RvCp/lbTkQeYrDK3vynzl7UsjIpL/NvcthZ2/f5vlTWH9TNOGW+jwm b4vjcx3ZPJflOpmM4NFxyPB6nwOFfj8TgRjzeOsPRX4Ec5qR6/H+MTxunOu9 0s2ewu7q6Hd3nHhMsms2emdD4WJ3U3piII8Lah9f3G9JQdOySB4dwiMsS308 gtnn8u+24Qt4bP0pwqDAgkJTtnAPItj/ecrbu8ZTePqFm8moNTwOrxNHfmtO QTeypOJqHo+LLFPW1plRmBNgm1ZdxCO3Usd2NnORy/mQk8U8Wpc20TZTCqM1 9/uLSnmMq7rwsW80BceSYe+VFTyeTq+bMd2EQmjrqlauidVzX2WjlVHYd6X/ pPYBjwqH26dKmVVl6anvW3jcHpTiP505+muFeccTHtsGGju2jKSQYvBwVdUb HudddNzMjaBwaJa7ZiFPMLYieEuEAYXKqsUl1w0InrzprfikT+HK6DR3JxnB eUqtdTnzf17d+nr4c4JttkUJGinbl5yvuiqcCZ64sfHReULBsjc5Y9REgp3f zHeJZXYNPzj+mykER/058/1o5mD7/y9e6E2wp0BVm85TyLm7tnkohKAi4YNF HEfhgOvuNQlylt/uetOK+dTB81x7OEFVb/H9ZxIKt+IpVkQRnJrkax7FLHA5 F+UbCQ6GHFduELP9WX9Wfm0zQdfz4Uc8mMc+ae5z2E7Q+Iz5oA7z9PJRzkNZ BMd0eHeV6lFInnP8aPl+gnfS99Y/0aWQqWzwMlYQvO+XPlTJXGzWrdpxhGDw WK+z6cxVb1xHyc8Q9Hma7Pslc/1X8pr6SoKRO01dOeb7lzeHOCgJTjymyn6h Q6E7tz5XuEzw4WLRFgXz333PbVfXE5zsmifbyswt0bvdepPgAumm0UuYbRyD hDP3CHo9rI4exzy5OElh9Ijg9IxxZ0XMSIun7Wgj6NZsv/y1iMKKpicbFvyP oM5Mf8kl5iQ3rWH9c4LK2kRtGfOOUotz9i8J9sVERxYyF4j85u7pJvgMXFy2 MisSVr3S/knQpqg9Lp654te8rPgPBD91xOiHM1/y+NGydZDVI+s0n8N851hL vZeG4IeoRQpP5sdkIOLMMMGB0LtZXzJ3bTD9W6YnRXmtp+oL5n6V5/40XopF yguKMcwi38hJrw2kWFjv1WjEPPJsxqP5MinmlLWtNGC2MDq17mcTKZqt3xHP MU/Y1kjsx0jRca+XSpfZq/Pt6eLxUhy8YXRJxBwUOMJfay1FQ9G/h8I/hLNO /A== "]], LineBox[CompressedData[" 1:eJwV0ws4VOkbAHBhZs6oplyirMtOyC5ySXmQTSuUWyW12YgaQrWlJO1fLJV6 +hutJpd/1i2R0m7WurZh3pe0bGxm3FZZTLU22+66VZyZc9j/13me7/me33O+ 73zv+73vEYpidx1SV1NTO0HG+9nXR7CFEfJxqdr7h4aNdUlTlAkfYwYiJO9t I/yrUN+Qj1UuF73UiY2vfO5nrs/Hp+cijDjEAmU77aDDx67c+RV84n8jncrd BXw8PhW4TkA8JSsLCtDiY2lu2Ek9YoWb7qIQLh/dhcLeD4jld85Vxqjz0ex+ 7l5z4la9qZCEBQrtdJsW1hJXp4bx01QUeiRe6XAmLv27q14yS6H7I26dJ3F2 8MbI4hkKTUPN2gKJL7ZVaN+boHDUaeRdOHGC/Up48JrC/GEH31jiYOrdqoEX FMpTxPskxD7xEe0vRyhUC03TLyN2Vcjjp59ReOsR87aB2Oh+ZfeSXgrT129d 9ZJ4qblxsmE3hWy+VriKeCFTbPVRJ4X+e6zbdRaR/KJjLm55SOE/tWEL3sTy 3oF1gUBhh/v+X0TEre5eirBGCivGrkpTiMsMVm9MrKFQkHqE10wc3T40VVVK 4feJWQ5e6iReR98iaTGF+xNeLz9CvK34vl9XPsnHSVvnKrHVmZzyV1kUHtTP +s8o8cSaHaEmaRQWflUzJNagYfRaM98mlcJz/QPtPxLLFqwbXJIo3N61rX+c uHqA0tkTT+FIZ3eQrya5r0ut7eJICvPcdg8bckg8M/an8w5QeK/tqTyQODis ePXtUArFK7Rf/ZfY1SkpuXU3hTbxm07NE8+PbXBUepL3YLx8hktDmldFUZQF he3Pery1+TSgOHGnqZBCW7+koweIWbmf+qARhbpLi59XEZ8Kmzjko0fynZS2 7NGiQXTGca2NBoXnXfwDvl9Mg3tFc+O0gocZC/LjJQIaEie/Pnb3Nx4+ePj4 OmcZDfUbDphGDPKwraFa+yixbav6hb5uHvoG5E26LCf1HNrq2yDloXrnjc9e adOgWtIzmFTAw78La8pTV9DgFFSavuE6DwXpahVK4ri8eLeJLB4+/8Zk7pQ+ DX9aGNwIF5PzGmZOf2FAw+Cm0GiPRB7OfTg098Uqcv6JP97xgnlYaPjr02+N aTjZp9LJ0uVhaVCRyNSShtxdO/ZlL+PhpfCY0nriJllpSc5iHp50yl/Y/hEN 3F/87a9rkO8d26Fx4WMaCh4VBRS+4eLmQzHutDUNHfUel2/3crH9ZpO/gQMN Jnnp841ZXGxr1FBZuNHgaTDq2ZzJRaOYlQIF8eEcxwypmIvaBfHr8z+hoVby m2HLBS76BI3V67mT/k+3df7pFBe9HkvT9TxoiD/bEycLIusVnWu3bqPh8X7D 8d91uTiluOWTsIeGHcVu7qplXHRuvdMa8BkNfYqw3GVLuCiQclzX7KVhOKLU 01WTi4522aufBZP//7BNSeZbDpbzQ3sCQmkwSNi0z7Wfg2tygqIiI2iI/FrU lZnLwYAsT2P/ONI/0rtVrqs4+KfWltqZazR0PbNbwuhx0G8yuMQkm9zHbG10 43IOmiXLiv1yaHCzBRM3ioOuo2+e3Pkf6YfC3oxP5jRRelU0HltAw+xZNmZz vyb+eORonn05icd5u9BboonXKkKOf/mAhpfV05JAviZ2vpHc1PyD1L+E23dl sQb221qPmHyqBLfVPbZiehGekVwSiqqUYHRWkJzxWg3V5dGHBy1VICtwCI4a /hd0sw52WBapoDum5tWGxnloWai9nGjGQPnHcuedzQxEXfm5IfYmAzGWP7Sk 1jEgjA1IiShjwMpC4vvDPQam7Sz89pYzUPlhYKhOEQNaGVP/bLrLQIOBPKXv KwbopuFdgmoGOjjyn4I3M2AmKHC418LAX89luw8+VIH5hJXmuILsH60aljSq wKvsZuzQCwZODF+Naq1RwZzohuzJ7wy8Hdz5pVmZCk7rhpysG2eA7Zblj6Wp IOdXgfD8FAMCqezFYW8ViJr6e1eqsWD/jexE3M9KmB2rC3c2ZeGyf4K6EpVg N+YwGiRkQbHwQXbKfSUwXfs/jTVjITMiuiHjthI0np7/9pYlCxM2C/PlF5Ww 3sWFp23PgvdoaebaZCV0Nh3JsF7HQpHER1gbr4TzHp2TXutZCJjN9myJUEK4 Ymh7ojMLZXdcB7aGKMGq7JhPtisL7D5F9JNdSrjRMm1a6cbCd2AtHiJ1GhHm hj3fzIJmnNxI5KKEwL15j1QeLISan6kct1fCWOdurp4XC7WiImd7KyUUZXYz zd4s/B9Mc7XG "]], LineBox[CompressedData[" 1:eJw113k4VN//AHAV2kSJhA+lUMZSpITqnZQWS7KUkJgsRZFEkSUShWQL2QpD tlB2yrGvEZpQIdmKSGHM4HK/x/P8fn/MM8/rn3vPeZ9z34sY1UHPaiUbGxuB f8v/7sxRhzrBOXTu/tbvLWcIoKpeveIuMIeW9mn1mmkSUDqxgbGSZw5prrrk dUebAFu9i1s3LrHQ+TXNJ9POEVDFTqZHMlhoTd2GGxX6BAgV0VRFJljopGac TbchAY3Cf80oPSyk5X/t62pjAnYP+6UcL2Uh9QmbV5ZUAu5HySg1v2Ehod8Z NvcsCeg+3dFwLp2Fjmd0sUKtCfDPFhk3i2ah6YCKwHJbAkbu5Cu4urDQn5ko S34nAmjrBtBrBRaKcKRcK3lAgNjew1+3ZDKRdYfwYieNAC290Ui5ZCZKDq7z qk4l4O7tZ/oasUz0nB7elJNGQGvxxAfnQCaaMhwo9M8iwE0tAdHtmKhm+nqf Yj4BdD2SFibDRGohz9b5VhPg51zpwJ09i6KE+EanfhAwVnqCg/MNA/GIJ5Yv iCyCsF2ZxZ2gaXRHN6DRK3YRlpp4U/46/kMsH9V/PDxL4ARcBteYf9DXzSdo IbeWoHhfSwWjYAz9vFniuZm+BDmb6nIF3o+gttVenIriJOiZbTrTnzmCyPr8 AhcJEmYzTAfTYkaQrMuTJ8WSJBw6Ps2vcncEZQYKFypLkdDgsv2e6b4RtO2B xaC8HAn939xOJKYPo2f6s7fnlEjYlLrnKyVyCKl+ZrwZPEOCk8rzVUccBlAC 9SdFwJ6EiAjhnvNmA+jSCE1ZxIGE/D/x+Q7aA6gvT9p2x038/qQkq0TpAcTr 2LCHcouEu+uz6tl//UCibTkn97iQ4NlTHths/gN9WGfmyeNJwiPPoc0X9fpR y02Nt5JPSEjrth53VOtHvGcDYjYGk9CoMFoTsLcflTUEJcxhr/s54fyOux+d Ld461xBCgtCLPzkQ+R3JilhNm0aQIKHGd7DFvw9pr5fvvBhLgsrDy6d+2fag Q3eoUqlp+HksjxQzzR60Kz7HzSqdBKPrcSs/S/egPcNlbOIZJDjrf3lXOf4N PTwdlpGQSUKumL58rP03dEe90jEgm4Rd5RpCOre+ouaVjLeq+STwMWXH81y7 0a5/bnLsiIRkW63TFONuNN76qCcdW6HPNvWlSjdSrI4v06kgQbf2lfmThS4U pO/AFVlJQmC42Gdrjy7Ell7CEKohYeVe/nJB707E6ZLycbGBhMmrxFOvR3QU zM/xR7KDBHq2/EYdazqqig06Vo5dOmMd8t9xOtI7wfPS4BMJvvfbQ0rITyj4 cKizJx3HJzo1dNrlE6qRtfCv6yTheL1uuI1VB2p1S5Dd/Y0EqQ1+mw+odyD/ K0/Zc7G59cvC2cU60Jt35QMHekj40icRkdjTjqj6N/PVekmwn52P+KbfjnoG dDI0v5MQLZESefZYG3L6Kdi0d5AED7uvW0S3t6GYfcJr07Frqdvkvix8RBPP PmpvHyLB2G1GbrPTR7Tdl/Fz/TAJD9MT9vpbtKIW0XemXSMkfF09vc/hyAek nc+5H8ZIeFATqwKselRaf3iT3l8SfrUqh1sV1yOOTu8VKdg6X7p+B96tR2ur LfmZ2EJ/Nsd3s+rQU+W2V9H/8PkJBJGOc7XodV2Nc/sUCb227jW0+Wr0+lp3 hiCDhGPOQiLNpdWou2a41Qw7zavY+Z9bNbKaqONPxr4dMSN5ZKEK+S52rpea xfev/PrjroVKNEabjaIwcTx2lMbxzSMU8WtKkn2OBGWlWW0LN4QOhe91UsVm 11IgX8+Xo1Pn4n44Ysc6Z1icXHiPqHlfxHuwGxpiJN2IMjT8m6GeOk9CeG9n V517GWpb8/plJ7bZFO/jzYulaNBYexvnAgkM4cDfWYslSH9GyoeKvcPhXu73 pSKU6+HRu5EgYeJBkYWMVxFSqnh1SgW7OHqa15UsRDqvvT5Tsc9W2TnzshWi FD8RgzfY7vymKidW5KPzxqZD6osknKRE/w71zkNtG4+YWmPzAj2ub0UeuqQS y/DHTr+qRd5Z+RbdePomqAG7s+xQTcaqXCS9ulQTlkj4z5XaN8WVg9beLtIw xg5y01QM4c1GL67n2t3GtvMQ6W8SyUIe+r77UrG/enIeuLozE8moXeh8j33m /mQgh1QG0ivhT6ZjUx5UKh1VTEN5VRqlJHaMb8aTXuVX6LP1W3Y+Ep+HX/ig G6Siw2ULd3dhjz2yelpwhoZ8+YW/a2IbB+gM6+kmo2q1322m2E2BSqp/DZMQ n92T8evY6cFrf1IsXiJ398OJAdgK24ddQ1oS0M0EDZVobN6dRRLN3XFov/zW RRr2lMTjdo6hGNS6K3c0F7t9t4nH0clolB3FxfYOO1daVurefCQqK5Y+Wocd IkfSCzieoZPD6zM+Yt+Ub7//d2M44o7JPNyNrauYLCP9Xyg66rJ24Tv2Zfux 3GadYOStKj4wgi16O3iNmlUA6m6ZnxrH7nNVMC+854eq9gXJTmHHe3UWSYf5 IKnIrtBZ7OJ1DNFj5zyQ1dGebfPYSlsOt8p4OqODL593Edh26usW5M7bob4T PCVL2G35inlrzC8g5uChGhJ7/QrFcmG7R2Wd58t/Lzv+zolR3bgrsP8+urBs 3Vzj2sOJjtD0lK9/cXn/NN4t+rddIbtULGxhOZ5aVvvyk+9D7uWfN1jL56FR +e3IE1/gZLN2msGmqIn4Nro8AhNISJpcXo+qq4yBeRBUDYYsjGJ3xtjaToqH QM3nI56D2LNR0eX5gmFgsD2d0oO95Vkdrxt3BHT8bWOjL+8vbMYaVkUCT1QR WzO20dMdZeysKDj70IxSiX03SJenafw5HNKt9yhcjo9fVpFBZzxw3htOTMDu fvB1vVDzC7DJTbgViu1+lD138vtL8L4hduPB8v4PK7AX0JOgghb03RJb7tDp bIGPyTCw2u2CAXa5irmRWyMN3teozB1bPh+l4CwoTwXraLVSEWz7Aynnk4pf QU7mky9rsZcU37Fx5KVByqaSHQx8n0UVxgyaXmWA+ekyhUbsyzIaiwah2dAr 9Om0Dfah6NTg2Zc5kOvz+MYZbC6fVRu1jHKhlEJ9JoM9OnElccLmDfivCP03 gb/HpFrxmr3+eUAmB/dYYocs0INW8ORD6nNS7Ci2p/xDw47IfOBWrLUTwjaJ Hx5xSi2Agc12XB9wPuBzTl1bVFsE3IIMn53YKzPPd/hrF4Ps/d7fszjf/O3n jDX6XAyqfUYXG7FbtGxk5odKYFRB+pgdtp/47rOH2d/B6+eqWsk4fxGjBk0W YhVwhh52ZohFwjT7a7kzVhWQFSS6Ig17bBtHuEJ6BQhk9b6zxe42LDBZJV8J Y1Xixydwfi2o5J+gHa2CF0q7wkdw/rV/3snz63INKMiIHcmYIcEqX+52W3IN UHTea5thm3706y7+WQM2qy9d2YStyaGU+NihFr59+vHy9jQJux2jFKS96qDI MMV6D64HP04ZGdonNIBuD53iMknCkWF3i5beBvB+tKV+O3aMd+INGZFGWOPj E9D0B/dbpWMPx2Ib4VIcr78wdpW0R6H18ybYKZhllDeO48+dJHA54gN4RLLZ lY7ifDLGGN91og1yVHzfS+J6aH5wjVOXZRtQa+9cKhwgIdhPaM7Ptw0kGmiS J7DHdgDHSHUbvIqbVTT/gZ9n8kiEdqwdnh8PVQ/C9XZzi5DO9qMdwMfoUn6H 6/VMDuRsVaXD2ZJmYXdc/z9Iq/LevESH/UshRsO4P0h+dcC53osObDsl4rSx 9V7IqrrU0EFNV/6gcDsJb4KF6z9pfwZl/l31Ga04vjeYfcHmnWCvGGcS20jC T0oON4dfN8w/SVCrLsf3PTXD0TStG3yPlT3bgB25I5We19QN6r8qZs6/J0FD KD6GyvMFrrgK0EfKSKCtDZSsiP4Cp79MCi8U4/3/sj5yL/MrFFGH/jLe4vyf Imr/r60H3if8Kd+fSkIhZ5Ze2lQP8LX0x1il4Hpoo6x0ma8XXqeffRpBI0FL yoCt5UIv5C+qV00m4fVkPQ5L6+uF+5oMg9gXJCTmzRReHu+DpRK/c/XRuD81 HyZHHvRDpKBDu1MACffsy04ZvhgA64JrXbvtcP0HhiV3zgDcNY9eoWCL68nG Pd715QPwOvv8dZVruL95k1Si3DcAN99R2E/b4PXNPKaIigxCixxd7dIVXA/c jLh+xgxCXn25ENWEBFt/xse7kUNQ82nQpQ/3z0Yv91yIezICO35x/sncRYK1 f+PK721jYDWMhlvbl6DaV1o6qPkPJEgMuxe4LIHZpuEqvov/4JzCUvweviWY Vqk/8sNlGi7nCyycfrkIOQ4b5qg3GTDp8/7CNtlFGP+0lzl1lwEhWRsUtkkv AuWgAcPHmwFrD1xOF5VaBBpb7L+kMAb4W7I5/iexCDGhu8cG8hmwt1H41mY8 j/jmqX+jzjHAsNYkc5JrEYyZru+pPrNg+UvM23KcgCiT+LKpgFnISNCaMRrD 8w6qKPEJnwUvjRQ+7V8EnH20ujCJNgvOsVNmikMEHBd8lj1QNwtLov67yW8E 7FHNfUFdz4Rnld7sfs0EsHuNeFMjmGDRUhFimkGAvdMqQ4s4Jgy2BM/b4nmr 22b7bnMaE4yn+iiueB7L0jVuvZTPhK4rDf0RSQQY7GgVukhnwnyZUHZjDAHJ tQV5Z/lYMGnJqSAVSABXaYefzn8ssBDYpKz4mACX7MmL2uIsqMwu3gD+BJyJ kmLTVGTB9bl0MQM8D05djdfSMGDBsEcWm/s9Ao5xPRw+FMGCEddLbNV2+P1s ScWqcSxYkjQQaL5GwBZGeaAKjQX3R8VXfbLB810vS/5gPguI+N0mA1cICMu5 7rmPzoKpV4GCpAkBRPLjcwo9LDBkig9x4PnWOjpVXH6IBZJJ6v5cRgSoePc3 yc2wwHLXqJGgAZ5XnRfjZQkW3Lxi+mibHgHctkKOMuxzwF8uGyahi+dTM6Xj 0lxz0F/6yUVah4ABPQMBCt8cXFuqOSCvRcD/zevw//P6/wC9cKkB "]], LineBox[CompressedData[" 1:eJwV03s01VkbB/CDc36/fRh13AflMu5pUFREfo/ogmp0KqVCLokwlUSlxqXJ LdPoypkuupOGI5MuRm01RKUMmtd5vb3K6GJqUGRmn3N+NHv2Wnvt9fljf9d6 nmc91tFbpBs1BQJBGr3/vteiT3u6TVNyp79vV99eyGMrtyvF9tOV3EiboMyP utC2NcbOQ8nNcG76dWEAjz9+/mq2rY+Ss/po9yJ4Po8jdDW1bQKUnO2hU49D gMcz//KusVqp5ByKfwxY68Pjk2/X7LNcr+Q6Nrm3R8zlMfN8R6hFrJJrn6j2 ivHkcU+LnDdPVXI362NrEj14nC2zCTQ5quRkFaMzMqbzeDp7kR88oeRsKv9o zJ/GY0WqfU3TeSXXoy/3OO7IY5cQJ5OUn5RcaMbWthpbmse4vmrrVHJSvOzB yyk89kidm52jp+KcCvrWL9bl8etly28NHlRx0jNFhhpDahwszHRqKlBzzyQR iVK5GlcHJiuGLo9zJ7PXfWh0UGPPH3Dzk4ufuCP7vQZyr6hwdXQnGL8WgLvf +5f9TiocZ7XS2e+jBgQ+8kmcVavEtf1s3cL3mqC0bOk9GazEQYYi+wMaQmhY vfNt2QDBNh0LzuWJhDD/hW5C4BuC+e9yLb4VCyGr9W796CuCq1hksldPCK6P Iv8b1E+wRK2NtlgLYW1unESrl+Df+iRvpX5CKPDd23aii+AN8inVZtlCqA9Y WbENE5wW5DG7UiCCNxGa+S0ygof9y88dFoogJ75quLqU4Ph5ZpMzkAj8yz6b V1JC8Do3wUCwRARB3UmFm48RDMZtskFLESzoDFKZHyJY5/eYcTdOBBbJK3Mq 8wk+s+tI0429IjiIljXt3Emw6XZmxplsEZwu1/lhbzrBh5N2ncrfL4Ikc7uo fWkE74+MTAv7TgQlisdNh1IJ3rzA2VF9UgTxXcff3dpKsIfeLwd8G0SQ4Kqv 5ZlA8IOKEWmzSgSTnq+rHFxLMGnR/Fnzkwjs+ndfnAgj2P6Nvg1oMWALZg8k 1Dl27qP1Ogzcq0o64LmaYJ9z24/UTGEg3zGIPb6C4JoTH7tO+DLQmnNnRsES gksP/rUyJYcBk3frB6QcwfermNvyXAbiBdrVBb4Ej7UZ2w0WMmB1c6j87jyC pTpzxjYdYcDj6HWvWT4Ef5affiz8AgM3DxX0TvMiOCub/Lb4PgN9Q8M7Qtxp f1NVoZbaLKTsimXzHOk81+U5GU5iwXFc986wA8Ej8w15pM/C3T9kBWHUGXou Z0dMWdi22GeDmz3BB6uj3jU7sZBs16b3zobguoHWzKRAFpbXPq07akmwqn2V NGopC9y6tKeTqH1v/G4bupyFjp/CdAotCG7dzz/gwuj/JfJ7+6YS/OwLN0OD BBYmEoXh35oTrBleUnErn4VVlqmb600IXhRgm1FdxAKzQcN2IXWR89Wl54tZ sC5tJZ3GBBupHo4UlbIQW3Xt47ARwY4lEz4bKli4mFk/d44hwcs6NnYwrbSe hwobtYTgIzdHzqsfsSBzuHehlFpRlpn2vp2F3UGp/nOoo76Wmfd0s9A52tKT PpngVJ3HG6vesLCkznEHM4ngEws8VCtYBDEVwelhOgRXVq0uuaOD4Hyjj+yT NsE3jTI8nCQIlsjV1uXU/3l19+uJzxF02hbFq8R0X3K/6q+YhuAc3vbkKiLY cigly8AVQd83Ic4x1C6hx6d+447A4M95742og+3/v3qFD4LBQkVtJktw7v3N beNLEcjiP1jEMgQfczmYEC+l+V0ujVbUF45fZbpCESiGih/2igi+G0egIhLB rGQ/80hqnsmtk25DMLb0rHyrkO7PlsvS2zsQuFwNPeVJbdbdNuywG4H+JfMx Deo55QbTxnMQmPb49JdqEZyy6Ozp8qMImjMPN3RrEpwtb/LWlyF4OD9zvJK6 2GRAsecUgmAz78uZ1FVvXAyklxD4Pkvx+5K64StpTUMlgvC9xi4M9cMbO5Y6 yBG4nlHsf6FB8EBeQx5/A8Hj1YJ0GfXfw89tNzUgmOmSL9lJzazRutfRiGC5 eLvRGmobxyD+0gME3o+ro6ZQzyxOluk9QTAna8plATWQ4tl7OhG4tdmvfy0g OKK1e+vy/yHQmOcvuk6d7KbWbXiOQF6bpC6j3lNqccX+JYLh6KjwA9SFgvmL Dw0g6OWcnXdSy+I3vlL/icCmqCs2jrri1/ycuA8IPvVEa4dSX/f80bJjjNYj 6TNfRN18pr3BW4XgQ+QqmRf1UzQadmkCweiy+zlfUvdvNf5boiUGaa2X4gvq EYXX0QxWDEXyazJTaoFf+IzXOmI40ODdokc9+XLWkxCJGHLLOjfoUFvoXUj8 2VAMJlv2xDHU03e1IHtTMTge9lZoUnv3vb1YPFUMY1jvuoA6KHCSv9paDLqC fw/B/wCEW4n8 "]]}, {}}, {{}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange-> NCache[{{-Pi, Pi}, {-1.9999999245387037`, 1.9999999245387037`}}, {{-3.141592653589793, 3.141592653589793}, {-1.9999999245387037`, 1.9999999245387037`}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], ",", GraphicsBox[{{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQ7eXJ5/xbkfMAIwMYOKQfv/1hw2KOA//+g4F9i+vK eWmqHAcYoPK/eC7dqJnDDucXXvklNFkYwZeb2fV392Q2uHmnYqVePBFG8FP6 ks70T2OFq/+7b9UGK0lWuPzjTR8nBnKywPlmC9mu9HIzw/k2Spf0un8wwvky 1Xy1Pa8Y4PwLcwwj0u7+3w/jn8/Y/Nx09184f5nmRYuAvb/h/NcPL4QkHv4F 5xvMulBQdPLnfpj73un8+7us9Sdcfs1+7e7bjj/3w8KHpeiiTJIlQj5GpXzd CwMEf0vSPAsDLQQfADo3eKw= "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBWIQXfP9Zf4xyZ/7GRnA4MCut7xfmfgR/KygSAmBfz/g /JPSH+K07vzYzwDlazxtW+qyCyG/hOvR/rVGCL6ige0tsdXf4fy20oP5fOu+ wfmvdrmysm38CudLZ+9OLO/5DOf/OyW09EPhRzi/2J4nJPP7Ozh/h/HZA1+3 voLz1wse2yC+9xlCvdVMZrv8R3C+VWu8x4usO3D++4w//fUdV+D8GapLp/k7 XYDzm4/MtrL/cRzu3zylXXNEfu2Hy1/bbXNkFfMGOP/CFpPNHAnhcPUemV6L DwmX7Ybx43Xc/oZMXGcPU//QIyI0b94JOP/Levv1EtZX4PxbS+XyPl64A+dv SXj6/1nzA3uYedV5uz1C5z+C87Pav56vmPYEzo9YoB8+p/cZnJ/WfpLp/oVX cL5I269ppufewM0/3KKt3XP6HZz/INM2Jzf+A5wfJ/j0kEjkRzj/s9Vxu4dl n+H89fm8P5MKvsL5Ud8r9yY1fYPbx1L/rDFpync4f/HRrZv9RX7A1TvxtD61 mYLgT1qfU2d8BcF/FBQiriXyE86Hpl84HwAJG+oC "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAWIQvSVpnoWB1k97RgYwcFAwWD1BTQfB71I5kaxqguDH 8TJxKbsg+EbfrDcohCD4t46v/yNd8tOeAcpvnKnsKT4FwX/mF7jzbd8vuHpv lnrNI52/7f/9BwP7P2rfGm7O/AOXX+eZe+Pdyr9w/Z8Lxc7fW/4PLm8xa//R c0v/w+Wfit+8WBfD4ADjr0u65CD2jMEB7h9H4W3auYxw+TSFEG3HL4xw+U2P 2be6fWCC871EWNW6GVng/IT1MuukGhH8Mi8Ts1UMrHDzFlROPrK9lhUuf3LF p6CjvxD8GX3fQoqa2OD8jJJfYfJc7HD+bFeTX8HsHHB+kfvCecunIPhennzO vxU54XwA/8ZyTg== "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQ7eXJ5/xbkfMAIwMYHEg/fvvDhsUcB/79B4P9La4r 56WpchxggMr/4rl0o2YOO5xfeOWX0GRhBF9uZtff3ZPZ4OadipV68UQYwU/p SzrTP40Vrv7vvlUbrCRZ4fKPN32cGMjJAuebLWS70svNDOfbKF3S6/7BCOfL VPPV9rxigPMvzDGMSLv7fz+Mfz5j83PT3X/h/GWaFy0C9v6G818/vBCSePgX nG8w60JB0cmf+2Hue6fz7++y1p9w+TX7tbtvO/7cDwsflqKLMkmWCPkYlfJ1 LwwQ/C1J8ywMtBB8AC4vhCw= "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGDQBWIQXfP9Zf4xyZ/7GRnAwGHXW96vTPwIflZQpITAvx9w /knpD3Fad37sZ4DyNZ62LXXZhZBfwvVo/1ojBF/RwPaW2OrvcH5b6cF8vnXf 4PxXu1xZ2TZ+hfOls3cnlvd8hvP/nRJa+qHwI5xfbM8Tkvn9HZy/w/jsga9b X8H56wWPbRDf+wyh3moms13+IzjfqjXe40XWHTj/fcaf/vqOK3D+DNWl0/yd LsD5zUdmW9n/OA73b57Srjkiv/bD5a/ttjmyinkDnH9hi8lmjoRwuPrEIraO iRFzrGH8eB23vyET19nD1D/0iAjNm3cCzv+y3n69hPUVOP/WUrm8jxfuwPlb Ep7+f9b8wB5mXnXebo/Q+Y/g/Kz2r+crpj2B8yMW6IfP6X0G56e1n2S6f+EV nC/S9mua6bk3cPMPt2hr95x+B+c/yLTNyY3/AOfHCT49JBL5Ec7/bHXc7mHZ Zzh/fT7vz6SCr3B+1PfKvUlN3+D2sdQ/a0ya8h3OX3x062Z/kR9w9U48rU9t piD4k9bn1BlfQfAfBYWIa4n8hPOh6RfOBwBHQtL/ "]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAWIQvSVpnoWB1k97RgYwOKBgsHqCmg6C36VyIlnVBMGP 42XiUnZB8I2+WW9QCEHwbx1f/0e65Kc9A5TfOFPZU3wKgv/ML3Dn275fcPXe LPWaRzp/2//7Dwb7/6h9a7g58w9cfp1n7o13K//C9X8uFDt/b/k/uLzFrP1H zy39D5d/Kn7zYl0MgwOMvy7pkoPYMwYHuH8chbdp5zLC5dMUQrQdvzDC5Tc9 Zt/q9oEJzvcSYVXrZmSB8xPWy6yTakTwy7xMzFYxsMLNW1A5+cj2Wla4/MkV n4KO/kLwZ/R9CylqYoPzM0p+hclzscP5s11NfgWzc8D5Re4L5y2fguB7efI5 /1bkhPMB3nqATg== "]]}, {}}, {{}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange-> NCache[{{-Pi, Pi}, {-2.0000000000000004`, 2.0000000000000004`}}, {{-3.141592653589793, 3.141592653589793}, {-2.0000000000000004`, 2.0000000000000004`}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]}], "}"}]], "Output", CellChangeTimes->{ 3.560878383985682*^9, {3.560878475413376*^9, 3.560878511583332*^9}, 3.5612722416132793`*^9, {3.561272275398409*^9, 3.561272292445849*^9}}] }, Open ]] }, Open ]] }, WindowSize->{740, 707}, WindowMargins->{{128, Automatic}, {Automatic, 27}}, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 101, 1, 74, "Section"], Cell[CellGroupData[{ Cell[705, 27, 1441, 43, 145, "Input"], Cell[2149, 72, 1325, 40, 87, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3511, 117, 1643, 48, 145, "Input"], Cell[5157, 167, 1234, 34, 88, "Output"], Cell[6394, 203, 2941, 90, 227, "Output"], Cell[9338, 295, 1597, 32, 242, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10972, 332, 2581, 75, 240, "Input"], Cell[13556, 409, 1074, 27, 392, "Output"], Cell[14633, 438, 1063, 26, 379, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15733, 469, 2658, 78, 179, "Input"], Cell[18394, 549, 501, 12, 30, "Output"], Cell[18898, 563, 829, 22, 260, "Output"], Cell[19730, 587, 507, 12, 30, "Output"], Cell[20240, 601, 829, 21, 251, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21106, 627, 2046, 58, 145, "Input"], Cell[23155, 687, 148568, 2445, 299, 110779, 1825, "CachedBoxData", "BoxData", \ "Output"], Cell[171726, 3134, 12122, 236, 191, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[183885, 3375, 823, 26, 69, "Input"], Cell[184711, 3403, 520, 12, 33, "Output"], Cell[185234, 3417, 492, 11, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[185763, 3433, 2497, 71, 145, "Input"], Cell[188263, 3506, 1982, 54, 79, "Output"], Cell[190248, 3562, 1589, 44, 77, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[191874, 3611, 1035, 26, 50, "Input"], Cell[192912, 3639, 406, 8, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[193355, 3652, 535, 12, 30, "Input"], Cell[193893, 3666, 594, 12, 30, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[194524, 3683, 692, 17, 30, "Input"], Cell[195219, 3702, 59440, 1024, 283, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)