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1. Mathematical preliminaries: from a sum to an integral
(5 + 5 = 10 Punkte)

(a) Euler-Maclaurin expansion.
We write the integral in question as∫ b

a

F (λx)dx =
b−1∑
n=a

∫ n+1

n

F (λx)dx (1)

and use the identity proposed in the exercise to get

∫ b

a

F (λx)dx =
1

2

b−1∑
n=a

[F (λ(n+ 1)) + F (λn)]−λ
b−1∑
n=a

∫ n+1

n

dxF ′(λx)

[
(x− n)− 1

2

]

=
b∑

n=a+1

F (λn) +
1

2
[F (λa)− F (λb)]− λ

b−1∑
n=a

∫ n+1

n

dxF ′(λx)

[
(x− n)− 1

2

]
(2)

Note that the second term in this expression is of the order of λ at small λ, while
the third term is of the order of λ2 because∫ n+1

n

[
(x− n)− 1

2

]
= 0. (3)

We thus get ∫ b

a

dxF (λx) =
b∑

n=a+1

F (λn) +
1

2
[F (λa)− F (λb)] +O(λ2). (4)

We now proceed from Eq. (2) using

d

[
(x− n)2 − (x− n) +

1

6

]
= 2

[
(x− n)− 1

2

]
(5)

and integrating by parts. We get

∫ b

a

F (λx)dx =
b∑

n=a+1

F (λn)+
1

2
[F (λa)− F (λb)]− λ

12

b∑
n=a

[F ′(λ(n+ 1))− F ′(λn)]

+
λ2

2

b−1∑
n=a

∫ n+1

n

dxF ′′(λx)

[
(x− n)2 − (x− n) +

1

6

]
(6)



Note that the integration constant (1/6) in Eq. (4) was not occasional. Due to this
choice of the integration constant∫ n+1

n

dx

[
(x− n)2 − (x− n) +

1

6

]
= 0. (7)

Thus, the last term in Eq. (6) has the order λ3 and we can write∫ b

a

dxF (λx) =
b∑

n=a+1

F (λn) +
1

2
[F (λa)− F (λb)] +

λ

12
[F ′(λa)− F ′(λb)] +O(λ3).

(8)

Let us now send b to infinity assuming that F (∞) = 0. We also take a = 0. We get∫ ∞
0

dxF (λx) =
∞∑
n=1

F (λn) +
1

2
F (0) +

λ

12
F ′(0) +O(λ2) =

∞∑
n=0

F

(
λ

(
n+

1

2

)
+
λ

2

)
+

1

2
F (0) +

λ

12
F ′(0) +O(λ2) =

∞∑
n=0

[
F

(
λ

(
n+

1

2

))
+
λ

2
F ′
(
λ

(
n+

1

2

))
+
λ2

8
F ′′
(
λ

(
n+

1

2

))]
+

1

2
F (0) +

λ

12
F ′(0) +O(λ2)

=
∞∑
n=0

[
F

(
λ

(
n+

1

2

))
+
λ

2
F ′ (λn) +

3λ2

8
F ′′ (λn)

]
+

1

2
F (0) +

λ

12
F ′(0) +O(λ2).

(9)

We now use

∞∑
n=0

F ′(λn) = F ′(0) +
∞∑
n=1

F ′(λn) = F ′(0) +

∫ ∞
0

dxF ′(λx)− 1

2
F ′(0) +O(λ)

=
1

2
F ′(0)− 1

λ
F (0) +O(λ), (10)

∞∑
n=0

F ′′(λn) =

∫ ∞
0

dxF ′′(λx) +O(1) = −1

λ
F ′(0) +O(1). (11)

to get∫ ∞
0

dxF (λx)

=
∞∑
n=0

F

(
λ

(
n+

1

2

))
− 1

2
F (0) +

λ

4
F ′(0)− 3λ

8
F ′(0) +

1

2
F (0) +

λ

12
F ′(0) +O(λ2)

=
∞∑
n=0

F

(
λ

(
n+

1

2

))
− λ

24
F ′(0) +O(λ2) (12)

This is exactly what we were looking for.



(b) Poisson summation formula.
The function

∞∑
n=1

δ(x− n) (13)

is a periodic function of x with period 1. As such it can be expanded into Fourier
series over functions e2πikx. The expansion coefficients∫ 1/2

−1/2

∞∑
n=1

δ(x− n)e−2πikx = 1. (14)

Thus
∞∑
n=1

δ(x− n) =
∑
k

e2πikx (15)

We multiply both sides of Eq. (15) by arbitrary f(x) and integrate over x from −∞
to ∞. We get the statement of the exercise.

2. Fermionic density in magnetic field
(5 + 5 + 5 = 15 Punkte)

We consider spinless electrons of mass m in magnetic field H.

(a) In 3D the eigenenergies of an electron in magnetic field are given by

ε = ωc

(
n+

1

2

)
+

p2
z

2m
, ωc = eB/mc. (16)

Due to the degeneracy of Landau levels the number of states per unit volume in the
given n-th Landau level and with the momentum pz in the interval (pz, pz + dpz) is
given by

dNn =
B

Φ0

dpz
2π

=
B

Φ0

dpz
2π

, Φ0 =
2π~c
e

. (17)

We now use that within the given Landau level pz = ±
√

2m(ε− ωc(n+ 1/2)). Thus

dNn = 2
B

Φ0

dε

4π

√
2m

ε− ωc(n+ 1/2)
(18)

At given ε the landau levels with n ≤ nmax(ε) ≡ [ε/ωc − 1/2] will contribute to the
density of states. Here [x] stands for the largest integer smaller that x. Thus

ν3D(ε) =
B

2πΦ0

nmax(ε)∑
n=0

√
2m

ε− ωc(n+ 1/2)
. (19)

In the 2D case the only possible energies of an electron in magnetic field are ωc(n+
1/2). Taking into account the degeneracy of Landau levels we get

ν2D(ε) =
B

Φ0

∞∑
n=0

δ(ε− ωc(n+ 1/2)). (20)
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Abbildung 1: The dependence of the particle density on chemical potential. In 2D case n2D is
normalized to the density mωc/2π corresponding to a completely field Landau level.
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Abbildung 2: The dependence of chemical potential on the particle density. In 2D case n2D is
normalized to the density mωc/2π corresponding to a completely field Landau level.

(b) The density as a function of chemical potential can be now found by straightforward
integration of the density of states with the fermi function. We get at T = 0

n3D(µ) =

∫ µ

0

dεν3D(ε) =
B

πΦ0

nmax(µ)∑
n=0

√
2m(µ− ωc(n+ 1/2)) (21)

n2D(µ) =

∫ µ

0

dεν2D(ε) =
B

Φ0

(nmax(µ) + 1) (22)

At large µ we get

n3D(µ) ≈ B

πΦ0

∫ µ/ωc

0

dn
√

2m(ε− ωcn) =
B

πΦ0

2
√

2mµ3/2

3ωc
=

√
2mmµ3/2

3π2
,(23)

n2D(µ) ≈ B

Φ0

nmax(µ) ≈ B

Φ0

µ

ωc
=
mµ

2π
. (24)

These results correspond to nµ in the absence of magnetic field. The behaviour
of nµ in 3D and 2D is shown in Fig. 1. Dashed lines show n(µ,B = 0). Finite
temperature smoothes the singularities in n(µ). It is especially important in 2D
where the function n2D(µ, T = 0) has jumps. At finite temperature n2D(µ, T ) is
continuous (see dotted line in Fig. 1b).

(c) The dependences µ(n) can be obtained from Fig. 1 just by exchanging the axes.
The result is shown in Fig. 2. The effect of finite temperature is again especially



important for 2D case. At zero temperature µ2D is always pinned to the Landau
levels and only jump between them at integer 2πn2D/mωc. Finite temperature
makes µ2D(n) continuous.

3. de Haas - van Alphen effect in two dimensions
(5 + 5 = 10 Punkte)

The de Haas - van Alphen effect is particularly simple in two dimensions. In this exercise
we consider spinless electron gas in two dimensions and at zero temperature.

(a) Let us fix H and S (magnetic field and area of the sample) and vary N . For small
N all the fermions can be put into the first Landau level and will energy equal to
simply ωc/2. This means the

E(N,S,H, T = 0) = Nωc/2, N < HS/Φ0. (25)

Equation (25) is valid however only for N < HS/Φ0, i.e. when there are enough
states in the lowest Landau level to accommodate all the electrons.

When HS/Φ0 < N < 2HS/Φ0 the lowest Landau level is completely filled and
extra electrons are accommodate at the second Landau level where the energy is
3ωc/2. Thus

E(N,S,H, T = 0) =
ωc
2

HS

Φ0

+
3ωc
2

(
N − HS

Φ0

)
,

HS

Φ0

< N <
2HS

Φ0

(26)

It is now easy to write down the general formula.

E(N,S,H, T = 0) =
n−1∑
p=0

ωc

(
p+

1

2

)
HS

Φ0

+ ωc

(
n+

1

2

)(
N − HSn

Φ0

)
, (27)

HS

Φ0

n < N <
HS

Φ0

(n+ 1). (28)

Here n takes values 0, 1, 2, . . ..

We can simplify Eq. (28) as

E(N,S,H, T = 0) = −ωcHS
2Φ0

n(n+1)+ωc

(
n+

1

2

)
N,

HS

Φ0

n < N <
HS

Φ0

(n+1).

(29)
Taking into account ωc = eH/mc we find

E(N,S,H, T = 0) = −e
2H2S

4πmc2
n(n+1)+

eH

mc

(
n+

1

2

)
N,

S

NΦ0

n <
1

H
<

S

Φ0N
(n+1).

(30)
Here we have rewritten the inequality HS

Φ0
n < N < HS

Φ0
(n+1) in an equivalent form.

We see that that the energy of the system is a piece-wise parabolic function of the
magnetic field.

(b) We now differentiate energy with respect to the magnetic filed to get the magneti-
zation.

M/S = −∂HE =
e2H

2πmc2
n(n+1)− e

mc

(
n+

1

2

)
N/S,

S

NΦ0

n <
1

H
<

S

Φ0N
(n+1).

(31)
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Abbildung 3: Magnetization as a function of 1/H.

Magnetization is piece-wise linear function of magnetic field. It has jumps at the
points 1/H = Sn/NΦ0 with integer n. Indeed,

M

S

∣∣∣∣
1
H

= Sn
NΦ0

+0

=
e2NΦ0

2πmc2nS
n(n+ 1)− e

mc

(
n+

1

2

)
N/S =

eN

2mcS
=
µBN

S
, (32)

M

S

∣∣∣∣
1
H

= Sn
NΦ0

−0

=
e2NΦ0

2πmc2nS
(n− 1)n− e

mc

(
n− 1 +

1

2

)
N/S =

eN

2mcS
= −µBN

S
. (33)

It is also easy to see that on each of the intervals S
NΦ0

n < 1
H
< S

Φ0N
(n+ 1) the magne-

tization is a monotonous function of H. It is now easy to sketch the graph of M . Jus
as in the 3D case magnetization experiences oscillations as function of 1/H.


