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1. Conductivity of the 2D tight-binding modell
(5 + 5 = 10 Punkte)

(a) The conductivity as derived from the Boltzmann equation reads

σαβ = −2e2τ

∫
d2k

(2π)3
∂f0
∂ε

vαvβ (1)

Here

vα =
∂ε(k)

∂kα
= E1a sin kαa (2)

To compute the integral we take into account that at low temperatures ∂f0/∂ε =
−δ(ε−µ) and also that d3k = dSdε/|v|, where dS is the area element on the surface
of constant energy (in our case surfaces of constant energy are lines and dS is just a

line element). We also note that |v| =
√
v2x + v2y = E1a

√
sin2 akx + sin2 aky. Thus,

σαβ = 2e2τE1a

∫
dS

4π2

sin akα sin akβ√
sin2 akx + sin2 aky

(3)

Due to symmetry
σxy = σyx = 0, σxx = σyy (4)

so we limit ourself to the computation of σxx.

We have

σαβ = 2e2τE1a

∫
dS

4π2

sin2 akx√
sin2 akx + sin2 aky

(5)

The integration goes over the Fermi surface of the system which, at half-filling, is
just a square with one of the sides ky = π/a − kx (0 < kx < π/a) and the other
three sides related by symmetry to the one mentioned. The line element dS =

√
2kx.

Thus,

σxx = 8
√

2e2τE1a

∫ π/a

0

dkx
4π2

sin2 akx√
sin2 akx + sin2 a(π/a− kx)

=
2e2

π2
τE1a

∫ π/a

0

dkx sin akx

=
4e2

π2
τE1 (6)

We note that the density corresponding to half-filling is

n = 2
1

2

(2π/a)2

4π2
=

1

a2
. (7)

Here the leading factor of 2 comes from spin. Thus

σxx =
4e2

π2
τE1 =

ne2τ

π2/4E1a2
. (8)



(b) We now need to compare the result from the previous section to the prediction of
the Drude model.

σxx =
ne2τ

m∗
(9)

Comparing Eq. (8) to Eq. (9) we find

m∗ =
π2

4E1a2
(10)

Note that the expansion of the dispersion relation near k = 0 would lead to the
estimate that is parametrically the same

ε(k) =
E1a

2

2
k2 + const., m∗ =

1

E1a2
. (11)

2. Boltzmann equation in the presence of spin-orbit interaction
(5 + 5 + 5 + 5 = 20 Punkte + 5 + 5 = 10 Bonuspunkte)

(a) Let us consider a simple spin. Its density matrix is a 2 × 2 matrix ρ. Its equation
of motion is

dρ

dt
= i [ρ,H] , (12)

where H, a 2× 2 matrix, is the Hamiltonian of the system. The diagonal elements
of ρ give the probabilities to find the system in a state with z-projection of the spin
being equal to ±1/2. For example, the average value of sz is given by

〈sz〉 = tr ρsz =
1

2
(ρ11 − ρ22) (13)

The off-diagonal elements of ρ take into account the possibility to find the spin in
a state which is a coherent superposition of the states with sz = ±1/2, e.g. a state
with definite projection sx.

Let us now turn to the discussion of a particle with spin and corresponding kinetic
equation. If we neglect first the possibility to have spin coherence and approximate
the matrix ρ (which is now also aa function of r, p and t) by its diagonal elements
the kinetic equation should have the form

dρ

dt
≡ ∂ρ

∂t
+ v

∂ρ

∂r
+ ṗ

∂ρ

∂p
= I[ρ] (14)

Equation (14) neglects the evolution of the density matrix of the particle due to
rotation of the spin. The spin rotation can be taken into account by analogy with
equation Eq. (12). We write, limiting ourself to the space-independent density ma-
trixes,

dρ

dt
≡ ∂ρ

∂t
+ ṗ

∂ρ

∂p
= i[ρ,H] + I[ρ], (15)

where H = p2/2m + Ω(p)σ is the Hamiltonian of the system. Computing now the
commutator we get

∂ρ

∂t
+ i [Ω(p)σ, ρ]− eE ∂ρ

∂p
= I[ρ], (16)

where we have explicitly written down ṗ = −eE for a particle in an electric field.



(b) We now substitute the

ρ =
f(t, p)

2
+ S(t,p)σ. (17)

into kinetic equation. We get

1

2

∂f

∂t
+
∂S

∂t
σ + i [Ω(p)σ,Sσ]− 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ] (18)

We have

[Ω(p)σ,Sσ] = Ωi(p)Sj [σi, σj] = 2iΩi(p)Sjεijkσk = 2i(Ω(p)× S) · σ, (19)

where εijk is the fully antisymmetric tensor. We thus have

1

2

∂f

∂t
+
∂S

∂t
σ − 2(Ω(p)× S) · σ − 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ] (20)

Equation (20) is still a matrix one. To reduce it to a set of scalar equations we use
the orthogonality of the Pauli matrixes

trσiσj = 2δi,j, i, j = 0, . . . 3, σ0 ≡ 1. (21)

For example, taking trace of the both sides of Eq. (20) we find

∂f

∂t
− eEα

∂f

∂pα
= tr I[ρ] (22)

Likewise, multiplying both sides of Eq. (20) by σi, i = 1, 2, 3, and taking trace we
find

∂Si
∂t
− 2(Ω(p)× S)i − eEα

∂Si
∂pα

=
1

2
tr I[ρ]σi (23)

Let us now assume that the collision integral can be written in the τ -approximation
as

I[ρ] = −1

τ
δρ ≡ −1

τ
(ρ− ρ0) ≡ −

1

τ

(
1

2
δf + δS · σ

)
(24)

We then find

∂f

∂t
− eEα

∂f

∂pα
= −δf

τ
(25)

∂Si
∂t
− 2(Ω(p)× S)i − eEα

∂Si
∂pα

= −δSi
τ

(26)

(c) We can now consider the case of the Rashba coupling Ω = α(py,−px, 0). In this
case

Ω× S = α(−pxSz,−pySz, pxSx + pySy) ≡ −αpSz + α(S⊥ · p) ez. (27)

Here ez is a unit vector in z-direction and S⊥ = (Sx, Sy). Equations (26) now can
be written as

∂Sz
∂t
− 2αS⊥ · p− eEα

∂Sz
∂pα

= −δSz
τ
, (28)

∂S⊥
∂t

+ 2αpSz − eEα
∂S⊥
∂pα

= −δS⊥
τ

(29)

This is our final set of equations.



(d) Let us now compute the equilibrium density matrix ρ0. Our Hamiltonian H =

p2/2m+Ω(p)σ has eigenenergies εσ(p) = p2

2m
+σ|Ω(p)|, where σ = ±1 and |Ω(p)| =

α|p|. In particular, there exist a unitary matrix U(p) such that

H = U+(p)

[
p2

2m
+ α|p|σz

]
U(p), U+(p)α|p|σzU(p) = Ω(p)σ (30)

The occupation numbers of the eigenstates of our Hamiltonian at equilibrium are
given by just the Fermi distribution, n(p, σ) = nF (εσ(p)). This means that the
equilibrium density matrix in the basis of eigenstates takes the form

ρ̃0 = nF

[
p2

2m
+ α|p|σz

]
=
nF (ε+(p)) + nF (ε−(p))

2
+
nF (ε+(p))− nF (ε−(p))

2
σz (31)

The density matrix in the original basis is then given by

ρ0 = U+ρ̃0U = nF

[
p2

2m
+ α|p|σz

]
=
nF (ε+(p)) + nF (ε−(p))

2
+
nF (ε+(p))− nF (ε−(p))

2α|p|
Ω(p)σ

(32)
where ε±(p) = p2/2m± α|p|.
Equation (32) is equivalent to the statement that

ρ0 = nF (H) ≡ nF
(
p2/2m+ Ω(p)σ

)
. (33)

A particular case of of Eq. (32) that will be interesting for us is the limit of small
α. In this situation Eq. (32) gives (to first order)

ρ0 ≈ nF (p2/2m) + n′F (p2/2m)Ω(p)σ. (34)

Here n′F stands for the derivative of the Fermi distribution with respect to energy.
Obviously, we can get the same answer from Eq. (33).

Equation (32) can be now translated to the expressions for f0 and S0. We just need
to use orthogonality of the Pauli matrixes. We get

f0 = nF (ε+(p)) + nF (ε−(p)), (35)

S⊥0 =
nF (ε+(p))− nF (ε−(p))

2α|p|
Ω(p) ≡ G(|p|)Ω(p), (36)

Sz0 = 0. (37)

In the limit of small α this reduces to

f0 = 2nF (ε), (38)

S⊥0 = n′F (ε)Ω(p), G(|p|) = n′F (ε), (39)

Sz0 = 0. (40)

Here, ε = p2/2m.

(e) Let us now solve the kinetic equation within the linear response approximation. We
consider only equations for S. We consider stationary problem and set all the time



derivatives to zero. We also take into account that Sz0 = 0. We then obtain the set
of linearized equations

2ταS⊥0 · p + 2τα δS⊥ · p = δSz, (41)

2αp δSz − eEα
∂S⊥0
∂pα

= −δS⊥
τ

(42)

Note that the product S⊥0 · p vanishes due to Eq. (39). Tis garatees that at E = 0
our kinetic equation has the solution δS = 0 so we have found correct equilibrium
distribution function.

From Eqs. (41) and (42) we now find

δS⊥ + 4α2τ 2(δS⊥ · p) p = eτEα
∂S⊥0
∂pα

, (43)

δSz = 2τα δS⊥0 · p. (44)

We multiply both sides of Eq. (43) by p to get

(δS⊥ · p) =
eτEα

1 + 4α2τ 2p2

(
∂S⊥0
∂pα

· p
)

=
eτEα

1 + 4α2τ 2p2
∂S0β

∂pα
pβ

=
eτEα

1 + 4α2τ 2p2

(
∂(S0βpβ)

∂pα
− S0α

)
= − eτ(E · S⊥0)

1 + 4α2τ 2p2
(45)

Thus,

δS⊥ = eτEα
∂S⊥0
∂pα

+
4eα2τ 3(E · S⊥0)p

1 + 4α2τ 2p2
. (46)

This is the final result of this exercise.

(f) We now consider the average spin arising in response to the electric field,

〈s〉 =

∫
d2p

(2π)2
tr ρs =

∫
d2p

(2π)2
S. (47)

It is easy to see that 〈sz〉 = 0. We thus assume that E = (Ex, 0, 0) and calculate
the in-plane spin. With our choice of the direction of electric field we have

δS⊥ = eτEα
∂S⊥0
∂pα

+
4eα3τ 3ExG(|p|)pyp

1 + 4α2τ 2p2
. (48)

The first term, total derivative, vanishes after integration over momentum. It is
easy to see that due toi the symmetry reasons only 〈sy〉 is non-zero and given by

〈sy〉 =

∫
d2p

(2π)2
4eα3τ 3G(|p|)Exp2y

1 + 4α2τ 2p2
, G(|p|) =

nF (ε+(p))− nF (ε−(p))

2α|p|
(49)

We switch to polar coordinates and taking into account that∫ 2π

0

sin2 φ = π (50)

we get

〈sy〉 =
eα3τ 3Ex

π

∫ ∞
0

dp
p3G(|p|)

1 + 4α2τ 2p2
(51)



The integral can be computed explicitly for weak spin-orbit coupling and zero tem-
perature when

G|p| = n′F (p2/2m) = −δ(p2/2m− p2F/2m) = −m
pF
δ(p− pF ) = − 1

vF
δ(p− pF ) (52)

We then get

〈sy〉 = − eα3τ 3p3FEx
πvF (1 + 4α2τ 2p2F )

. (53)


