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1. Hall effect (7.5 + 7.5 = 15 Punkte)

(a) We start from the Boltzmann equation in the presence of magnetic field.
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We limit our consideration to the case of space- and time-independent fields and
approximate the scattering integral within the scattering time approximation.
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The equilibrium distribution function f0 is the distribution function in the presence
of the magnetice filed ~B but with the electric filed ~E switched off. Within our
semiclassical treatment (we neglect the formation of the Landau levels in the ma-
gnetic field!) magnetic field does not influence the equilibrium distribution. Indeed,
f0(k) = nf (ε(k)) solves the Boltzmann equation in the magnetic field
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We now assume the electric field to be weak and linearise the Boltzmann equation.
We get
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This is a linear non-uniform partial differential equation with the source term pro-
portional to ∂f0/∂ε. We can now look for the solution of the Boltzmann equation
in the form
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This equation can in principle be solved for any electronic spectrum by the method
of characteristics. We limit our consideration to the case of quadratic dispersion
relation ~v(k) = ~k/m, which is the paradigmatic example of a situation of closed
Fermi surfaces. In this case we can look for the solution in the form

g(k) = τeXαkα (9)

with vector ~X being k-independent. Indeed, we get for ~X
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Since this equation should be satisfied for any ~k we get
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Here ~b = ~B/|B|, ~e = ~E/|E| and ωc = e|B|/mc. Assuming ~B and ~E to be non-

collinear we use the basis ~e, ~b and ~e×~b to represent vector ~X as

~X = α~e+ β~b+ γ~e×~b. (13)
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We now have the explicit expression for the correction to the distribution function
δf = τemXαvα∂f0/∂ε. The current density is given by
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Here σD is the Drude conductivity. We have finally
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We can now read off the conductivity tensor in the coordinate system where the
magnetic filed point along the z-axes
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(b) Let us now consider alternative way of solving the Boltzmann equation. The correc-
tion to the distribution function determines various macroscopic properties of our
system. In particular the current
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Of course, δf(r, k, t) gives much more detailed characterization of the system then
just the current ~j(r, t). While δf(r, k, t) fully determines ~j(r, t), the inverse is not
true and macroscopic states described by different δf can carry the same current.
In many physical situations however, one or several macroscopic characteristics
of the system (e.g. components of the current jα) fully determine corresponding
δf(r, k, t) ≡ δf [~j] because other possible δf consistent with the same current are
strongly unfavored by the collision integral and quickly relax to δf [~j]. In such a
situation one can describe the system in terms of the macroscopic quantities jα(r, t)
and derive a closed set of “hydrodynamic” equations for them.

Motivated by this discussion let us assume that the solution of the Boltzmann
equation can be written in the form
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The constants A and A′ are then fixed by the requirement
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We now substitute δf into the Boltzmann equation
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and get (assuming ~v = ~k/m)
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The resistivity tensor is thus given by (in the coordinate system where ~B is parallel
to ẑ)
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Inversion of the resistivity tensor gives back the answer (24).

2. Thermo-electric power (15 Punkte)

(a) Let us consider now the thermoelectric effect. We consider a system where the
temperature varies slowly in space, i.e. to the zeroth approximation the distribution
function is given by

f0(r, k) = nF (ε(k), T (r)) (36)

The distribution function f0, Eq. (36) does not satisfy however the Boltzmann equa-
tion (unless T (r) = const.). We thus forced to look for the solution of Boltzmann
equation in the from

f(r, k) = nF (ε(k), T (r)) + δf. (37)

We now write down the Boltzmann equation for f in the presence of an external
electric filed ~E and substitute into it the distribution function (37). We assume that
~E and temperature gradient are small and linearise the Boltzmann equation. We
get
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We now take into account that
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We now find the current in the system
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In calculating the first term in the right hand side of Eq. (41) we approximated
∂nF (ε(k), T (r))/∂ε by −δ(ε−µ). It is easy to see that the analogous approximation
in the second term would lead to vanishing thermo-electric coefficient Q. We thus
need to go to the next order of the Sommerfeld expansion
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Finaly

~j = σD(µ) ~E − Tπ2

3e
σ′
D(µ)∇T. (45)

Here σD(µ) = e2ν(µ)v(µ)2τ/3 is the Drude conductivity as a function of chemical
potential in the system.

Considering now an open circuit with ~j = 0 we find

~E = Q∇T , Q =
Tπ2σ′

D(µ)

3eσD(µ)
. (46)


