INSTITUTE FOR THEORETICAL CONDENSED MATTER PHYSICS

Condensed Matter Theory I WS 2022/2023

Prof. Dr. A. Shnirman	Sheet 0
Dr. D. Shapiro, H. Perrin	Tutorial: 27.10.2022

1. Boson and fermion operators

Let b^{\dagger} and f^{\dagger} be the creation operators of a boson and a fermion, respectively. We write $[\ldots]$ for the commutator and $\{\ldots\}$ for the anti-commutator. Calculate the following expressions:

(a) $[b^{\dagger}b, b^{\dagger}]$ and $\{f^{\dagger}f, f^{\dagger}\}$ (b) $[b^{\dagger}b, b]$ and $\{f^{\dagger}f, f\}$ (c) $[e^{-b^{\dagger}b}, b]$ (hint: expand exponential in power series) (d) $\{e^{-f^{\dagger}f}, f\}$

2. Many-particle quantum states

We consider a system where the (normalized) single-particle orbitals $\phi_{\lambda}(\mathbf{r})$ are known, where \mathbf{r} denotes the position coordinate.

- (a) Let the system be populated by three identical spinless bosons in the states λ_1 , λ_2 , λ_3 . Write down the normalized three-particle wave-function $\psi_{\lambda_1\lambda_2\lambda_3}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ with proper bosonic symmetry! Beware that $\lambda_1, \lambda_2, \lambda_3$ are not necessarily different and distinguish all possible cases.
- (b) Now assume that there is only one spatial orbital $\phi(\mathbf{r})$, but we fill the system with three bosons of spin S = 2. How many independent three-particle states exist in this system?
- (c) How many spin- $\frac{1}{2}$ fermions or spin- $\frac{3}{2}$ fermions could one place in one spatial orbital $\phi(\mathbf{r})$? Write down the Slater determinant for the second case. State explicitly the normalization factor.