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1. Boson and fermion operators

Let b and f' be the creation operators of a boson and a fermion, respectively. We write
[...] for the commutator and {...} for the anti-commutator. Calculate the following
expressions:

(a) [bTb,b1] and {fTf, T}
(b) [bTb, b} and {fo,f}

(c) [e‘b”’, b] (hint: expand exponential in power series)
(@ {5}
Solution:
(a) For the bosons, we use [bf,b1] = 0 and [b,b(] =
[bTb,bT] = 0" [b,b"] + [bF, '] b= b
=0, and {f f=1
PRy =+ () f== () f+ 11 =

For the fermions, we use the Pauli principle, i.e. ( T)2

(b)
[b'0,6] = bT [b,b] + [b7,0] b= —b

F1rfy =P+ ffif=-fr+f=f

(c) We express the exponential function as a power series:

o] =30 CE iy

— n!
To evaluate [(bTb)n , b}, we show that
(b')" b=10b(bTb—1)" . (1)
This is true for n = 0. Going from n to n + 1, we find
(b'0)" b =blob (b1o—1)" = b (b6 —1) Blo—1)"=b(b'b—1)"", (2
which proves Eq. (1). Thus,
[('0)" 0] =b (b6 —1)" — b (b'b)"
Inserting this in the series expansion, we find

[e‘b-’-b, b} = e V! _ pe b = (e — 1)be_bTb (3)



()

We use the series expansion as in the previous task, but for fermions we use
2 . 2
(1) =1 fr==UN rP+rir=r7

and thereby ( fif )n = fTf. Recall that fTf is the number operator, which can only
yield 1 or 0 for fermions. We obtain

{errg) = SER W -+ X SR

2. Many-particle quantum states

We consider a system where the (normalized) single-particle orbitals ¢, (r) are known,
where r denotes the position coordinate.

(a)

Let the system be populated by three identical spinless bosons in the states A;, A,
As. Write down the normalized three-particle wave-function 1y, x,x,(r1, r2, r3) with
proper bosonic symmetry! Beware that Ai, Ay, A3 are not necessarily different and
distinguish all possible cases.

Solution: There are three cases, depending on the number of different occupied
single-particle states. In each case, the three-particle wavefunction must be con-
structed as a symmetric linear combination of all possible permutations of single-
particle states, such that ¢ is invariant under particle exchange.

(i) three different states, A\; # Ay # A3 # A\

Ya; 2o (1, T2, T3) = \}6 Dy (Y1) Py (T2) Dy (T3) 4 D, (T1) P, (13) P4 (T2)

02 (T2) P25 (T1) P25 (T3) + O, (T2) D2, (T3) D2, (T1)
6 (13) 0 (1), (1) + O, (1), (2) 62, (1) |

(ii) two different states (two particles in the same state), w.l.o.g. A\; = Ay # A3

Ya a0 (T1, T, T3) = \}?; D, (T1) P, (T2) D, (T3)+Dr, (1) P, (T3) D, (T2)

0, (12) 0, (13) 62, (1) |
(ii) all particles occupy the same state, \j = Ay = A3
¢>\17A1,>\1 (I‘l, r2, 1‘3) = ¢n (r1)¢>\1 (r2)¢>\1 (1‘3)

Now assume that there is only one spatial orbital ¢(r), but we fill the system with
three bosons of spin S = 2. How many independent three-particle states exist in
this system?

Solution: Now the single-particle states gain a spin quantum number, namely
o€ {—2,—1,0,1,2}. Thus, one spatial orbital yields 5 distinct states. There are
three cases depending on how many of the bosons have the same o:



()

(i) o1 # 09 # 03 # o1: There are (g = 10 possibilities to distribute the bosons on

the different spin states. This equals the amount of independent three-particle
states.

(ii) o1 = 09 # 03: 5 possibilities for oy times 4 possibilities to pick a different o3,
thus 20 independent three-particle states.

(i) 01 = 09 = 03: 5 distinct states.

In total, there are 35 independent three-boson wavefunctions.

How many spin—% fermions or spin—% fermions could one place in one spatial orbital
¢(r)? Write down the Slater determinant for the second case. State explicitly the
normalization factor.

Solution: Only two spin—% fermions (e.g., electrons) fit in one orbital with oy =1
and oo =/, respectively. For spin—% fermions, o € {—%, —%, %, %} Thus, up to 4 such
fermions can exist in the system without violation of the Pauli principle. Indicating
the spin part of the single-particle states by x,, the corresponding four-fermion

wavefunction can be expressed in terms of the Slater determinant

Y(r101, 1202, 1303,1404) = ¢(r1)P(r2)e(r3)o(ra) X
x-3(01) x_1(0) xa(o) xz(on)
CX_g(@) X_%(Uz) X%(@) Xg(@)
ng(U:S) 9@%(‘73) X%(Uz) Xg(Ua)
X_g(04) X_%(Uzl) X%(M) Xg(04)
1

with the normalization factor €' = —.

N



