INSTITUTE FOR THEORETICAL CONDENSED MATTER PHYSICS

Condensed Matter Theory I WS 2022/2023

Prof. Dr. A. Shnirman	Solutions to sheet 0
Dr. D. Shapiro, H. Perrin	Tutorial: 27.10.2022

1. Boson and fermion operators

Let b^{\dagger} and f^{\dagger} be the creation operators of a boson and a fermion, respectively. We write $[\ldots]$ for the commutator and $\{\ldots\}$ for the anti-commutator. Calculate the following expressions:

(a) $[b^{\dagger}b, b^{\dagger}]$ and $\{f^{\dagger}f, f^{\dagger}\}$ (b) $[b^{\dagger}b, b]$ and $\{f^{\dagger}f, f\}$ (c) $[e^{-b^{\dagger}b}, b]$ (hint: expand exponential in power series) (d) $\{e^{-f^{\dagger}f}, f\}$

Solution:

(a) For the bosons, we use $[b^{\dagger}, b^{\dagger}] = 0$ and $[b, b^{\dagger}] = 1$:

$$\left[b^{\dagger}b, b^{\dagger}\right] = b^{\dagger}\left[b, b^{\dagger}\right] + \left[b^{\dagger}, b^{\dagger}\right]b = b^{\dagger}$$

For the fermions, we use the Pauli principle, i.e. $(f^{\dagger})^2 = 0$, and $\{f, f^{\dagger}\} = 1$:

$$\left\{f^{\dagger}f, f^{\dagger}\right\} = f^{\dagger}ff^{\dagger} + \left(f^{\dagger}\right)^{2}f = -\left(f^{\dagger}\right)^{2}f + f^{\dagger} = f^{\dagger}$$

(b)

$$\begin{bmatrix} b^{\dagger}b, b \end{bmatrix} = b^{\dagger} \begin{bmatrix} b, b \end{bmatrix} + \begin{bmatrix} b^{\dagger}, b \end{bmatrix} b = -b$$
$$\{f^{\dagger}f, f\} = f^{\dagger}f^{2} + ff^{\dagger}f = -f^{\dagger}f^{2} + f = f$$

(c) We express the exponential function as a power series:

$$\left[e^{-b^{\dagger}b},b\right] = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left[\left(b^{\dagger}b\right)^n,b\right]$$

To evaluate $[(b^{\dagger}b)^n, b]$, we show that

$$\left(b^{\dagger}b\right)^{n}b = b\left(b^{\dagger}b - 1\right)^{n}.$$
(1)

This is true for n = 0. Going from n to n + 1, we find

$$(b^{\dagger}b)^{n+1}b = b^{\dagger}bb(b^{\dagger}b-1)^{n} = b(b^{\dagger}b-1)(b^{\dagger}b-1)^{n} = b(b^{\dagger}b-1)^{n+1}, \quad (2)$$

which proves Eq. (1). Thus,

$$\left[\left(b^{\dagger}b\right)^{n},b\right] = b\left(b^{\dagger}b-1\right)^{n} - b\left(b^{\dagger}b\right)^{n}.$$

Inserting this in the series expansion, we find

$$\left[e^{-b^{\dagger}b}, b\right] = be^{-b^{\dagger}b+1} - be^{-b^{\dagger}b} = (e-1)be^{-b^{\dagger}b}$$
(3)

(d) We use the series expansion as in the previous task, but for fermions we use

$$(f^{\dagger}f)^{2} = f^{\dagger}ff^{\dagger}f = -(f^{\dagger})^{2}f^{2} + f^{\dagger}f = f^{\dagger}f$$

and thereby $(f^{\dagger}f)^n = f^{\dagger}f$. Recall that $f^{\dagger}f$ is the number operator, which can only yield 1 or 0 for fermions. We obtain

$$\begin{cases} e^{-f^{\dagger}f}, f \end{cases} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left\{ \left(f^{\dagger}f\right)^n, f \right\} = \{1, f\} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \left\{f^{\dagger}f, f\right\} \\ = 2f + \frac{1-e}{e}f = \frac{e+1}{e}f$$

2. Many-particle quantum states

We consider a system where the (normalized) single-particle orbitals $\phi_{\lambda}(\mathbf{r})$ are known, where \mathbf{r} denotes the position coordinate.

(a) Let the system be populated by three identical spinless bosons in the states λ_1 , λ_2 , λ_3 . Write down the normalized three-particle wave-function $\psi_{\lambda_1\lambda_2\lambda_3}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ with proper bosonic symmetry! Beware that $\lambda_1, \lambda_2, \lambda_3$ are not necessarily different and distinguish all possible cases.

Solution: There are three cases, depending on the number of *different* occupied single-particle states. In each case, the three-particle wavefunction must be constructed as a symmetric linear combination of all possible permutations of single-particle states, such that ψ is invariant under particle exchange.

(i) three different states, $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \lambda_1$

$$\begin{split} \psi_{\lambda_1,\lambda_2,\lambda_3}(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) &= \frac{1}{\sqrt{6}} \Big[\phi_{\lambda_1}(\mathbf{r}_1)\phi_{\lambda_2}(\mathbf{r}_2)\phi_{\lambda_3}(\mathbf{r}_3) + \phi_{\lambda_1}(\mathbf{r}_1)\phi_{\lambda_2}(\mathbf{r}_3)\phi_{\lambda_3}(\mathbf{r}_2) \\ &+ \phi_{\lambda_1}(\mathbf{r}_2)\phi_{\lambda_2}(\mathbf{r}_1)\phi_{\lambda_3}(\mathbf{r}_3) + \phi_{\lambda_1}(\mathbf{r}_2)\phi_{\lambda_2}(\mathbf{r}_3)\phi_{\lambda_3}(\mathbf{r}_1) \\ &+ \phi_{\lambda_1}(\mathbf{r}_3)\phi_{\lambda_2}(\mathbf{r}_1)\phi_{\lambda_3}(\mathbf{r}_2) + \phi_{\lambda_1}(\mathbf{r}_3)\phi_{\lambda_2}(\mathbf{r}_2)\phi_{\lambda_3}(\mathbf{r}_1) \Big] \end{split}$$

(ii) two different states (two particles in the same state), w.l.o.g. $\lambda_1 = \lambda_2 \neq \lambda_3$

$$\psi_{\lambda_1,\lambda_1,\lambda_3}(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) = \frac{1}{\sqrt{3}} \Big[\phi_{\lambda_1}(\mathbf{r}_1)\phi_{\lambda_1}(\mathbf{r}_2)\phi_{\lambda_3}(\mathbf{r}_3) + \phi_{\lambda_1}(\mathbf{r}_1)\phi_{\lambda_1}(\mathbf{r}_3)\phi_{\lambda_3}(\mathbf{r}_2) + \phi_{\lambda_1}(\mathbf{r}_2)\phi_{\lambda_1}(\mathbf{r}_3)\phi_{\lambda_3}(\mathbf{r}_1) \Big]$$

(ii) all particles occupy the same state, $\lambda_1 = \lambda_2 = \lambda_3$

$$\psi_{\lambda_1,\lambda_1,\lambda_1}(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) = \phi_{\lambda_1}(\mathbf{r}_1)\phi_{\lambda_1}(\mathbf{r}_2)\phi_{\lambda_1}(\mathbf{r}_3)$$

(b) Now assume that there is only one spatial orbital $\phi(\mathbf{r})$, but we fill the system with three bosons of spin S = 2. How many independent three-particle states exist in this system?

Solution: Now the single-particle states gain a spin quantum number, namely $\sigma \in \{-2, -1, 0, 1, 2\}$. Thus, one spatial orbital yields 5 distinct states. There are three cases depending on how many of the bosons have the same σ :

- (i) $\sigma_1 \neq \sigma_2 \neq \sigma_3 \neq \sigma_1$: There are $\begin{pmatrix} 5\\ 3 \end{pmatrix} = 10$ possibilities to distribute the bosons on the different spin states. This equals the amount of independent three-particle states.
- (ii) $\sigma_1 = \sigma_2 \neq \sigma_3$: 5 possibilities for σ_1 times 4 possibilities to pick a different σ_3 , thus 20 independent three-particle states.
- (iii) $\sigma_1 = \sigma_2 = \sigma_3$: 5 distinct states.

In total, there are 35 independent three-boson wavefunctions.

(c) How many spin- $\frac{1}{2}$ fermions or spin- $\frac{3}{2}$ fermions could one place in one spatial orbital $\phi(\mathbf{r})$? Write down the Slater determinant for the second case. State explicitly the normalization factor.

Solution: Only two spin- $\frac{1}{2}$ fermions (e.g., electrons) fit in one orbital with $\sigma_1 = \uparrow$ and $\sigma_2 = \downarrow$, respectively. For spin- $\frac{3}{2}$ fermions, $\sigma \in \{-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\}$. Thus, up to 4 such fermions can exist in the system without violation of the Pauli principle. Indicating the spin part of the single-particle states by χ_{σ} , the corresponding four-fermion wavefunction can be expressed in terms of the Slater determinant

$$\psi(\mathbf{r}_{1}\sigma_{1},\mathbf{r}_{2}\sigma_{2},\mathbf{r}_{3}\sigma_{3},\mathbf{r}_{4}\sigma_{4}) = \phi(\mathbf{r}_{1})\phi(\mathbf{r}_{2})\phi(\mathbf{r}_{3})\phi(\mathbf{r}_{4}) \times \\ C \begin{vmatrix} \chi_{-\frac{3}{2}}(\sigma_{1}) & \chi_{-\frac{1}{2}}(\sigma_{1}) & \chi_{\frac{1}{2}}(\sigma_{1}) & \chi_{\frac{3}{2}}(\sigma_{1}) \\ \chi_{-\frac{3}{2}}(\sigma_{2}) & \chi_{-\frac{1}{2}}(\sigma_{2}) & \chi_{\frac{1}{2}}(\sigma_{2}) & \chi_{\frac{3}{2}}(\sigma_{2}) \\ \chi_{-\frac{3}{2}}(\sigma_{3}) & \chi_{-\frac{1}{2}}(\sigma_{3}) & \chi_{\frac{1}{2}}(\sigma_{3}) & \chi_{\frac{3}{2}}(\sigma_{3}) \\ \chi_{-\frac{3}{2}}(\sigma_{4}) & \chi_{-\frac{1}{2}}(\sigma_{4}) & \chi_{\frac{1}{2}}(\sigma_{4}) & \chi_{\frac{3}{2}}(\sigma_{4}) \end{vmatrix}$$

with the normalization factor $C = \frac{1}{\sqrt{4!}}$.