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1. Boson and fermion operators

Let b† and f † be the creation operators of a boson and a fermion, respectively. We write
[. . .] for the commutator and {. . .} for the anti-commutator. Calculate the following
expressions:

(a)
[
b†b, b†

]
and

{
f †f, f †}

(b)
[
b†b, b

]
and

{
f †f, f

}
(c)

[
e−b†b, b

]
(hint: expand exponential in power series)

(d)
{
e−f†f , f

}
Solution:

(a) For the bosons, we use
[
b†, b†

]
= 0 and

[
b, b†

]
= 1:[

b†b, b†
]
= b†

[
b, b†

]
+
[
b†, b†

]
b = b†

For the fermions, we use the Pauli principle, i.e.
(
f †)2 = 0, and

{
f, f †} = 1:{

f †f, f †} = f †ff † +
(
f †)2 f = −

(
f †)2 f + f † = f †

(b) [
b†b, b

]
= b† [b, b] +

[
b†, b

]
b = −b{

f †f, f
}
= f †f 2 + ff †f = −f †f 2 + f = f

(c) We express the exponential function as a power series:[
e−b†b, b

]
=

∞∑
n=0

(−1)n

n!

[(
b†b

)n
, b
]

To evaluate
[(
b†b

)n
, b
]
, we show that(

b†b
)n
b = b

(
b†b− 1

)n
. (1)

This is true for n = 0. Going from n to n+ 1, we find(
b†b

)n+1
b = b†bb

(
b†b− 1

)n
= b

(
b†b− 1

) (
b†b− 1

)n
= b

(
b†b− 1

)n+1
, (2)

which proves Eq. (1). Thus,[(
b†b

)n
, b
]
= b

(
b†b− 1

)n − b
(
b†b

)n
.

Inserting this in the series expansion, we find[
e−b†b, b

]
= be−b†b+1 − be−b†b = (e− 1)be−b†b (3)



(d) We use the series expansion as in the previous task, but for fermions we use(
f †f

)2
= f †ff †f = −

(
f †)2 f 2 + f †f = f †f

and thereby
(
f †f

)n
= f †f . Recall that f †f is the number operator, which can only

yield 1 or 0 for fermions. We obtain{
e−f†f , f

}
=

∞∑
n=0

(−1)n

n!

{(
f †f

)n
, f

}
= {1, f}+

∞∑
n=1

(−1)n

n!

{
f †f, f

}
= 2f +

1− e

e
f =

e+ 1

e
f

2. Many-particle quantum states

We consider a system where the (normalized) single-particle orbitals ϕλ(r) are known,
where r denotes the position coordinate.

(a) Let the system be populated by three identical spinless bosons in the states λ1, λ2,
λ3. Write down the normalized three-particle wave-function ψλ1λ2λ3(r1, r2, r3) with
proper bosonic symmetry! Beware that λ1, λ2, λ3 are not necessarily different and
distinguish all possible cases.

Solution: There are three cases, depending on the number of different occupied
single-particle states. In each case, the three-particle wavefunction must be con-
structed as a symmetric linear combination of all possible permutations of single-
particle states, such that ψ is invariant under particle exchange.

(i) three different states, λ1 ̸= λ2 ̸= λ3 ̸= λ1

ψλ1,λ2,λ3(r1, r2, r3) =
1√
6

[
ϕλ1(r1)ϕλ2(r2)ϕλ3(r3) + ϕλ1(r1)ϕλ2(r3)ϕλ3(r2)

+ϕλ1(r2)ϕλ2(r1)ϕλ3(r3) + ϕλ1(r2)ϕλ2(r3)ϕλ3(r1)

+ϕλ1(r3)ϕλ2(r1)ϕλ3(r2) + ϕλ1(r3)ϕλ2(r2)ϕλ3(r1)
]

(ii) two different states (two particles in the same state), w.l.o.g. λ1 = λ2 ̸= λ3

ψλ1,λ1,λ3(r1, r2, r3) =
1√
3

[
ϕλ1(r1)ϕλ1(r2)ϕλ3(r3)+ϕλ1(r1)ϕλ1(r3)ϕλ3(r2)

+ϕλ1(r2)ϕλ1(r3)ϕλ3(r1)
]

(ii) all particles occupy the same state, λ1 = λ2 = λ3

ψλ1,λ1,λ1(r1, r2, r3) = ϕλ1(r1)ϕλ1(r2)ϕλ1(r3)

(b) Now assume that there is only one spatial orbital ϕ(r), but we fill the system with
three bosons of spin S = 2. How many independent three-particle states exist in
this system?

Solution: Now the single-particle states gain a spin quantum number, namely
σ ∈ {−2,−1, 0, 1, 2}. Thus, one spatial orbital yields 5 distinct states. There are
three cases depending on how many of the bosons have the same σ:



(i) σ1 ̸= σ2 ̸= σ3 ̸= σ1: There are

(
5
3

)
= 10 possibilities to distribute the bosons on

the different spin states. This equals the amount of independent three-particle
states.

(ii) σ1 = σ2 ̸= σ3: 5 possibilities for σ1 times 4 possibilities to pick a different σ3,
thus 20 independent three-particle states.

(iii) σ1 = σ2 = σ3: 5 distinct states.

In total, there are 35 independent three-boson wavefunctions.

(c) How many spin-1
2
fermions or spin-3

2
fermions could one place in one spatial orbital

ϕ(r)? Write down the Slater determinant for the second case. State explicitly the
normalization factor.

Solution: Only two spin-1
2
fermions (e.g., electrons) fit in one orbital with σ1 =↑

and σ2 =↓, respectively. For spin-3
2
fermions, σ ∈ {−3

2
,−1

2
, 1
2
, 3
2
}. Thus, up to 4 such

fermions can exist in the system without violation of the Pauli principle. Indicating
the spin part of the single-particle states by χσ, the corresponding four-fermion
wavefunction can be expressed in terms of the Slater determinant

ψ(r1σ1, r2σ2, r3σ3, r4σ4) = ϕ(r1)ϕ(r2)ϕ(r3)ϕ(r4) ×

C

∣∣∣∣∣∣∣∣∣
χ− 3

2
(σ1) χ− 1

2
(σ1) χ 1

2
(σ1) χ 3

2
(σ1)

χ− 3
2
(σ2) χ− 1

2
(σ2) χ 1

2
(σ2) χ 3

2
(σ2)

χ− 3
2
(σ3) χ− 1

2
(σ3) χ 1

2
(σ3) χ 3

2
(σ3)

χ− 3
2
(σ4) χ− 1

2
(σ4) χ 1

2
(σ4) χ 3

2
(σ4)

∣∣∣∣∣∣∣∣∣
with the normalization factor C =

1√
4!
.


