
Karlsruhe Institute of Technology Institute for Theoretical

Condensed Matter physics

Condensed Matter Theory I WS 2022/2023

Prof. Dr. A. Shnirman Solutions to sheet 1

Dr. D. Shapiro, H. Perrin Tutorial: 03.11.2020

Category A

1. Reciprocal lattice (3 + 5 + 5 + 5 + 2 = 20 points)

(a) Let L be a D-dimensional Bravais lattice and L′ its reciprocal lattice. Show that
(L′)

′
is identical to L.

Solution: Let a⃗i, b⃗i, and c⃗i (with i ∈ {1, . . . , D}) denote the lattice basis vectors
of L, L′, and (L′)

′
, respectively. Given that L′ is the reciprocal lattice of L, and

(L′)
′
the reciprocal lattice of L′, we know that

a⃗i · b⃗j = 2πδij and b⃗i · c⃗j = 2πδij .

Consequently, (⃗ai − c⃗i) · b⃗j = 0 for any i, j. This can only be true if a⃗i = c⃗i for any i,

because the vectors b⃗j form a complete D-dimensional basis. Thus, we have shown
that the lattices L and (L′)

′
are identical.

(b) Construct explicitly the reciprocal lattice of the displayed hexagonal (also called
triangular) Bravais lattice. Each vertex represents an atom.

Solution: In cartesian coordinates, the lattice vectors of the hexagonal lattice
(not to be confused with the honeycomb lattice) are
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a
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)
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where a is the lattice constant. The basis vectors of the reciprocal lattice are
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This is again a hexagonal lattice, but rotated by
π

6
with respect to the original one.



(c) Construct the reciprocal lattice of the honeycomb lattice

Solution: A primitive unit cell of the honeycomb lattice is

a⃗1 =
a
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)
and a⃗2 =

a
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)
,

[⃗
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]T
= 2π [⃗a1, a⃗2]
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(d) Now we turn to three dimensions: Construct the reciprocal lattice of the body-

centered cubic (bcc) Bravais lattice.

a

a

a

Solution: A primitive unit cell of the bcc lattice is given by the vectors
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We find the vectors of the reciprocal lattice by matrix inversion:

[⃗
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]T
= 2π [⃗a1, a⃗2, a⃗3]
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(e) Deduce, without any calculations, the reciprocal lattice of the face-centered cubic
(fcc) lattice.

Solution: The reciprocal lattice of the body-centered cubic lattice corresponds to
the face-centered cubic (fcc) lattice. From question (a), we know that the reciprocal
lattice of the reciprocal lattice is the original lattice itself. Then we deduce, that
the reciprocal lattice of the face-centered cubic lattice is the body-centered cubic
lattice:
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Category B

2. Born-Oppenheimer approximation (5 + 10 + 15 = 30 points)

(a) Explain in words what the Born-Oppenheimer approximation is and why it is im-
portant when dealing with the full solid-state Hamiltonian.

Solution: The Born-Oppenheimer approximation exploits that heavy particles
move much slower than light particles. Therefore, the problem of light masses can
be solved assuming that the heavy masses are static. The heavy masses can be
treated within the effective potential formed by the averaged fast dynamics of light
particles. The approximation is useful to decouple electron and ion dynamics in
solid-state physics, because electrons are much lighter than ions.

(b) Consider the quantized version of the following one-dimensional system: a mass
M is attached to the point x = 0 by a spring of constant k1. A second mass m
is attached to the first mass by a spring of constant k2. The Hamiltonian of this
system is

H =
p21
2M

+
p22
2m

+
1

2
k1x

2
1 +

1

2
k2 (x1 − x2)

2 ,

with quantum operators p1,2, x1,2. Calculate the eigenenergies using the Born-
Oppenheimer approximation, assuming that m ≪ M (you may think of an electron
bound to an ion which oscillates around its crystal position).

Solution: The Hamiltonian is given by Eq. (2b), where now p1, x1 and p2, x2 are
pairs of operators with canonical commutation relations. We can write it as

H = HM +Hm +HM↔m

with

HM = − ℏ2

2M

∂2

∂x2
1

+
1

2
(k1 + k2)x

2
1 ,

Hm = − ℏ2

2m

∂2

∂x2
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+
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2
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2
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HM↔m = −k2x1x2.

Within the Born-Oppenheimer approximation, we first neglect the dynamics of the
large mass M to evaluate the eigenenergies ϵ of the small mass m, i.e., we discard



HM and solve Hm + HM↔m. The coordinate x1 becomes a numerical parameter
(not an operator) in the effective Hamiltonian for m. We find that

Hm +HM↔m = − ℏ2

2m

∂2

∂x̃2
2

+
1

2
k2x̃

2
2 + V (x1) ,

where we have introduced x̃2 = x2 − x1 and the potential V (x1) = −1

2
k2x

2
1, which

is independent of x2 and therefore a constant with respect to the dynamics of m.
The first two terms above form a harmonic oscillator. Using the standard ladder
operators am, a

†
m for this harmonic oscillator, we can write

Hm +HM↔m = ℏωm

(
a†mam +

1

2

)
+ V (x1)

with the frequency

ωm =

√
k2
m

.

Now, we return to the dynamics of M , where we have to include the effective
potential V (x1). Thus, we have to solve the Hamiltonian

HM + V (x1) = − ℏ2

2M
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∂x2
1

+
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2
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2
1 ,

which in this very simple system is again just an harmonic oscillator. We can write
it with ladder operators aM , a†M as

HM + V (x1) = ℏωM

(
a†MaM +

1

2

)
with the frequency

ωM =

√
k1
M

.

The eigenenergies of the full Hamiltonian are

ϵnM ,nm = ℏωM

(
nM +

1

2

)
+ ℏωm

(
nm +

1

2

)
within the Born-Oppenheimer approximation (with eigenvalues nµ of a†µaµ).

(c) Now calculate the eigenenergies exactly, which is still possible in this simple case.
Verify that you get the same result as in (b) if you take the limit m ≪ M .
Hint: You may follow the steps below.

1. Substitute x̃1 = (m1/m2)
1/4x1 and x̃2 = (m2/m1)

1/4x2.

2. Transform to (X1, X2)
T = Rα(x̃1, x̃2)

T, where Rα is a 2×2 rotation matrix with
angle α

3. Determine α such that X1 and X2 decouple.

4. cos(arctanx) = 1/
√
1 + x2, sin(arctanx) = x/

√
1 + x2.

Solution: Simply shifting the coordinate x̃2 = x2 − x1 does not help if x1, p1 are
operators: this would introduce a new term that couples the momentum operators
p1 and p2. The goal of the steps described in the hint is to find a transformation
that removes the mixing terms in both position and momentum.



1. The substitution leads to

H = − ℏ2
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where the momentum terms now have equal coefficients.

2. Explicitly, the transformation reads

X1 = x̃1 cosα + x̃2 sinα, X2 = −x̃1 sinα + x̃2 cosα.

We obtain
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and we used double-angle trigonometric functions for convenience. Note how(
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1

+
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)
is invariant under any orthogonal transformation. Thus, no

mixing is generated in the momentum terms.

3. To remove the term ∝ X1X2, we set

2α = arctan
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.

Thus,
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.

Without the mixing term, the Hamiltonian is just the sum of two harmonic
oscillators, and the eigenfrequencies of the two oscillators can be read off from
the coefficient of either X2

1 or X2
2 (both give the same two solutions, depending

on the sign of ω2
1 − ω2

2):
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It is easy to check that ωM,m from (b) are recovered in the limit m ≪ M , when
k2/M is negligible compared to k2/m.
The exact eigenenergies are

ϵna,nb
= ℏωa

(
na +

1

2

)
+ ℏωb

(
nb +
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2

)
.


