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Category A

1. Rotation symmetry (10 + 5 + 5 = 20 points)

The proof of the Bloch theorem was based on the commutation of the Hamiltonian with
the translation operators TR. In fact, any unitary symmetry can be expressed similarly.
As an example, consider particles in a two-dimensional lattice potential which has Cn

symmetry, i.e. it has an n-fold rotation symmetry (n ∈ {2, 3, 4, 6}).

(a) Assuming spinless particles, express the Cn symmetry in terms of a group of unitary
operators (in a specific representation) that commute with the Hamiltonian.

Solution: We choose the coordinate system such that the rotation center is located
at the origin (more precisely: one possible choice of the rotation center). Rotation
symmetry is present if H(r⃗) = H(Uϕr⃗), where Uϕ is the 2 × 2 rotation matrix

with angle ϕ =
2π

n
. It is convenient to switch from cartesian to polar coordinates:

r⃗ = (x, y) → (r, φ). Then,

H(r, φ) = H

(
r, φ+

2π

n

)
.

This motivates the definition of the operators Rj with j ∈ Zn = {0, . . . , n − 1}
which act on f(r, φ) by

Rjf(r, φ) = f

(
r, φ+

2πj

n

)
.

It is easily shown that R−1
j = R(−j)modn. Let us prove that Rj is unitary i.e.

R†
j = R−1

j :

⟨ϕ1|R−1
j |ϕ2⟩ =

∫
d2r⃗ϕ∗

1(r, φ)R
−1
j ϕ2(r, φ) =

∫
rdrdφϕ∗

1(r, φ)ϕ2

(
r, φ− 2πj

n

)
=

∫
rdrdφ′ϕ∗

1

(
r, φ′ +

2πj

n

)
)ϕ2(r, φ

′) = ⟨ϕ1|R†
j |ϕ2⟩

{Rj} form a group: RiRj = R(i+j) mod n which is Abelian and R0 is the identity
operator. Furthermore, these operators commute with H:

RjH(r, φ)Ψ(r, φ) = H(r, φ+
2πj

n
)Ψ(r, φ+

2πj

n
) = H(r, φ)RjΨ(r, φ) .



(b) Now repeat the task with spin-
1

2
particles.

Solution: Recall that a 360-degree rotation of a spin-
1

2
particle yields a minus sign

in the wave function. Therefore, [H,Rj] = 0 cannot be a sufficient description of
the symmetry. We have to include the spin rotation (more generally: any internal
degrees of freedom) in the symmetry operator. In spin space, a rotation by 2π/n
around the z axis is performed with the operator

r̂ = exp
(
i
π

n
σz

)
= cos

π

n
+ iσz sin

π

n

with the Pauli matrix σz (Prove this if you don’t know it!). The symmetry condition
for the Hamiltonian can then be expressed as

r̂†H(Uϕr⃗)r̂ = H(r⃗)

with the rotation matrix Uϕ, or, using R = R1, with the commutator

[r̂R,H] = 0 .

Note how
r̂n = exp (iπσz) = cos π = −1 ,

such that our rotation operator r̂R will generate the required sign in one full rota-
tion.

(c) Can you label the eigenstates of the Hamiltonian with a rotation eigenvalue cn and
the crystal momentum k at the same time?

Solution: This is only possible when the different symmetries commute mutually.
Translation and rotation do, in general, not commute. Therefore, we can usually
not use cn and k simultaneously as quantum numbers.

However, certain points of the first Brillouin zone (BZ) are invariant under rotation,
i.e., they map onto themselves up to a reciprocal lattice vector. For instance, the
simple square lattice has C4 symmetry. The reciprocal lattice is also the square
lattice. Hence, the first Brillouin zone is quadratic with kx, ky ∈ {−π/a, π/a}. One
corner of the Brillouin zone, e.g., K = (π/a, π/a), is mapped onto another corner

under
π

2
rotation, namely K′ = (−π/a, π/a). On the other hand, all corners are

equivalent: K′ −K = −2π

a
êx, which is a reciprocal lattice vector.

At such special points, all ψK,n are also eigenstates of Rj and can be assigned a
well-defined eigenvalue cn.

Category B

2. Bloch wavefunctions (10 + 5 + 10 + 5 = 30 points)

Consider an infinitely extended one-dimensional system of electrons in a potential of
periodically occurring delta functions. The Hamiltonian is

Ĥ = − ℏ2

2m

∂2

∂x2
+ U

∞∑
n=−∞

δ(x+ na) (1)

with a constant U . This is a simple version of the Kronig-Penney model. It allows us
to study the properties of Bloch states ψk exactly.



(a) Let U > 0. Derive the Bloch wavefunctions and an implicit form of the dispersion
relation E(k) by solving the Schrödinger equation. Start with one unit cell, then
use the Bloch theorem.

Solution: Within one unit cell, e.g. x ∈ (0, a), the potential is zero and the
Schrödinger equation is trivially solved by plane waves

ϕK(x) = AeiKx +Be−iKx

where K > 0. The energy of this state is E = ℏ2K2/(2m).

We know from the Bloch theorem that the general solutions for x ∈ R have the
form

ψk(x) = uk(x)e
ikx

with a lattice-periodic function uk(x). It follows that ψk(x− a) = e−ikaψk(x). Be-
cause ψk(x) = ϕK(x) on the interval (0, a) for some (yet undetermined) parameters
K,A,B, we conclude that

ψk(x+ na) = ϕK(x)e
ikna.

Now we have to ensure the correct behavior of ψk at the boundaries of the unit
cells. On the one hand, continuity of ψk demands that

lim
x→0,x>0

ϕK(x)− e−ika lim
x→a,x<a

ϕK(x) = 0 ,

whereas the derivative of the wavefunction has a finite step at the δ peaks of the
potential,

lim
x→0,x>0

∂ϕK(x)

∂x
− e−ika lim

x→a,x<a

∂ϕK(x)

∂x
=

2m

ℏ2
Uψ(0) .

From these two conditions we obtain the two equations

A+B − e−ika
(
AeiKa +Be−iKa

)
= 0

A−B − e−ika
(
AeiKa −Be−iKa

)
=

2mU

iℏ2K
(A+B) .

This linear system for the coefficients A and B only has a solution if we demand
that K satisfies

cos(Ka) +
mU

ℏ2K
sin(Ka) = cos(ka).

If we express K in terms of the energy E, K(E) =
1

ℏ
√
2mE, this equation defines

implicitly the dispersion relation E(k). If K is chosen such that this condition is
met for a given crystal momentum k, we can determine the ratio of A and B in
the wavefunction ϕK and thereby obtain the exact form of the Bloch state ψk for
x ∈ R:

ψk(x) = eikxCke
−ik(x−na)

[(
eika − e−iKa

)
eiK(x−na) −

(
eika − eiKa

)
e−iK(x−na)

]
=: eikxuk(x) ,



where n = n(x) is chosen such that x − na ∈ (0, a) and Ck is a constant which
finally has to be calculated such that ψk is normalized:

1
!
=

1

a

∫ a

0

dx u∗k(x)uk(x)

= |Ck|2
[∣∣eika − e−iKa

∣∣2 + ∣∣eika − eiKa
∣∣2 − sin(2Ka)

Ka

]
= |Ck|2

[
4 (1− cos(ka) cos(Ka))− sin(2Ka)

Ka

]

⇒ |Ck| =
[
4 (1− cos(ka) cos(Ka))− sin(2Ka)

Ka

]−1/2

The phase of Ck is arbitrary.

(b) Show explicitly that the group velocity in this system is zero at the zone boundaries
in reciprocal space.

Solution: The group velocity follows directly from the dispersion relation

vg(k) =
∂

∂k
E(k) .

We will calculate v−1
g , because we only know the inverse function in the form k(E) =

arccosF (K):

1

vg
=

∂

∂E
k(E) =

(
∂K

∂E

)
∂

∂K
k(K) = −

√
m

ℏ
√
2E

1√
1− F (K)2

∂F (K)

∂K

where
∂F (K)

∂K
=
amU

iℏ2K
cos(Ka)−

[
a+

mU

iℏ2K2

]
sin(Ka) .

At the zone boundary, ka = ±π+2πn ⇒ F (K) = −1. This causes a divergence of
(1−F 2)−1/2, hence vg(ka = ±π) = 0. Note, though, that the divergence is canceled
by ∂KF (K) if we set U = 0.

(c) Use the dispersion relation from (a) to state a condition for which energies are
allowed in this system. In between these bands, energy gaps occur. Derive the
approximate size of the gap between the energetically lowest bands for both the
limit of very weak U and the limit of very strong U .

Solution: The condition for the energies which are possible in this system simply
follows from | cos ka| ≤ 1 in the dispersion relation:∣∣∣∣cos(Ka) + mU

ℏ2K
sin(Ka)

∣∣∣∣ ≤ 1. (∗)

or ∣∣∣∣cos(aℏ√2mE
)
+

√
mU

ℏ
√
2E

sin
(a
ℏ
√
2mE

)∣∣∣∣ ≤ 1 .

Equality holds exactly at the edges of the energy bands. It is easily seen that
Kna = nπ always solves the equation, where n ∈ N is the index of the band in
the reduced zone scheme. Note how Kn alternatingly corresponds to k = 0 (zone
center) or k = ±π/a (zone boundary). If Kn is increased slightly, the left side of



(∗) becomes larger than one. Thus, E(Kn) is the energy of the upper band edge of
the n-th band. The lower band edge can only be approximated.

For large U , we expect narrow bands and large gaps (at low energies, at E → ∞
one will, of course, always recover (quasi-)free particles). Therefore, we linearize
the relation within the band for K = Kn − κ (κ > 0) to estimate the position of
the lower band edge, ∣∣∣∣1− mU

ℏ2Kn

κa

∣∣∣∣ ≤ 1 ,

and the other edge follows from

mU

ℏ2Kn

κa = 2 ⇒ κ =
2πnℏ2

a2mU
.

We obtain the gap between the bands n and n+ 1 to leading order in U−1:

E(Kn+1 − κn+1)− E(Kn) =
ℏ2π2(n+ 1)2

2ma2

(
1− 4ℏ2

amU

)
− n2ℏ2π2

2ma2

=
ℏ2π2(2n+ 1)

2ma2
− 2ℏ4π2(n+ 1)2

m2a3U

For small U , we expect small gaps therefore an expansion of (∗) around Kn will
capture the lower edge of the next band:

1− 1

2
(κa)2 +

amU

ℏ2nπ
κa = 1

κ =
2mU

ℏ2nπ
and the gap is

E(Kn + κn)− E(Kn) =
ℏ2

2m
(2Knκ) +O

(
κ2
)
= 2

U

a
.

(d) Now let U < 0. Obtain the (implicit) dispersion relation for states with E < 0.

Solution: The Schrödinger equation is solved exactly as in (a), but for E < 0 we
have to insert an imaginary wave number K in the ansatz ϕK , corresponding to
evanescent wavefunctions. The same steps as before lead to the implicit dispersion
relation

mU

iℏ2K
sinh (iKa) + cosh (iKa) = cos(ka)


