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Category A

1. Nearly free electrons

The one-dimensional Hamiltonian
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describes electrons in a periodic cos?-shaped potential with lattice constant a. We
assume in this task that the strength U of the potential is sufficiently small to be
treated perturbatively, i.e., within the approximation of nearly free electrons which was
discussed in the lecture. We will now derive the band structure £, j of this model.

(a) Perform perturbation theory to second order for crystal momenta at which the

unperturbed solutions are non-degenerate.

(b) Now calculate the leading-order corrections to the electron energies at the degener-
acy points in reciprocal space. Draw a sketch of the entire band structure.

Solution:

(a) The Schrodinger equation can be written in Fourier space in the form of Eq. (55)
in the lecture notes, whereby the simple potential in this task has only three non-

zero Fourier coefficients: Ug—g = 2 Uc=2r/a = Ug=—2z/a = T The Schrodinger
equation now reads
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where we have suppressed the band index n for brevity. In the plane-wave ba-
sis, the reciprocal space states |k) with the components ¢, = cri2jr/a. Then the

Hamiltonian has the matrix elements
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Now we call the first term H° (free Hamiltonian) and the rest H (perturbation)
to rewrite the Schrodinger equation in a way susceptible to standard perturbation

theory,

[Ho(k;) + H} k) = B, |k)



for all k € 1st BZ. The free solutions are obviously
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(now including the band index n again), where the plane-wave basis states are
already proper eigenstates |n, k),. The free-electron bands have degeneracies at the

T
Bragg planes k£ € —Z and are non-degenerate otherwise. Here we calculate the
a

energy corrections in the latter case. We will return to degeneracies in (b).

First-order corrections:
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This is the expected shift of the spectrum by Uy = U/2, which equals the mean

value of the potential. We could remove this term by changing our energy scale.
Second-order corrections:
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In total, we obtain the energy
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Let k = jm/a. Then the unperturbed bands Egk and E?mk are degenerate if d =:
n—m = 2n+j (only two-fold degeneracy is possible). We have to diagonalize H in
the degenerate subspace. If |d| > 2, H does not contribute, such that H is already
diagonal. In this case, the corrections are the same as in the non-degenerate case
and the degeneracy persists under the perturbation (which is a peculiarity of this
specific potential). Now consider d = £1. The Hamiltonian in the two-dimensional

subspace of energy Egk = Egil,k has the matrix form
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Thus, at k = jn/a with odd j the energetically lowest degeneracy at

h2 72
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is lifted and the band gap is A = |U|/2. A sketch of the overall band structure
(extended zone scheme) is shown in Fig. 1.
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Figure 1: Qualitative sketch of the band structure for nearly free electrons in the cos®
potential.

Category B

2. k - p-Method (10 + 10 = 20 points)
We derived the following Schrodinger equation in the lecture,

—
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Here, uz () is the periodic part of the Bloch wave function, ¢y (7) = uk(F')e“Z’?. The
periodic crystal potential is U(7) = U(7 + R), m is the mass of an electron, and k is
the quasi-momentum (wave vector) in the first Brillouin zone. We assume that this
equation has been solved for a certain quasi-momentum EO, i.e., all eigenstates u, i (7)
and all eigenenergies £, . are known (n is the band index).

We will calculate now the eigenenergies and eigenstates for a state with quasi-momentum
k = ko + 0k where dk is small. Using perturbation theory and assuming no degeneracy
at kg, calculate:

(a) the group velocity in the band n at the quasi-momentum /;0;
(b) the effective mass tensor in the band n at the quasi-momentum ky.

Solution:

Let us rewrite the Schrodinger equation such that:

(Ho + Vi + Va)uy, = Ejuy,
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using p = —ihV und 0k = k — ko. We suppose that all eigen-functions and energies

are known at k.
H()un,ko — En,koun,ko-



We have seen in the lecture notes that the bloch states form a complete orthgonal basis
states:

/d37” w:n,kl <r>wn2,k2 (7‘) - Vékl,kQ 5”1%27

where V' the volume of the whole crystal. It follows for the u-functions:
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where v is the volume of an elementary cell (E.C.) ist. We should renormalized the
u-function such that:
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The energie correction at first order in dk is only corrected by the V; potential
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Therefore, we obtain for the group velocity:

1
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The second order correction of the energie in 0k should have one contribution from the
potential V; up to the second order of the perturbation theory and another contribution
from the potential V5 at first order of the perturbation theory coming (because it is
quadratic in Jk):
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Therefore we obtain for the mass tensor:
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. Wannier functions (10 points)

The Wannier functions w,(7) are given by
d*k
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where 1, (7)) are Bloch states and V, is the volume of the unit cell. Show that the

Wannier functions {w,, (7 — ﬁ), n=1,23,..., R € Bravais lattice} form a complete
orthonormal system.



Solution: We use that the Bloch functions are a complete orthonormal system.
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