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Category A

1. Van Hove singularity on a square lattice (3 + 5 + 2 + 10 = 20 points)

(a) Determine the tight-binding hamiltonian of the square lattice where we consider
only nearest neighbour hopping, one orbital per atom and isotropic coupling.

Solution: A general tight-binding hamiltonian is written as:

H =
∑

m1,m2,R1,R2

tm1,m2(R1 −R2) |m1R1⟩ ⟨m2R2| , (∗)

where Ri are Bravais lattice vectors and mi denote possible internal indices. In the case
of the exercise we have one atom per cell with one orbital, there is no need of internal
indice mi. The Bravais vectors of the square lattice are

a1 =

(
a
0

)
, a2 =

(
0
a

)
.

We set in the following the lattice constant a = 1. We also consider isotropic and
nearest neighbour hopping denoted by −t. The Hamiltonian reads :

H = −t
∑
x,y

|x, y + 1⟩ ⟨x, y|+ |x+ 1, y⟩ ⟨x, y|+ h.c.

where (x, y) are the cartesian coordinate of the Bravais vectors .

(b) Find the band structure (dispersion relation) ϵ(k⃗) of this Hamiltonian.

Solution: In this notation, the Bloch states are given by ψkx,ky =
∑
x,y

ei(kxx+kyy) |x, y⟩

and satisfies Hψkx,ky = ϵ(kx, ky)ψkx,ky . Projecting this equation onto a bra ⟨x, y| gives:

ϵ(kx, ky) = −2t (cos(kx) + cos(ky))

(c) Determine the iso-energy line at ϵ = 0 in the Brillouin zone and plot a sketch of it.

Solution: When ϵ = 0, the above equation equation becomes

cos(ky) = − cos(kx) = cos(±π + kx) ⇒ ky =

{
±π + kx
∓π − kx

kx and ky runs into the Brillouin zone [−π, π]. When kx ∈ [−π, 0] then ky = ±(π+ kx),
when kx ∈ [0, π], ky = ±(−π + kx). The iso-energy E = 0 is the red square on the



figure below.
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(d) Show that the density of states ρ(E) =
1

(2π)2

∫
1 B.Z

dk⃗ δ(E − ϵ(k⃗)) at the energy

E = 0 diverges. What are the points in the Brillouin zone which cause this divergence?
Expand the dispersion relation around one of these points and show that the divergence
is logarithmic. Compute the group velocity at these peculiar points.

Solution:

ρ(E) =
1

(2π)2

∫ π

−π

dkx

∫ π

−π

dky δ(E + 2t(cos kx + cos ky))

=
1

π2

∫ π

0

dkx

∫ π

0

dky δ(E + 2t(cos kx + cos ky))

=
1

2π2t

∫ π

0

dkx

∫ π

0

dky δ(Ẽ + cos kx + cos ky)

where Ẽ =
E

2t
. Let us change the variable and define px = − cos kx and py = − cos ky

ρ(E) =
1

2π2t

∫ 1

−1

dpx√
1− p2x

∫ 1

−1

dpy√
1− p2y

δ(Ẽ − px − py)

The delta function imposes py = Ẽ − px and −1 ≤ py ≤ 1 so Ẽ − 1 ≤ px ≤ 1 + Ẽ. We
also have −1 ≤ px ≤ 1, if we consider Ẽ ≥ 0 we obtain

ρ(E) =
1

2π2t

∫ 1

Ẽ−1

dpx√
1− p2x

1√
1− (Ẽ − px)2

When E ̸= 0, (here E > 0), the integral can be evaluated and gives a finite value

(because the divergence of the function under the integral diverges as ∝
ϵ→0

1√
ϵ
When we

try to evaluate this function at E = 0 we have that:

ρ(0) =
1

2π2t

∫ 1

−1

dpx
1− p2x

The divergence of the integral is due to the point p2x = 1 → kx = 0,±π. We deduce
from question (c) that the points located at such kx and on the iso-energy E = 0 are



(kx, ky) = (−π, 0) (or equivalently (π, 0) due to the periodicity of the Brillouin zone
and (kx, ky) = (0, π) or (kx, ky) = (0,−π). They are the corner of the square iso-energy
E = 0. One way to compute the behavior of the divergence around E = 0 is to
expand the dispersion relation around these problematic points in the Brillouin zone.
We expand the dispersion relation around the points (k0x, k

0
y) = (0,±π):

ϵ(kx, ky) ∼ t(k2x − k̃2y)

where k̃y = ky − π

ρ(E → 0) ≈ C +
1

(2π)2

∫ ϵ

−ϵ

dkx

∫ ϵ

−ϵ

dk̃yδ
(
E − tk2x + tk̃2y

)
= C +

1

2π2t

∫ ϵ′

0

dk̃y√
2Ẽ + k̃2y

≈ C +
1

2π2t

∫ ϵ′√
2Ẽ

0

dk′y√
1 + k′y

2
= C +

asinh(ϵ′/
√
2Ẽ)

2π2t

where C denotes the regular part of the integral, ϵ′ =
√
ϵ2 − 2Ẽ. We integrate the

diverging part in the vicinity of these points but out of the iso-energy E = 0 (because
we know that here the integral does not diverge). Furthermore, sinh(x) ∼

x→∞
ex →

asinh(y) ∼
y→∞

ln(y). We obtain:

ρ(E) ∼
E→0

1

4π2t
ln

t

E

The group velocity is :


vx =

∂ϵ

∂kx
= 2t sin kx

vy =
∂ϵ

∂ky
= 2t sin ky

. At these points of the Brillouin zone

it evaluates to 0.

2. Bloch oscillations (10 points)

Consider the semiclassical dynamics of electrons in one one-dimensional lattice in the
tight-binding approach (with the nearest neighbors hopping amplitude γ and one state
per unit cell). Find the energy spectrum ϵk. Then consider the effect of a homogeneous

and constant electric field E solving the Bloch’s equation of motion,
d

dt
k = −eE.

Show that the location of an electron oscillates. Find the period and amplitude of the

oscillations. Hint: use that the velocity, v ≡ dr

dt
, satisfies the relation v =

∂ϵk
∂k

.

Solution:

The dispersion relation of 1D band is:

ϵk = −2γ cos(ka)

The bloch equation of motion gives
d

dt
k = −eE .Therefore, k = −eEt+ k0.

Moreover we have:
d

dt
r ≈ ∂ϵk

∂k
,



Therefore the velocity is:
v = 2γa sin(−eEta+ k0a)

and the position is

r =
2γ

eE
cos(eEta+ k0a) + r0.

The electron oscillates with an amplitude
2γ

eE
and a period

2π

eEa
.

Category B

3. Band structure of graphene (7 + 8 + 5 = 20 points)

Graphene is a two-dimensional material consisting
of a honeycomb lattice of carbon atoms. We will
study some of its fundamental electronic proper-
ties within the tight-binding approximation, where
we restrict the model to nearest-neighbor hopping
and a single orbital per atom with isotropic cou-
plings. The honeycomb lattice is not a Bravais lat-
tice. Note that each unit cell contains two atoms –
let us denote them as site A and site B. These are
shown in different colors in the sketch (although
all atoms are carbon atoms). It turns out that all
nearest neighbors of atoms at A-sites are located
at B-sites, and vice versa. A lattice with this prop-
erty is also called a bipartite lattice.

2.
46

Aë

(a) Determine the tight-binding Hamiltonian of graphene. Find the Bloch states and
express the Hamiltonian in reciprocal space in the basis of the Bloch states.
Hint: You will be able to write the Hamiltonian as a 2× 2 matrix.

Solution: The tight-binding Hamiltonian is, in general,

H =
∑

m1,m2,R1,R2

tm1,m2(R1 −R2) |m1R1⟩ ⟨m2R2| , (∗)

where Ri are Bravais lattice vectors and mi ∈ {A,B} internal indices specifying the
atoms within the unit cell. Now we apply this on the honeycomb lattice. Let us
denote the nearest-neighbor spacing a (Not the lattice constant in this case!).

a1

a2
Basis

A B



With the restriction to nearest-neighbor hopping, we keep only tAB(0), tAB(R1), tAB(R2).
The Bravais vectors of the lattice are

a1 =

√
3

2

(√
3

−1

)
a , a2 =

√
3

2

(√
3
1

)
a .

All distances between A and B atoms are equal, thus

tAB(0) = tBA(0) = tAB(a1) = tAB(a2) = tBA(−a1) = tBA(−a2) ≡ −t .

The Bloch states are given by ψk =
∑
R

eikR
∑
m

bm |mR⟩. Inserting them into the

Schrödinger equation, Hψk = Ekψk we find∑
m1,R

eikRtm1,m2(R)bm1 = Ekbm2 .

In our case, this can be written in matrix form,

hk

(
bA
bB

)
= Ek

(
bA
bB

)
,

where

∆k = 1 + e−ika1 + e−ika2 and hk =

(
0 −t∆k

−t∆∗
k 0

)
.

The coefficients bm of the Bloch states are given by the eigenfunctions of the (first-
quantized) Hamiltonian hk:(

bA
bB

)
=

1√
2|∆k|

( √
∆k

∓
√

∆∗
k

)
.

(b) Now use the Hamiltonian which you found in (a) to calculate the band structure.
Show that there are special points in the Brillouin zone where the band gap vanishes.
Show that the spectrum is approximately linear in proximity to these points.

Solution: The eigenvalues of the Hamiltonian are

Ek = ±t
√

∆k∆∗
k,

|∆k|2 = 1 + 4 cos(3kxa/2) cos
(√

3kya/2
)
+ 4 cos2(

√
3kya/2) (1)

= 3 + 4 cos(3kxa/2) cos
(√

3kya/2
)
+ 2 cos

(√
3kya

)
.

Gap closing occurs when
Ek = 0 ⇒ ∆k = 0

From Eq. (1), you can solve the second degree equation

0 = 1 + 4XY + 4Y 2



where −1 ≤ X = cos(3kxa/2) ≤ 1 and −1 ≤ Y = cos
(√

3kya/2
)
≤ 1. You find

Ysol =
−X ± i

√
1−X2

2

which is real only when X = ±1. Eventully at the end you find gap closing at the
corners K and K ′ of the Brillouin zone:

K =
2π

3a

(
1,

1√
3

)
, K′ =

2π

3a

(
1,− 1√

3

)
.

The other corners are equivalent to either K or K ′ due to symmetry (i.e., identical
up to a reciprocal lattice vector).

The expansion at the K point yields

k = K+ q,

∆k ≈ −ia3
2
e−iKxa(qx + iqy).

The constant phase factor −ie−iKxa does not matter. Therefore, the low-energy
Hamiltonian close to K reads

H = v

(
0 qx + iqy

qx − iqy 0

)
, v =

3

2
ta.

The Hamiltonian at K′ is derived analogously. Owed to its linearity in momentum,
the low-energy Hamiltonian of graphene is often referred to as a two-dimensional
massless Dirac Hamiltonian: it is mathematically equivalent to the Hamiltonian of a
relativistic fermion without a mass (recall that, in 2D, the Dirac algebra reduces to
Pauli matrices). However, in graphene and other Dirac materials the speed of light
is replaced by the Fermi velocity vF ≪ c. It is remarkable that quasi-relativistic
physics emerges in an entirely non-relativistic range of speed!

(c) Now include next-nearest neighbors in the model and recalculate the band structure.
Expand the eigenenergies to second order for momenta close to one of the gap-closing
points found in (b).

Solution: We start again from Eq. (∗), but include next-nearest neighbors (A-A
and B-B hopping terms). The distances to all next-nearest neighbors are equal, but
differ from the nearest-neighbor distance, thus:

tAB(0) = tAB(0) = tAB(a1) = tAB(a2) = tBA(−a1) = tBA(−a2) ≡ −t ,
tAA(±a1) = tAA(±a2) = tAA(±[a1 − a2])

=tBB(±[a1 − a2]) = tBB(±a1) = tBB(±a2) ≡ −t′ .

We arrive at the Hamiltonian 2× 2 matrix

hk = −t
(

0 ∆k

∆∗
k 0

)
− 2t′∆′

k

(
1 0
0 1

)
,

∆′
k = cos(k · a1) + cos(k · a2) + cos[k · (a1 − a2)]



with eigenenergies

Ek = ±t
√

3 + fk − t′fk ,

fk = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
,

The expansion at the corners (q = k−K) leads to:

E±
q ≃ 3t′ ± vF |q| −

[
9t′a2

4
± 3ta2

8
sin(3θq)

]
|q|2 ,

where

θq = arctan

(
qx
qy

)
.


