Condensed Matter Theory I WS 2022/2023

Prof. Dr. A. Shnirman

Sheet 5

Dr. D. Shapiro, Dr. H. Perrin

Tutorial: 01.12.2022

Category A

1. Heisenberg equations of motion in graphene (5+15+10+5+5=40 Points)The effective Hamiltonian operator in the vicinity of one of Dirac points in graphene reads

$$\hat{H} = v(\hat{p}_x \hat{\sigma}_x + \hat{p}_y \hat{\sigma}_y).$$

- (a) The positive branch energy of the dispersion relation around this point is $\epsilon(\vec{k}) = \hbar v \sqrt{k_x^2 + k_y^2}$. Compute the corresponding group velocity.
- (b) Consider the case when an external electromagnetic field $(\phi(\vec{r},t), \vec{A}(\vec{r},t))$ is applied. Then,

$$\vec{p} \rightarrow \vec{p}_{kin} = \vec{p} - (e/c)\vec{A}$$
 , $\hat{H} \rightarrow \hat{H} + e\phi$.

For this case, derive the Heisenberg equations of motion for the operators \vec{p} , \vec{p}_{kin} , \vec{r} , $\hat{\sigma}_x$, $\hat{\sigma}_y$, $\hat{\sigma}_z$.

- (c) Show that by taking the expectation value of the velocity operator, $\langle \psi | \vec{v} | \psi \rangle$ where ψ is a combination of eigenstate only in the positive energy branch, you recover the group velocity found from the classical approach (*Hint: First consider the expectation value of an eigenstate of the Hamiltonian*).
- (d) Calculate the cyclotron mass m_c in graphene as a function of energy ϵ using the relation $m_c = \frac{\hbar^2}{2\pi} \frac{\partial S}{\partial \epsilon}$. Here, $S(\epsilon)$ is an area of 2D orbit in k-space encircled by the particle of the energy $\epsilon(\mathbf{k}) = \hbar v \sqrt{k_x^2 + k_y^2}$.
- (e) Show that the energies of Landau levels in graphene scale as $E_n \propto \sqrt{n}$ in the limit $n \gg 1$. To show it, use the relation $S_n = \frac{A_n}{l_{\rm B}^4}$ between the areas in k- and r- spaces, S_n and A_n , respectively, where $l_{\rm B}$ is the magnetic length (see lecture). For A_n use semiclassical Bohr-Sommerfeld quantization condition.

Category B

2. Cyclotron mass of an anisotropic parabolic dispersion relation (10 points)

Let us consider such a dispersion relation:

$$\epsilon(\mathbf{k}) = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_x} + \frac{k_y^2}{m_y} + \frac{k_z^2}{m_z} \right)$$

Assume now there is a magnetic field along the z-direction $\vec{B} = B\vec{e_z}$. Compute the corresponding cyclotron mass.