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Category A

1. Heisenberg equations of motion in graphene (5 + 15 + 10 + 5 + 5 = 40 Points)

The effective Hamiltonian operator in the vicinity of one of Dirac points in graphene
reads

Ĥ = v(p̂xσ̂x + p̂yσ̂y).

(a) The positive branch energy of the dispersion relation around this point is ϵ(k⃗) =

ℏv
√
k2x + k2y. Compute the corresponding group velocity.

Solution: The group velocity is v⃗g =
1

ℏ
∂ϵ

∂k⃗
= v

k⃗√
k2x + k2y

= v
k⃗

|⃗k|

(b) Consider the case when an external electromagnetic field (ϕ(r⃗, t), A⃗(r⃗, t)) is applied.
Then,

p⃗→ p⃗kin = p⃗− (e/c)A⃗ , Ĥ → Ĥ + eϕ .

For this case, derive the Heisenberg equations of motion for the operators p⃗, p⃗kin, r⃗,
σ̂x, σ̂y, σ̂z.

Solution: The hamiltonian operator submitted to an electromagnetic field can be
rewritten such as:

H = v ([px − (e/c)Ax]σx + [py − (e/c)Ay]σy) + eϕ.

Fields Ax(r, t), Ay(r, t) and ϕ(r, t) depends on r and t. For coordinates we have:

vα = ṙα = (i/ℏ)[H, rα] = (i/ℏ)vσα[pα, rα] = vσα,

where α = x, y.

For the momentum:

ṗα = (i/ℏ)[H, pα] = (−iev/cℏ)
∑
β

σβ[Aβ, pα] + (ie/ℏ)[ϕ, pα]

= (ev/c)
∑
β

σβ∂αAβ − e∂αϕ

= (e/c)
∑
β

vβ (∂αAβ − ∂βAα + ∂βAα)− e∂αϕ

= (e/c)
∑
β

vβ (∂αAβ − ∂βAα) + (e/c)
∑
β

vβ∂βAα − e∂αϕ .



In order to compute (d/dt)pkin we need Ȧα:

Ȧα = (i/ℏ)[H,Aα] + ∂tAα = (iv/ℏ)
∑
β

σβ[pβ, Aα] + ∂tAα

= v
∑
β

σβ∂βAα + ∂tAα =
∑
β

vβ∂βAα + ∂tAα.

We obtain:

ṗkin,α = (e/c)
∑
β

vβ (∂αAβ − ∂βAα)− (e/c)∂tAα − e∂αϕ .

In vector-like form, this translates to

d

dt
pkin = (e/c)v ×B + eE,

where B has only a non vanishing z component and we recover the usual classical
equation of motion for a charged particle under an electromagnetic field.

Eventually, the acceleration is proportional to the time derivative of the Pauli matrices:

v̇x = vσ̇x = (iv/ℏ)[H, σx] = (iv2/ℏ) [py − (e/c)Ay] [σy, σx]

= (2v2/ℏ)pkin,yσz .

v̇y = vσ̇y = (iv/ℏ)[H, σy] = (iv2/ℏ) [px − (e/c)Ax] [σx, σy]

= −(2v2/ℏ)pkin,xσz .

and

σ̇z = (i/ℏ)[H, σz] = (iv/ℏ) [px − (e/c)Ax] [σx, σz] + (iv/ℏ) [py − (e/c)Ay] [σy, σz]

= (2v/ℏ)(pkin,xσy − pkin,yσx) .

(c) Show that by taking the expectation value of the velocity operator, ⟨ψ| v⃗ |ψ⟩ where
ψ is a combination of eigenstate only in the positive energy branch, you recover the
group velocity found from the classical approach (Hint: First consider the expectation
value of an eigenstate of the Hamiltonian).

Solution: If |ψq⟩ is an eigenstate of Ĥ in the positive energy branch we have

H |ψq⟩ = vp⃗.σ⃗ |ψq⟩ = ϵ(q⃗) |ψq⟩ = vℏ|q⃗| |ψq⟩
⇔ ⟨ψq′ | k⃗.σ⃗ |ψq⟩ = |q⃗|δq⃗,q⃗′
⇔ q⃗′. ⟨ψq′ | σ⃗ |ψq⟩ = |q⃗|δq⃗,q⃗′

Here k⃗ denotes the operator while q⃗ is just a number and the operator k⃗ evaluates to
q⃗ when applied to the eigenstate |ψq⟩ k⃗ |ψq⟩ = q⃗ |ψq⟩. The operator σ⃗ does not couple
different plane wave vector q⃗ and q⃗′ i.e. ⟨ψq′ | σ⃗ |ψq⟩ = 0 if q⃗ ̸= q⃗′. Moreover, σ⃗ is a
unitary operator so | ⟨ψq| σ⃗ |ψq⟩ | ≤ 1.We deduce from the above equation:

⟨ψq′| σ⃗ |ψq⟩ =
q⃗

|q⃗|
δq⃗,q⃗′ = ⟨ψq′|

k⃗

|⃗k|
|ψq⟩



Now, consider any state in the positive energy branch |ψ⟩ =
∑
q

αq |ψq⟩

⟨ψ| σ⃗ |ψ⟩ =
∑
q,q′

α∗
q′αq ⟨ψq′| σ⃗ |ψq⟩ =

∑
q,q′

α∗
q′αq ⟨ψq′ |

k⃗

|⃗k|
|ψq⟩ = ⟨ψ| k⃗

|⃗k|
|ψ⟩

We recover then:

⟨ψ| v⃗ |ψ⟩ = v ⟨ψ| σ⃗ |ψ⟩ = v ⟨ψ| k⃗
|⃗k|

|ψ⟩

(d) Calculate the cyclotron mass mc in graphene as a function of energy ϵ using the

relation mc =
ℏ2

2π

∂S

∂ϵ
. Here, S(ϵ) is an area of 2D orbit in k-space encircled by the

particle of the energy ϵ(k) = ℏv
√
k2x + k2y.

Solution: The trajectory of a particle in k-space in graphene with constant energy ϵ

is a circle of the radius kϵ =
ϵ

ℏv
. The respective area in k-space is S(ϵ) = πk2ϵ = π

ϵ2

ℏ2v2
.

Finally, the cyclotron mass is mc =
ℏ2

2π

∂S

∂ϵ
=

ϵ

v2
.

(e) Show that the energies of Landau levels in graphene scale as En ∝
√
n in the limit

n ≫ 1. To show it, use the relation Sn =
An

l4B
between the areas in k- and r- spaces,

Sn and An, respectively, where lB is the magnetic length (see lecture). For An use
semiclassical Bohr-Sommerfeld quantization condition.

Solution: The magnetic flux threading a closed orbit is Φ =
hc

|e|
(n + γ) according to

Bohr-Sommerfeld quantization condition (n ∈ Z). For the allowed areas in r-space we

have An = Φ/B =
hc

|e|B
(n+ γ). We use the relation between areas in k- and r-spaces,

Sn =
An

l4B
with lB =

√
hc

|eB|
, and find Sn =

2π|e|B
ℏc

(n + γ). From the previous subtask

we know that the area in k-space for the particle with energy E in graphene is given by

SE = π
E2

ℏ2v2
. The equality SE = Sn provides the Landau levels as a function of discrete

n: En = v

√
2ℏ|e|B
c

(n+ γ). In the limit of large n we have En ∝
√
n.

Category B

2. Cyclotron mass of an anisotropic parabolic dispersion relation (10 points)

Let us consider such a dispersion relation:

ϵ(k) =
ℏ2

2

(
k2x
mx

+
k2y
my

+
k2z
mz

)
Assume now there is a magnetic field along the z-direction B⃗ = Be⃗z. Compute the
corresponding cyclotron mass.



Solution: First, because the magnetic field is along the z-direction, the motion is
confined in the (x,y)-plane, kz is a constant of motion. Therefore, in k-space the closed
orbit formed by a particle of energy E and momentum along the z-direction kz is an
ellipse of equation

E − ℏ2k2z
2mz

=
ℏ2

2

(
k2x
mx

+
k2y
my

)

The length of the semi-axis of this ellipse are a =

√
2my

ℏ2
(E − ℏ2k2z

2mz

) and b =

√
2mx

ℏ2
(E − ℏ2k2z

2mz

).

To derive the cyclotron mass, we need first to compute the surface area of the closed
orbit. The surface of an ellipse is given by S = πab, we deduce:

S(E, kz) =
2π

ℏ2
√
mxmy(E − ℏ2k2z

2mz

)

The cyclotron mass is then

mc =
ℏ2

2π

∂S

∂E
=

√
mxmy


