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1. Landau levels in graphene (10 4+ 10 4 10 = 30 Points)

Let us consider Dirac electrons in graphene. If we consider both Dirac points (K-
points), we describe quasiparticles in graphene using a Bloch function with 4 compo-
nents:

® = (pak, PB K, PB K, PAK.)-

Here K. denotes the two Dirac points located at the edges of the Brillouin zone and
A(B) are the two subgrids. In this basis the effective Hamiltonian operator of an
electron is

H=vX-p,
where
01 0 O 0 — 0 0
10 0 O 7 0 0 0
Yo = 00 0 -1}’ 2y = 0 0 0 —i
00 -1 0 0O 0 ¢ O

We consider the electron in an external magnetic field with potential vector A(r,t)).
We use the minimal coupling

P — Prin =P — (¢/0)A |

and consider the gauge:
A = (—By,0).

(a) The two valleys (K1) are not coupled. First, consider the solutions for the K-
valley. Here the Schrodinger equation couples the two components ¢4 k. und ¢p x, .
Write the corresponding equations. Show that it can be express in terms of the oper-
ator @ and its hermitian conjugate a' satisfying the commutation relation [a, a'] = I,
the so-called ladder operator

Solution:

el B

First, we define the magnetic length (3 = We can write the Hamiltonian

operator around the K, valley as:

0 II
HK+ = <H‘ 0)

where

h2
[ILII'] = 277
B



Therefore .
(511 (511
4=-8= at = 28— .47 =1

W2’ 2’

The Hamiltonian operator reads now

0 a
HK+ - FLWC (CLT 0) ) We = \/iv/gBa

Use the known solutions of the oscillator equation to find the Landau levels as well
as the eigenstate. Do the same derivation for the valley K _.

Solution: From the oscillator equation, we know that the hermitian number
operator N = a'a has eigenvectors is such that:

Nn) =n|n), withn € N
The raising and lowering operators act on these states as follow:
aln) =+n|n—1), a'ln) =vn+1|n+1)

We deduce from this algebra that the solutions are

1 _
(W) = E (|7; |n>1>> with energies €y, = Miw./n, A= =1, n=123,..

For n = 0, we also have a solution

|Wo) = <|8>> with energy ¢, = 0.

Note that the first Landau level does not depend on the magnetic field while the
others have a square root dependence.
For the Dirac point K_, we obtain the Hamiltonian operator:

.i.
HK:_th<O a)a
a 0

and

_ 1 n) B .
Uan) = —= ()\ In — 1>> , Exn = —MNw/n, with A £ 1

!W®=(%07 € = 0.

Add a Dirac-mass mo, to the Hamiltonian and re-calculate the energy of the Lan-
dau levels. How would the result differ at the points K, and K_ 7

Solution:

The massive Dirac Hamiltonian at K, is

m  hw.a
Hie, = (hwcaT —m)



2 - m? + h*wlaal 0 (M + RPN + 1) 0
K 0 h2wlata4+m?) 0 R*wW?N +m?

The eigenenergies are

Exn =A/wn+m?, n=12 ... with A = +1.

e (|8>) = (|8>)

The energy is e(lf = —m. For the valley K_, we obtain the same spectrum for
Landau levels n # 0 but the energy of the first Landau level is at 60 = +m.

For n =0,

Category B

. Berry-connection for spin-1/2: (20 Points)

In the lecture you introduced the time-dependent unitary matrix R(t), which gives the
basis change to the instantaneous eigenbasis results.

Now calculate the so-called Berry connection

iRR™!,

in the case
R_l (t) — e_i¢(t)az/2e_i9(t)‘7y/26—i¢(t)az/2 ‘

Solution: First we write R~! in 2 x 2 matrix form:

R = mi02/2 00y /2 —itbo=/2 cos(1)/2)e” T2 _gin(y9/2)e i ¢—¥)/2
sin(v/2)e’ (p=)/2 cos(9/2)e i(p+v)/2

The inverse matrix is then:

o (oS EIE sin(2)e I g e i 2
—sin(¥/2)e’ p—1)/2 cos(/2)e —He+y)/2

To calculate the derivative, we can use both forms. In matrix form we get

v (—sin(ﬂ/Z)ei(Wrw)/Q cos(d/2)e~ e~/ )

= 2 \ = cos(9/2)e#~/2 _gin(9/2)e ¢ +¥)/2

i ( (¢ + ¥) cos(1/2)e" T2 —(p — 1)) sm(ﬁ/z>e§<w>/2)
2 \—(p — 1)) sin(9/2)e'P9)/2 (4 1)) cos(9/2)e " #H¥)/2

Finally, we find

iRR _ 1 (w + ¢ cos 19) (z’19.+ ¢ sin)e”
—(i) — ¢sinv)e” Y+ pcost

Diagonal elements represent the Berry phase.



