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1. De Haas—van Alphen effect in a 2D system (canonical ensemble) (5+ 10 = 15
Points)

We consider a 2D electron gas (no spin) with the parabolic dispersion ¢ = h*k*/2m
in a magnetic field H perpendicular to the plane. In this case, there is no motion in
z-direction. The energies of the Landau levels read:

1 ed
E, = hw, =), o= —
(n+ 2) we =
and the degeneracy of each Landau level is given by

eH HA
N, =, =22
hc 4 q)o

he
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(a) In the canonical ensemble the 2D electron density, denoted by n., is fixed. Assume
T = 0. Compute the chemical potential and the free energy per unit of area as
functions of H.
Solution: First, we have the inequalities:
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The free energy of the system at 7' = 0 is the same as internal energy and is given
by the sum of energies of occupied single-particle states, yielding (per unit of area):
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The chemical potential is:
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(b) Compute the magnetization M = — ( 5H

) . Express the result by using the
Tne

Bohr magneton pp = o Draw a sketch of the magnetization with respect to the
me
inverse of the magnetic field 1/H. Find the period of the oscillations of M (1/H).

Hint: It might be useful to introduce an integer p denoting the number of completely
filled Landau levels and consider carefully what happens when p changes (jumps).
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When n, = P = H = o, First, we study the limit when lim H =
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This is exactly the same case as when we derived the formula of the magnetization,
so we can directly apply the equation (1):
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In the other hand, when lim H = limneq)o
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We must substitute into equation (1), p — p — 1. We obtain:
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Moreover, we have M (— = L )=M(= = P ). The period of the oscillations
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of the magnetization as a function of 1/H is 1/(n.®).
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2. De Haas—van Alphen effect in a 2D system (grand canonical ensemble) (
5+ 10 = 15 Points)

Now, let us derive the same effect but in the grand canonical ensemble, still at 7" = 0.
The number of particles is not fixed anymore but we fix the chemical potential .

(a)

Compute the electron density as a function of H. Consider the grand potential
2 = U — uN where U the internal energy and N the number of particles. Compute
the density of the grand potential /A as a function of H.

Solution: First, let us consider that the chemical potential is between two Landau
levels:
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Therefore, the n, + 1-st Landau levels are completely filled and the n, 4+ 2-nd is
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Finally we obtain:
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The magnetization is given by M = — (8—1{;4) . Compute the magnetization
T

as a function of H. What is the period of the oscillations of the magnetization as
a function of 1/H?

Solution:
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When fw.(n, +1/2) = p,
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When the chemical potential is fw.(n, + 5) < p < hw(n, + 5), we increase H

so the energy of the Landau level E,,, = hw.(n, + 1/2) increases until reaching the
value u. Equation (2) becomes at the crossing:
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In the limit when H — 0 = w, — 0 we have:
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When the chemical potential is hw,(n,, — 5) < p < hwe(n, + 5), we decrease H so

the energy of the Landau level £, = hwc(n, + 1/2) decreases until reaching the
value p. In this case we must substitute in equation (2) n, — n, — 1 and evaluate
it at the crossing:

hwe [ p 1\ o 1\ 1
Mt = — — _ ) =
By (hwc 2) +“<hwc 2)@0
hw,
_n e
23, 4,

In the limit when H — 0 = w, — 0 we have:
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Each time the chemical potential crosses a Landau level there is such a discontinuity.
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3. 3D electrons in magnetic field (canonical ensemble) (5+ 5+ 10 = 20 Points)

(a) Calculate the density of states vy (¢€) for free electrons in three dimensions subjected
to the magnetic field H:
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Here, E,(k.) = hw.(n + 1/2) + 2mz

is the spectrum of the system, cyclotron

frequency w, = —, n > 0 is the Landau level number, and k. is the momentum
mc



A
Py

c
directions, &g = — is the flux quantum). Use the continuous limit transformation

along z-direction. The degeneracy factor is N,, = —L,L, (L,,, are sizes along z, y-

for the sum over k., i.e.,

Solution: Using the expression for N,,, assuming the continuous limit and intro-
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with £ > 0, the density of states is reduced to
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Note that at H — 0, when w. — 0, the density of states becomes the same as in
3D case with v(€) oc V/e.

Without explicit calculations of a magnetization M, estimate the period of oscilla-
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tions of M as a function of —. To do that, use vy (e) found above, assuming that

a large number n > 1 of Landau levels is occupied and the Fermi-energy er does
not depend on H.

Solution: The singularities in vy (€) are located at the energies €, = hw.(n+1/2).
Physical quantities, such as magnetization, have peaks at the corresponding values
of the field H,, when the condition, €, = ep(H), holds. Assuming that n is large, we
conclude that the Fermi energy for the canonical ensemble depends slightly on H.
Namely, ex(H) has oscillations as a function of H because particle number is fixed.
But these oscillations are relatively small at n > 1, consequently, we approximate
er = const. Take two equations for H,, and H, ., that are related to neighbouring
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Assuming a constant electron density, n., obtain the chemical potential y as a
function of H at T'= 0. Use the following identity:
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Solution: Integration by e yields:
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where m is a total number of sub-bands that are crossed by an unknown chemical
potential p(n., H). The chemical potential is such that it provides the given particle
density, n.. It is difficult to resolve p as a function of H and n. in a general case.
However, a solution can be found at very high fields, when only one Landau level
is occupied, i.e. m = 0, and we have only one term into the sum. The chemical
potential in this case reads
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Another limit is n > 1, when one can replace the sum by the integral because
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The field H drops from this equation and we recover the result for  which coincides
with the expression for 3D electron gas at H = 0:
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