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Category A

1. De Haas–van Alphen effect in a 2D system (canonical ensemble) (5+10 = 15
Points)

We consider a 2D electron gas (no spin) with the parabolic dispersion ε = ℏ2k2/2m
in a magnetic field H perpendicular to the plane. In this case, there is no motion in
z-direction. The energies of the Landau levels read:

En = ℏωc(n+
1

2
), ωc =

eH

mc

and the degeneracy of each Landau level is given by

Nn =
eH

hc
LxLy =

HA
Φ0

Here A = LxLy is the total area of the system and Φ0 ≡ hc

e
is the flux quantum. We

assume eH > 0. Therefore, the density of states is given by:

ν(ε) =
H

Φ0

∞∑
n=0

δ(ε− ℏωc(n+
1

2
))

(a) In the canonical ensemble the 2D electron density, denoted by ne, is fixed. Assume
T = 0. Compute the chemical potential and the free energy per unit of area as
functions of H.

Solution: First, we have the inequalities:

p
H

Φ0

< ne < (p+ 1)
H

Φ0

The free energy of the system at T = 0 is the same as internal energy and is given
by the sum of energies of occupied single-particle states, yielding (per unit of area):

F

A
=

p−1∑
j=0

ℏωc(j +
1

2
)
H

Φ0

+ (ne − p
H

Φ0

)ℏωc(p+
1

2
)

= −(p2 + p)
e2H2

4πmc2
+

(
p+

1

2

)
ne

ℏeH
mc

The chemical potential is:

µ =
∂F

∂N
=

∂F/A
∂ne

=

(
p+

1

2

)
ℏeH
mc

=

(
p+

1

2

)
ℏωc



(b) Compute the magnetization M = −
(
∂F/A
∂H

)
T,ne

. Express the result by using the

Bohr magneton µB =
eℏ
2mc

. Draw a sketch of the magnetization with respect to the

inverse of the magnetic field 1/H. Find the period of the oscillations of M(1/H).

Hint: It might be useful to introduce an integer p denoting the number of completely
filled Landau levels and consider carefully what happens when p changes (jumps).

Solution:

M = −
(
∂F/A
∂H

)
T,ne

= (p2 + p)
e2H

2πmc2
−
(
p+

1

2

)
ne

ℏe
mc

= 2(p2 + p)
µBH

Φ0

− 2(p+
1

2
)neµB (1)

When ne =
pH

Φ0

⇒ H =
neΦ0

p
. First, we study the limit when lim

H→neΦ0
p

−
H =

lim
ϵ→0

neΦ0

p
− ϵ. Therefore, we are in the case where we approach ne such that the

p+ 1-st level is partly filled and tend to empty:

p
H

Φ0

≤ ne < (p+ 1)
H

Φ0

This is exactly the same case as when we derived the formula of the magnetization,
so we can directly apply the equation (1):

M(H → neΦ0

p

−
) = 2(p2 + p)

µBH

Φ0

− 2(p+
1

2
)
pH

Φ0

µB

=
µBpH

Φ0

= µBne

In the other hand, when lim
H→neΦ0

p

+
H = lim

ϵ→0

neΦ0

p
+ ϵ, the p-th Landau level is partly

filled and tend to be fully occupied:

(p− 1)
H

Φ0

< ne ≤ p
H

Φ0

We must substitute into equation (1), p → p− 1. We obtain:

M(H → neΦ0

p

+

) = 2((p− 1)2 + p− 1)
µBH

Φ0

− 2(p− 1

2
)
pH

Φ0

µB

= −µBpH

Φ0

= −µBne

Moreover, we haveM(
1

H
=

p

neΦ0

) = M(
1

H
=

p+ 1

neΦ0

). The period of the oscillations

of the magnetization as a function of 1/H is 1/(neΦ0).



2. De Haas–van Alphen effect in a 2D system (grand canonical ensemble) (
5 + 10 = 15 Points)

Now, let us derive the same effect but in the grand canonical ensemble, still at T = 0.
The number of particles is not fixed anymore but we fix the chemical potential µ.

(a) Compute the electron density as a function of H. Consider the grand potential
Ω = U −µN where U the internal energy and N the number of particles. Compute
the density of the grand potential Ω/A as a function of H.

Solution: First, let us consider that the chemical potential is between two Landau
levels:

ℏωc(nµ +
1

2
) < µ < ℏωc(nµ +

3

2
)

Therefore, the nµ + 1-st Landau levels are completely filled and the nµ + 2-nd is

emptied. The electron density is
N

A
= (nµ + 1)

H

Φ0

. Moreover, we have:

U

A
=

nµ∑
j=0

ℏωc(j +
1

2
)
H

Φ0

=
ℏeH2

2Φ0mc
(nµ + 1)2

Finally we obtain:

Ω

A
=

ℏeH2

2Φ0mc
(nµ + 1)2 − µ(nµ + 1)

H

Φ0

(b) The magnetization is given by M = −
(
∂Ω/A
∂H

)
T,µ

. Compute the magnetization

as a function of H. What is the period of the oscillations of the magnetization as
a function of 1/H?

Solution:

M = − ℏeH
Φ0mc

(nµ + 1)2 + µ(nµ + 1)
1

Φ0

= −ℏωc

Φ0

(nµ + 1)2 + µ(nµ + 1)
1

Φ0

(2)



When ℏωc(nµ + 1/2) = µ,

nµ +
1

2
=

µ

ℏωc

, nµ + 1 =
µ

ℏωc

+
1

2
, nµ =

µ

ℏωc

− 1

2

When the chemical potential is ℏωc(nµ +
1

2
) ≤ µ < ℏωc(nµ +

3

2
)., we increase H

so the energy of the Landau level Enµ = ℏωc(nµ + 1/2) increases until reaching the
value µ. Equation (2) becomes at the crossing:

M− = −ℏωc

Φ0

(
µ

ℏωc

+
1

2

)2

+ µ

(
µ

ℏωc

+
1

2

)
1

Φ0

= − µ

2Φ0

− ℏωc

4Φ0

In the limit when H → 0 ⇒ ωc → 0 we have:

M− = − µ

2Φ0

When the chemical potential is ℏωc(nµ −
1

2
) < µ ≤ ℏωc(nµ +

1

2
), we decrease H so

the energy of the Landau level Enµ = ℏωc(nµ + 1/2) decreases until reaching the
value µ. In this case we must substitute in equation (2) nµ → nµ − 1 and evaluate
it at the crossing:

M+ = −ℏωc

Φ0

(
µ

ℏωc

− 1

2

)2

+ µ

(
µ

ℏωc

− 1

2

)
1

Φ0

= +
µ

2Φ0

− ℏωc

4Φ0

In the limit when H → 0 ⇒ ωc → 0 we have:

M+ = +
µ

2Φ0

Each time the chemical potential crosses a Landau level there is such a discontinuity.

For nµ, it happens at
1

Hnµ

=
ℏe(nµ + 1/2)

mcµ
and for nµ−1 at

1

Hnµ−1

=
ℏe(nµ − 1/2)

mcµ
.

Period of oscillations of the magnetization is
1

Hnµ

− 1

Hnµ−1

=
ℏe
µmc

.

3. 3D electrons in magnetic field (canonical ensemble) (5 + 5 + 10 = 20 Points)

(a) Calculate the density of states νH(ϵ) for free electrons in three dimensions subjected
to the magnetic field H:

νH(ϵ) =
1

LxLyLz

∑
kz ,n

Nnδ(ϵ− En(kz)).

Here, En(kz) = ℏωc(n + 1/2) +
ℏ2k2

z

2m
is the spectrum of the system, cyclotron

frequency ωc =
eH

mc
, n ≥ 0 is the Landau level number, and kz is the momentum



along z-direction. The degeneracy factor is Nn =
H

Φ0

LxLy (Lx,y are sizes along x, y-

directions, Φ0 =
hc

e
is the flux quantum). Use the continuous limit transformation

for the sum over kz, i.e.,
∑
kz

= Lz

∫
dkz
2π

.

Solution: Using the expression for Nn, assuming the continuous limit and intro-

ducing ξ =
ℏ2k2

z

2m
with ξ > 0, the density of states is reduced to

νH(ϵ) =
H

Φ0

∞∑
n=0

∫
dkz
2π

δ(ϵ− En(kz)) =

=
H

Φ0

∞∑
n=0

2

∞∫
0

δ (ϵ− ℏωc(n+ 1/2)− ξ)
1

2π

√
2m

ℏ
dξ

2
√
ξ
=

=

√
mH√
2πℏΦ0

∞∑
n=0

θ
(
ϵ− ℏωc(n+ 1

2
)
)

√
ϵ− ℏωc(n+ 1

2
)

.

Note that at H → 0, when ωc → 0, the density of states becomes the same as in
3D case with ν(ϵ) ∝

√
ϵ.

(b) Without explicit calculations of a magnetization M , estimate the period of oscilla-

tions of M as a function of
1

H
. To do that, use νH(ϵ) found above, assuming that

a large number n ≫ 1 of Landau levels is occupied and the Fermi-energy ϵF does
not depend on H.

Solution: The singularities in νH(ϵ) are located at the energies ϵn = ℏωc(n+1/2).
Physical quantities, such as magnetization, have peaks at the corresponding values
of the field Hn when the condition, ϵn = eF (H), holds. Assuming that n is large, we
conclude that the Fermi energy for the canonical ensemble depends slightly on H.
Namely, ϵF (H) has oscillations as a function of H because particle number is fixed.
But these oscillations are relatively small at n ≫ 1, consequently, we approximate
ϵF = const. Take two equations for Hn and Hn+1 that are related to neighbouring

singularities, i.e., ϵF = ℏ
eHn

mc
(n + 1/2) and ϵF = ℏ

eHn+1

mc
(n + 1 + 1/2). We then

find the osillations period ∆

(
1

H

)
=

ℏe
mcϵF

.

(c) Assuming a constant electron density, ne, obtain the chemical potential µ as a
function of H at T = 0. Use the following identity:

ne =

µ∫
0

νH(ϵ)dϵ.

Solution: Integration by ϵ yields:

ne = 2

√
mH√
2πℏΦ0

m∑
n=0

√
µ− ℏωc(n+ 1/2)



where m is a total number of sub-bands that are crossed by an unknown chemical
potential µ(ne, H). The chemical potential is such that it provides the given particle
density, ne. It is difficult to resolve µ as a function of H and ne in a general case.
However, a solution can be found at very high fields, when only one Landau level
is occupied, i.e. m = 0, and we have only one term into the sum. The chemical
potential in this case reads

µ =
π2ℏ2Φ2

0n
2
e

2mH
+

ℏeH
2mc

.

Another limit is n ≫ 1, when one can replace the sum by the integral because
ℏωc

µ
≪ 1. Having introduced x =

ℏωc(n+ 1/2)

µ
and dx =

ℏωc

µ
we have

ne = 2

√
mH√
2πℏΦ0

µ3/2

ℏωc

1∫
0

√
1− xdx .

The field H drops from this equation and we recover the result for µ which coincides
with the expression for 3D electron gas at H = 0:

µ =
3
√
9π4ℏ2
3
√
2m

n2/3
e .


