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Category A

1. Boltzmann equation in the presence of spin-orbit interaction(10+10+10 = 30
Points)

In this exercise we practice solving the Boltzmann equation using the example of a
system with spin-orbit interaction. We construct a model collision integral and attempt
solving the resulting Boltzmann equation. As a result, we obtain the physics of the so-
called Edelstein effect. Note, that this is not a true theory of the spin-orbit interaction,
but rather an exercise: the collision integral we are using here is incorrect. (A true
kinetic theory of systems with spin-orbit interaction has not been worked out yet – it
is an important topic in current research).

Consider a system with spin-orbit interaction as described by the Hamiltonian

H =
p2

2m
+ Ω(p) · σ,

where σ = (σx, σy, σz) is the vector of Pauli matrices and Ω(p) is the fictitious “magnetic
field” that depends on momentum and thus describes the spin-orbit interaction.

The Boltzmann equation is usually derived within the semiclassical approach, where
we treat the quasiparticle momentum as a c-number (and not an operator). However,
the electron spin has to be treated quantum-mechanically. This can be achieved by
considering the one-particle density matrix which is a 2× 2 matrix in spin space. The
rest of the variables one can treat semiclassically, i.e. ρ→ ρσ1σ2(r,p, t).

We introduce an homogeneous electric field (no magnetic field). The kinetic equation
can now be derived. We consider time variation of the density matrix and equate it to
the collision integral. The quantum-mechanical treatment of the spin variables amounts
to using the well-known quantum-mechanical definition where the time derivative of an
operator is given by its commutator with the Hamiltonian. This way in a spatially
homogeneous systems one arrives at the equation

∂ρ

∂t
+ i
[
Ω(p) · σ, ρ

]
− eE ∂ρ

∂p
= I[ρ].

Here [. . . , . . . ] stands for a commutator.

(a) Derive the above equation for a homogeneous system treating the spin variables
quantum-mechanically and the momentum semiclassically.

Solution:

Consider the kinetic equations describing a particle with spin. The density matrix
evolves due to non commutation relation with the Hamiltonian. Moreover, we must



add a collision term in the evolution equation which is not taken into account in
the Hamiltonian.

dρ

dt
= i[ρ,H] + I[ρ]

Treating the phase space variables r and p as number we obtain:

∂ρ

∂t
+ v

∂ρ

∂r
+ ṗ

∂ρ

∂p
= i[ρ,H] + I[ρ].

Finally, using the explicit form of the Hamiltonian

H =
p2

2m
+ Ω(p)σ,

we find
∂ρ

∂t
+ i[Ω(p)σ, ρ]− eE ∂ρ

∂p
= I[ρ].

(b) Recall the well-known fact from quantum mechanics: any function of the Pauli
matrices is a linear function. Therefore, the 2× 2 density matrix can be written as

ρ =
f

2
1̂ + S · σ.

Here 1̂ denotes a unity matrix.

Substitute this expression into the equation for the density matrix and find cou-
pled equations for the charge and spin distribution functions f and S. Use the
τ -approximation to evaluate the collision integral.

Solution:

Here we use the explicit form for a density matrix where the phase space part is
treated semiclassically

ρ =
1

2
f(t, p) + S(t, p)σ,

where f(t, p) is the usual (charge) distribution function, S(t, p) is the spin distribu-
tion function, and the first term is proportional to the unit matrix (no texplicitly
written).

Substituting the above density matrix into the kinetic equation we find

1

2

∂f

∂t
+
∂S

∂t
σ + i[Ω(p)σ,Sσ]− 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ].

The commutator can be simplified using the properties of the Pauli matrices

[Ω(p)σ,Sσ] = Ωi(p)Sj[σi, σj] = 2iΩi(p)Sjεijkσk = 2i[Ω(p)× S]σ.

This way we find the matrix equation

1

2

∂f

∂t
+
∂S

∂t
σ − 2[Ω(p)× S]σ − 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ].



The matrix equation can be reduced to a set of scalar equations by multiplying the
equation by the Pauli matrices and evaluating the trace. We find

∂f

∂t
− eEα

∂f

∂pα
= TrI[ρ],

∂Si
∂t
− 2[Ω(p)× S]i − eEα

∂Si
∂pα

=
1

2
TrσiI[ρ].

Finally, let us assume the simplest τ -approximation for the collision integral

I[ρ] = −δρ
τ

= −δf
2τ
− δSσ

τ
.

Substituting this into the above kinetic equations we find

∂f

∂t
− eEα

∂f

∂pα
= −δf

τ
,

∂Si
∂t
− 2[Ω(p)× S]i − eEα

∂Si
∂pα

= −δSi
τ
.

(c) Consider the simplest version of the spin-orbit coupling in two-dimensional systems,
the so-called Rashba spin-orbit coupling, which is described by

Ω = α(py,−px).

Substitute the Rashba form of the spin-orbit coupling in the equations obtained
above.

Hint You are now dealing with a two-dimensional system. The momentum is now
a 2D vector, but spin still has three components.

Solution:

For the case of the Rashba coupling,

Ω = α(py,−px),

the vector product in the kinetic equations has the form

Ω× S = α(−pxSz,−pySz, pxSx + pySy) = −αpSz + α(S⊥ · p)ez,

where S⊥ = (Sx, Sy) and ez is the unit vector in the z-direction.

The equations for the spin distribution function now have the form

∂Sz
∂t
− 2αS⊥ · p− eEα

∂Sz
∂pα

= −δSz
τ
, :

∂S⊥
∂t

+ 2αpSz − eEα
∂S⊥
∂pα

= −δS⊥
τ

.



2. Thermoelectric effect (10 Points)

Consider the thermoelectric effect (Mott formula) for a free electron gas. The applied

temperature gradient, ~∇T , induces an electric current,

~j = −η~∇T,

where η is the thermoelectric coefficient. Consider three-dimensional electron gas with

the parabolic dispersion, ε =
~2k2

2m
, which has the given Fermi energy εF . Calculate the

thermoelectric coefficient, η, for a given temperature T , assuming that the relaxation
time τ in the Boltzmann equation is known. Express the result in terms of εF , velocity
and density of states at the Fermi level, vF and νF .

Without explicit calculations, obtain η for 2D and 1D cases using the representation of
η through vF , νF and εF found for 3D case.

Solution:

The electric current follows from the Boltzmann equation on the distribution function:

~j =
τe

T

∫
dpxdpydpz

(2π~)3
~v~p(ε~p − εF )

∂f0
∂ε

(~v~p · ~∇T ).

Here, f0 is the Fermi distribution function in the equilibrium. Consider an isoenergy
surface S in momentum space for a certain energy ε. The surface is defined by the equa-

tion ε~p = ε. The integral over ~p now reads as

∫
d3~p =

∞∫
0

dε

∮
ε~p=ε

dS. In d dimensions,

for isotropic spectrum we have for the velocities,

∮
ε~p=ε

~pvpαvpβdS = δα,β
v2(ε)

d

∮
ε~p=ε

dS,

where the velocity at this energy is v(ε) =

√
2ε

m
. As long as no variables now do not

depend on ~p, we can calculate surface integral over momenta ε~p = ε and introduce the
density of states ν(ε). As a result, we replace the integral over momentum as follows,∫

d3~p

(2π~)3
→
∫
ν(ε)dε. Then, the current now reads

~j = −
[
τe

dT

∫
v2(ε)ν(ε)(ε− εF )

−∂f0(ε)
∂ε

dε

]
~∇T

The term in square braces is nothing but the thermoelectric coefficient η. To calculate
it, we use the Sommerfeld expansion for low temperatures T � εF :

−∂f0(ε)
∂ε

≈ δ(ε− εF ) +
π2T 2

6
δ′′(ε− εF ).

Integrating over ε, we find

η =
π2eτT

3d

∂(v2(ε)ν(ε))

∂ε

∣∣∣∣
ε=εF

As mentioned above, v(ε) ∝ ε
1
2 . The density of states in d dimensions, is ν(ε) ∝

ε
d
2
−1. Then, the combination v2(ε)ν(ε) ∝ ε

d
2 has

d

2
in the exponent. Its derivative is



∂(v2(ε)ν(ε))

∂ε
=
d

2

v2(ε)ν(ε)

ε
. Finally, we have for any dimension:

η =
π2eτTv2FνF

6εF
.

Category B

3. Conductivity of the tight-binding model (10 points)

The dispersion relation of the tight-binding model on the square lattice with lattice
constant a has the form

ε(k) = −ε1 [cos(akx) + cos(aky)] .

Assume that the relaxation time τ is independent of the momentum. Using equation
(268) of lecture notes applied to the 2D case for DC conductivity (ω = 0), derive
thediagonale elements of the quasiclassical electrical conductivity tensor at half filling.
Suppose that kBT � µ.

Solution: The conductivity is given by:

σα,β = −2e2τ

∫
d2k

(2π)2
∂f0
∂ε

vαvβ

If kBT � µ, the Fermi-Dirac distribution is at lowest order:

∂f0
∂ε
' −δ(ε− µ)

One can transform the integration variable (kx, ky) → (kx, ε). The Jacobian of the
transformation is |vy|−1.

σy,y =
e2τ

2π2

∫
dkxdεδ(ε− µ)|vy|

At half filling µ = 0, therefore at ε = 0 ky =
π

a
− kx for one quadrant.

σy,y =
2e2τε1a

π2

∫ π/a

0

dkx sin(π − kxa) =
4e2τε1
π2

The expression is similar for σx,x because |vx| = |vy| at ε = 0


