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The last task is a bonus exercise. It will be corrected during the tutorial only
if we have enough time. In any case, its correction will be uploaded on Ilias
with the other exercises.
Category A

1. Correlation functions of an ideal Fermi gas (5 + 10 + 5 + 10 + 5 = 35 Points)

Consider a 3D system with a finite volume V of N non-interacting fermions in the
ground state |Ψ0⟩. One can express the density operator for particles in the spin state
σ using the creation and annihilation operators:

n̂(r, σ) =
1

V

∑
k,k′

e−i(k−k′)ra†k,σak′,σ.

where σ = ↓, ↑ is one of the eigenstate of the σz operator. The operator a†k,σ increases
the number of particles in the state k and σ to 1. The operator ak,σ reduces the
number of particles in this state to 0. The creation and annihilation operators satisfy
the anti-commutation relations:

{âk,σ, âk′,σ′} = {â†k,σ, â
†
k′,σ′} = 0, {â†k,σ, âk′,σ′} = δσ,σ′δk,k′ .

The ground state of the free Fermi gas can be expressed as follows:

|Ψ0⟩ =
∏

|k|<kF ,σ

â†k,σ|0⟩,

where all momenta from |k| = 0 up to kF are filled.

(a) Show that, the Fermi momentum in 3D is given by:

kF = (3π2n)1/3,

where

n =
N

V
=

∑
σ

⟨Ψ0|n̂(r, σ)|Ψ0⟩,

is the particle density.
We now introduce the fermionic field operators:

ψ̂σ(r) =
1√
V

∑
k

eikrâk,σ, ψ̂†
σ(r) =

1√
V

∑
k

e−ikrâ†k,σ,

whose effect are: ψ̂σ(r) destroys a particle with spin σ at r, while ψ̂†
σ(r) creates

a particle with spin σ at r. Show that these field operators satisfy the canonical
anti-commutation relations:

{ψ̂σ(r), ψ̂
†
σ′(r

′)} = δ(r − r′)δσ,σ′ .



(b) The one-particle correlation function is defined as follows:

Gσ(r − r′) = ⟨Ψ0|ψ̂†
σ(r)ψ̂σ(r

′)|Ψ0⟩.

This correlation function can be interpreted as the probability amplitude of an
electron with spin σ being destroyed at r′ and recreated at r. Demonstrate that it
gives:

Gσ(r − r′) =
3n

2

sinx− x cosx

x3
, x = kF |r − r′|.

Hint: Use the Fourier transform

(c) The two-particle correlation function gives the probability amplitude to find a par-
ticle with spin σ′ at r′ when a particle with spin σ is already at r. It is defined as
follows:

gσ,σ(r − r′) =
4

n2
⟨Ψ0|n̂(r, σ)n̂(r′, σ′)|Ψ0⟩ =

4

n2
⟨Ψ0|ψ̂†

σ(r)ψ̂
†
σ′(r

′)ψ̂σ′(r′)ψ̂σ(r)Ψ0⟩.

Show that in the case where σ ̸= σ′ (for any r and r′)

gσ,σ′(r − r′) = 1.

(d) Show that only when we are in the case σ = σ′ the two -particle correlation function
can be expressed using the one-particle correlation function such that:

gσ,σ(r − r′) = 1− 4

n2
[Gσ(r − r′)]

2
.

Compare this result with the one of question (d) and and think about what all this
has to do with the Pauli principle.

(e) To understand the Pauli principle, calculate the following Integral:

n

2

∫
d3r [gσ,σ′(r − r′)− 1] .

How could you interpret the result?



Category B

2. Thermodynamic perturbation theory (5 + 10 = Points)

We consider a gas of spinless bosons of mass m in a volume V = L3, with periodic
boundary conditions for the wave functions. The particles interact via a potential
U(r⃗1 − r⃗2) = U0δ(r1 − r2) with U0 > 0. The interaction part of the Hamiltonian

(Ĥ = Ĥ0 + Û) has the following form in secondary quantization representation:

Û =
U0

2V

∑
k1,k2,k3,k4

δk1+k2−k3−k4 â
†
k3
â†k4

âk2 âk1

The chemical potential µ and the temperature T are given.

(a) Consider Û as a small perturbation and show that the first-order correction in U0

to the grand canonical potential is given by

δΩ = ⟨Û⟩H0 =
tr
{
Ûe−β(Ĥ0−µN̂)

}
tr
{
e−β(Ĥ0−µN̂)

} .

(b) Calculate δΩ. The relevant matrix element can be generated either by different

states k⃗1 ̸= k⃗2 or by the same state k⃗1 = k⃗2. Consider these two cases separately.

3. Operators in the secondary quantized representation (bonus exercise) (25
Points)

In the lecture, the second quantization for bosonic operators F̂ (1) =
∑
a

f̂ (1)
xa

has been

derived: F̂ (1) =
∑
ij

⟨i|f̂ (1)|j⟩ b̂†i b̂j. Here, |i⟩ are the single particle states and the operator

f̂ (1)
xa

acts on coordinates xa. The diagonal elements (i = j) of the bosonic operators are
given by

⟨N1, N2, . . . |F̂ (1)|N1, N2, . . .⟩ =
∑
i

Ni⟨i|f̂ (1)|i⟩, (1)

where |N1, N2, ...⟩ =
(
N1!N2! . . .

N !

)1/2∑
P

ϕP1(x1)ϕP2(x2) . . . ϕPN
(xN) is the symmetrized

bosonic wavefunction. ϕi(xi) are the single particle wave functions (i is a quantum num-
ber). The non-diagonal elements (i ̸= j) are

⟨. . . , Ni, . . . , Nj − 1, . . . |F̂ (1)| . . . , Ni − 1, . . . , Nj, . . .⟩ =
√
NiNj ⟨i|f̂ (1)|j⟩ (2)

where N =
∑
i

Ni. Analogously to the single-particle operators, the two-particle

bosonic operators F̂ (2) are introduced

F̂ (2) =
1

2

∑
iklm

⟨ik|f̂ (2)|lm⟩ â†i â
†
kâmâl (3)

with the matrix elements ⟨ik|f̂ (2)|lm⟩ =
∫∫

dx1 dx2 ϕ
⋆
i (x1)ϕ

⋆
k(x2) f̂

(2) ϕl (x1)ϕm(x2).



Derive the expression for F̂ (2) =
∑
a<b

f
(2)
ab of the form (3) where the operator acts on

coordinates xa and xb. To do that, find the expressions for two-particle operators that
are analogous to (1) and (2). Distinguish whether f (2) acts twice on the same single-
particle state or on two different ones.


