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The last task is a bonus exercise. It will be corrected during the tutorial only
if we have enough time. In any case, its correction will be uploaded on Ilias
with the other exercises.

Category A
1. Correlation functions in ideal Fermi gas (5+ 10+ 5+ 10 + 5 = 35 Points)

Consider a 3D system with a finite volume V' of N non-interacting fermions in the
ground state |¥o). One can express the density operator for particles in the spin state
o using the creation and annihilation operators:
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where 0 = |, T is one of the eigenstate of the o, operator. The operator aL’U increases

the number of particles in the state k and o to 1. The operator ag, reduces the
number of particles in this state to 0. The creation and annihilation operators satisfy
the anti-commutation relations:
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The ground state of the free Fermi gas can be expressed as follows:
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where all momenta from |k| = 0 up to kp are filled.
(a) Show that, the Fermi momentum in 3D is given by:
kp = (37%n)Y3,
where

N .
n = V = zg:<q10|n(rao-)|\110>7

is the particle density.
We now introduce the fermionic field operators:
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whose effect are: 1), (r) destroys a particle with spin o at 7, while ¥f () creates
a particle with spin o at r. Show that these field operators satisfy the canonical
anti-commutation relations:

{1&0(7“), 1&2,(1")} =0(r —7")0q 0.
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The anti-commutation relation of the fermionic field is:
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(b) The one-particle correlation function is defined as follows:
Go(r = 1) = (To[th] () (r) | Wp).

This correlation function can be interpreted as the probability amplitude of an
electron with spin o being destroyed at ' and recreated at r. Demonstrate that it
gives:
3nsinx — xcosx
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Hint: Use the Fourier transform
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(¢) The two-particle correlation function gives the probability amplitude to find a par-
ticle with spin ¢’ at 7’ when a particle with spin o is already at r. It is defined as
follows:
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Show that in the case where o # ¢’ (for any r and ')

Goor(r —7") = 1.

Solution:
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(d) Show that only when we are in the case ¢ = ¢’ the two -particle correlation function
can be expressed using the one-particle correlation function such that:

Joo(r —7)=1— % Gy (r— 7).

Compare this result with the one of question (d) and and think about what all this
has to do with the Pauli principle.

Solution:
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We notice that when particle are in the same spin state, we have a decrease of the
probability amplitude to observe both particles next to each others due to Pauli
repulsion.

(e) To understand the Pauli principle, calculate the following integral:
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How do you interpret the result ?

Solution:
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This result stands for the negative correlation between fermions. One electron
repulses another one due to the Pauli principle. In other words, having created the
fermion with a spin ¢ at the position r we have less probability to observe another
electron with the same spin in a vicinity of r.

2. Thermodynamic perturbation theory (54 10 = 15 Points)

We consider a gas of spinless bosons of mass m in a volume V = L3, with periodic
boundary conditions for the wave functions. The particles interact via a potential
U(ry — ) = Upd(ry — r2) with Uy > 0. The interaction part of the Hamiltonian
(H = Hyo + U) has the following form in secondary quantization representation:
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The chemical potential  and the temperature 7' are given.

(a) Consider U as a small perturbation and show that the first-order correction in Uy
to the grand canonical potential is given by

(b) Calculate 6€2. The relevant matrix element can be generated either by different
states ki # ko or by the same state k; = ky. Consider these two cases separately.

Solution: (a) The grand thermodynamic potential is (we assume hereafter kg = 1)
QO=—-FInz
where B = T is the inverse temperature and Z is the partition function. It reads

7 = tl“[ B(Ho— MN+U)}

Now we expand Z up to the first order in U. Using the cyclic permutations of operators
under the trace sign, we have for the matrix exponent:
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The first order correction by U yields after the resummation:

7 =~ Zy— ftr [Ue’ﬁ(HO’”N)}

where the unperturbed partition function is Z; = tr [e_ﬁ(HO_"N)]. Now we expand the
potential 2 in the first order by U:
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Finally, we have for the first order correction 6Q2 = Q — Qy = (U) g,
(b) Let us calculate (U)p, explicitly at ki # ko:
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Here, Nj, = (a).ag) is the distribution function of bosons.

Consider now the case ki = ks:
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For two indistinguishable particles, we have atal aplr) = 2 al ar)? (this result also
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reflects the well-known Wick theorem). We obtain

Summing up the both results, we have:
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0 = <U>H0 = <U>Ho,k1;ék2 + <U>Ho,k:1=k2 =

. Operators in the secondary quantized representation (bonus exercise) (25
Points)

In the lecture, the second quantization for bosonic operators FO = Z fw(i) has been

derived: F(V) = Z(i|f(1) 17) ISZTI;J Here, |i) are the single particle states and the operator

)



f;}) acts on coordinates z,. The diagonal elements (i = j) of the bosonic operators are
given by
(N1, Na, . [FWING, Ny, ) =Y Ny(il f V), (1)

NN\ . .
T) Z op, (x1)0p,(22) ... ¢py (zx) is the symmetrized
’ P

bosonic wavefunction. ¢;(z;) are the single particle wave functions (i is a quantum num-
ber). The non-diagonal elements (i # j) are

(..,Niy. .. ,Nj =1, JFO] L N, —1,... N;,..) = /NN, (i) fV) (2)

where [Ny, Ny, ...) = (

where N = ZNZ" Analogously to the single-particle operators, the two-particle

bosonic operators F® are introduced
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with the matrix elements (ik|f®|lm) = // dey dey ¢F (1) ¢(x2) fP ¢, (1) &, (22).

Derive the expression for F?) = Z fii) of the form (3) where the operator acts on

a<b
coordinates x, and x,. To do that, find the expressions for two-particle operators that

are analogous to (1) and (2). Distinguish whether f® acts twice on the same single-
particle state or on two different ones.

Solution:
Single-particle operators

In the lecture, the single-particle operators in second quantization picture have been
derived. For single-particle operators, there are two possible matrix elements, diagonal
and non-diagonal. For two-particle operators there are, however, multiple diagonal and
off-diagonal matrix elements.

First we repeat how the one-particle operators work. The single-particle states are
¢i(z), where 7 is a quantum number (e.g. momentum) and z is the coordinate (e.g.
location). The symmetric product state is then given as

U, (N17N2 ) Nl'NQ Z [QbP(l ( ) gZ5p(N)(N)

Pesy,
In this notation, large numbers denote the coordinates, e.g., 3 = x3. The number P(3)
denotes a permuted quantum number at the position 3.

The scalar product is defined as usual in quantum mechanics:

/ AX $ (X) b5y (X) = (P(0) P())) -



For demonstration purposes we check the norm of the symmetrized bosonic many-body
state:

NyINo!. L. - -
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The sum Z 1 = ———— takes into account all allowed permutations. The not
- N{INo! ...

allowed one is a permutation of two particles that occupy the same coordinate. (Such
a situation can not happen for fermions because of the Pauli principle.) Since the set
of allowed permutations is not Sy (all permutations), we introduced P € S} in the
definition of W,.

In the following we write simply |Wq(Ny, Na,...)) = [Ny, N, .. .).

Now we finally start with single-particle operators. First, consider the diagonal elements
for bosons:

() = 3 ()
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In the last step the following has happened: the operator at the position a does not act
on any other positions. Because of the orthonormality of the single-particle states, the
following applies P(1) = P(1), P(2) = P(2) etc. Only for P(a) and P(a) this does not
applies because fV) is not necessarily diagonal in ¢;(X). However, if P = P for all but
one of the numbers from 1 ... N holds, then this last number is also fixed: P(a) = P(a),
so P = P still applies to all 1... N.

We build a permutation P by choosing the quantum numbers 1,..., N for i = P(a) that
N

contribute to a sum Z Now the sum runs over all permutations except the remaining
i=1

N — 1 numbers, that results in (N — 1)! identical contributions. But again we have to

extract wrong permutations. Here you have to note that from the original N; particles



in the ¢-th state only N; — 1 are available. Finally we obtain
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We get the final result by taking the sum over a: enters:
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Now to the off-diagonal matrix elements:
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In this case, we choose P(a) = i and P(a) = j. All further permutations P and P must
be equal (with the same argumentation as with the diagonal elements):

Nl'Nz—llNz 1!. . .
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Again, only N — 1 particles are allowed to be permuted. We have to divide by the
numbers of wrong permutations of N; —1 and N; — 1 particles:
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The summation over a again eliminates the N in the denominator and we find for the
off-diagonal matrix element: (FM) = \/N;N; (i| fV|5).
The operator can be written as

FO = 34 £y ala,
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for the non-diagonal elements. The sums are omitted here, since there is only one
contribution, and exactly when a;r acts on the state 7 and a; on the state j. One gets 0
in the opposite case due to the orthogonality of the states.

Two-particle operators:

In this part we arrive at two-particle operators, F? = Z @ Note the sum Z will
a<b a<b

yield a factor N(N —1)/2.

Diagonal elements for bosons:

(Nu o | [, 1N Ny = P02 52 () PO, [P(a) )

P,p

= D S P(a)PO) 2, 1PO)Pla)

Here we have to distinguish between the two cases: either f?) acts on two single-
particle states with the same quantum number ¢ or on two single-particle states with
the different quantum numbers ¢ and j:

(N1, Noy oo | f2 [N, Ny, o) =
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We also obtain

ZZ N zz\f id) = 1Z<zz|f |i3) N;(N; — 1) (4)

a<b 1

and
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One more comment concerning the permutations. We calculated Z as follows: We

P
choose i = P(a) and j = P(b) (and vice versa) from the set 1...N. The remaining

(N —2) numbers are permuted, which results in the factor (N —2)!. The matrix element



(4) is zero due to the Pauli principle. Calculating (5) we should be careful with the
fermion permutation sign. As a result, we obtain:
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Non-diagonal elements for bosons:
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Analogously, the following non-diagonal matrix elements can be found for bosons:

...N;...N.—1...N,...N,, —1..|F®|...N,—1...N;,...N;—1...N,, ...
J J
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