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The last task is a bonus exercise. It will be corrected during the tutorial only
if we have enough time. In any case, its correction will be uploaded on Ilias
with the other exercises.
Category A

1. Correlation functions in ideal Fermi gas (5 + 10 + 5 + 10 + 5 = 35 Points)

Consider a 3D system with a finite volume V of N non-interacting fermions in the
ground state |Ψ0〉. One can express the density operator for particles in the spin state
σ using the creation and annihilation operators:

n̂(r, σ) =
1

V

∑
k,k′

e−i(k−k
′)ra†k,σak′,σ.

where σ = ↓, ↑ is one of the eigenstate of the σz operator. The operator a†k,σ increases
the number of particles in the state k and σ to 1. The operator ak,σ reduces the
number of particles in this state to 0. The creation and annihilation operators satisfy
the anti-commutation relations:

{âk,σ, âk′,σ′} = {â†k,σ, â
†
k′,σ′} = 0, {â†k,σ, âk′,σ′} = δσ,σ′δk,k′ .

The ground state of the free Fermi gas can be expressed as follows:

|Ψ0〉 =
∏

|k|<kF ,σ

â†k,σ|0〉,

where all momenta from |k| = 0 up to kF are filled.

(a) Show that, the Fermi momentum in 3D is given by:

kF = (3π2n)1/3,

where

n =
N

V
=
∑
σ

〈Ψ0|n̂(r, σ)|Ψ0〉,

is the particle density.

We now introduce the fermionic field operators:

ψ̂σ(r) =
1√
V

∑
k

eikrâk,σ, ψ̂†σ(r) =
1√
V

∑
k

e−ikrâ†k,σ,



whose effect are: ψ̂σ(r) destroys a particle with spin σ at r, while ψ̂†σ(r) creates
a particle with spin σ at r. Show that these field operators satisfy the canonical
anti-commutation relations:

{ψ̂σ(r), ψ̂†σ′(r
′)} = δ(r − r′)δσ,σ′ .

Solution:

n =
∑
σ

1

V

∑
k1,k2

e−i(k1−k2)r 〈0|
∏

|k|<kF ,σ′

ak,σ′a†k1,σ
âk2,σ

∏
|k′|<kF ,σ′′

a†k′,σ′′ |0〉

=
∑
σ

1

V

∑
|k1|,|k2|<kF

e−i(k1−k2)r 〈0|
|k|<kF ,σ′∏

σ′(k,σ′) 6=(k1,σ)

ak,σ′

|k′|<kF ,σ′′∏
σ′(k′,σ′′) 6=(k2,σ)

a†k′,σ′′ |0〉

=
∑
σ

1

V

∑
|k1|,|k2|<kF

e−i(k1−k2)rδk1,k2 = 2

∫
|k|<kF

d3k

(2π)3
=

k3F
3π2

The anti-commutation relation of the fermionic field is:{
ψ̂σ(r), ψ̂†σ′(r

′)
}

=
1

V

∑
k,k′

eik·re−ik
′·r′
(
âσ(k)â†σ′(k

′) + â†σ′(k
′)âσ(k)

)
=

1

V

∑
k,k′

eik·re−ik
′·r′
δσσ′δkk′

= δσσ′
1

V

∑
k

eik·(r−r
′) = δσσ′

∫
k

d3k

(2π)3
eik·(r−r

′) = δσσ′δ(r − r′)

(b) The one-particle correlation function is defined as follows:

Gσ(r − r′) = 〈Ψ0|ψ̂†σ(r)ψ̂σ(r′)|Ψ0〉.

This correlation function can be interpreted as the probability amplitude of an
electron with spin σ being destroyed at r′ and recreated at r. Demonstrate that it
gives:

Gσ(r − r′) =
3n

2

sinx− x cosx

x3
, x = kF |r − r′|.

Hint: Use the Fourier transform

Solution:

Gσ(r − r′) =
1

V

∑
k,k′

eik·re−ik
′·r′〈Ψ0|â†σ(k)âσ(k′)|Ψ0〉 =

{
1, k = k′, |k| 6 kF

0, otherwise

=
1

V

∑
|k|<kF

eik·(r−r
′)

=

kF∫
0

k2dk

1∫
−1

d cos θ

(2π)2
eik|r−r

′| cos θ =
1

(2π)2|r − r′|3

x∫
0

z2dz

1∫
−1

dyeiyz

=
3n(sinx− x cosx)

2x3
.



(c) The two-particle correlation function gives the probability amplitude to find a par-
ticle with spin σ′ at r′ when a particle with spin σ is already at r. It is defined as
follows:

gσ,σ′(r − r′) =
4

n2
〈Ψ0|n̂(r, σ)n̂(r′, σ′)|Ψ0〉 =

4

n2
〈Ψ0|ψ̂†σ(r)ψ̂†σ′(r

′)ψ̂σ′(r′)ψ̂σ(r)Ψ0〉.

Show that in the case where σ 6= σ′ (for any r and r′)

gσ,σ′(r − r′) = 1.

Solution:

gσ1σ2(r1 − r2) =
4

n2V 2

∑
k1,k

′
1

ei(k1−k′
1)·r1

∑
k2,k

′
2

ei(k2−k′
2)·r2〈Ψ0|â†σ1(k1)â

†
σ2

(k2)âσ2(k
′
2)âσ1(k

′
1)|Ψ0〉

=
4

n2V 2

∑
|k1|,|k′

1|<kF

ei(k1−k′
1)·r1

∑
|k2|,|k′

2|<kF

ei(k2−k′
2)·r2δk1k

′
1
δk2k

′
2

=
4

n2

[∫
|k|<kF

d3k

(2π)3

]2
= 1

(d) Show that only when we are in the case σ = σ′ the two -particle correlation function
can be expressed using the one-particle correlation function such that:

gσ,σ(r − r′) = 1− 4

n2
[Gσ(r − r′)]

2
.

Compare this result with the one of question (d) and and think about what all this
has to do with the Pauli principle.

Solution:

gσσ(r1 − r2) =
4

n2V 2

∑
k1,k

′
1

ei(k1−k′
1)·r1

∑
k2,k

′
2

ei(k2−k′
2)·r2〈Ψ0|â†σ(k1)â

†
σ(k2)âσ(k′2)âσ(k′1)|ψ0〉

=
4

n2V 2

∑
|k1|,|k′

1|<kF

ei(k1−k′
1)·r1

∑
|k2|,|k′

2|<kF

ei(k2−k′
2)·r2

[
δk1k

′
1
δk2k

′
2
− δk2k

′
1
δk1k

′
2

]
=

4

n2V 2

∑
|k1|,|k2|<kF

1− ei(k1−k2)·(r1−r2)

= 1− 4

n2
G2
σ(r1 − r2).

We notice that when particle are in the same spin state, we have a decrease of the
probability amplitude to observe both particles next to each others due to Pauli
repulsion.

(e) To understand the Pauli principle, calculate the following integral:

n

2

∫
d3r [gσ,σ(r − r′)− 1] .



How do you interpret the result ?

Solution:

n

2

∫
d3r [gσσ(r)− 1] = −9n

2

∫
d3r

(sin kF r − kF r cos kF r)
2

k6F r
6

= −18πn

k3F

∞∫
0

dx
(sinx− x cosx)2

x4
= −1.

This result stands for the negative correlation between fermions. One electron
repulses another one due to the Pauli principle. In other words, having created the
fermion with a spin σ at the position r we have less probability to observe another
electron with the same spin in a vicinity of r.

2. Thermodynamic perturbation theory (5 + 10 = 15 Points)

We consider a gas of spinless bosons of mass m in a volume V = L3, with periodic
boundary conditions for the wave functions. The particles interact via a potential
U(~r1 − ~r2) = U0δ(r1 − r2) with U0 > 0. The interaction part of the Hamiltonian

(Ĥ = Ĥ0 + Û) has the following form in secondary quantization representation:

Û =
U0

2V

∑
k1,k2,k3,k4

δk1+k2−k3−k4 â
†
k3
â†k4

âk2 âk1

The chemical potential µ and the temperature T are given.

(a) Consider Û as a small perturbation and show that the first-order correction in U0

to the grand canonical potential is given by

δΩ = 〈Û〉H0 =
tr
{
Ûe−β(Ĥ0−µN̂)

}
tr
{
e−β(Ĥ0−µN̂)

} .

(b) Calculate δΩ. The relevant matrix element can be generated either by different

states ~k1 6= ~k2 or by the same state ~k1 = ~k2. Consider these two cases separately.

Solution: (a) The grand thermodynamic potential is (we assume hereafter kB = 1)

Ω = −β lnZ

where β = T−1 is the inverse temperature and Z is the partition function. It reads

Z = tr
[
e−β(H0−µN+U)

]
.

Now we expand Z up to the first order in U . Using the cyclic permutations of operators
under the trace sign, we have for the matrix exponent:

tr
[
e−β(H0−µN+U)

]
=
∞∑
n=0

(−β)n

n!

[
tr
(
(H0 − µN)n

)
+ ntr

(
U(H0 − µN)n−1

)
+ ...

]
.



The first order correction by U yields after the resummation:

Z ≈ Z0 − βtr
[
Ue−β(H0−µN)

]
where the unperturbed partition function is Z0 = tr

[
e−β(H0−µN)

]
. Now we expand the

potential Ω in the first order by U :

Ω = −β ln
(
Z0 − βtr

[
Ue−β(H0−µN)

])
= −β ln

(
Z0

(
1− Z−10 βtr

[
Ue−β(H0−µN)

]))
≈

≈ −β lnZ0 + Z−10 tr
[
Ue−β(H0−µN)

]
= Ω0 + 〈U〉H0 .

Finally, we have for the first order correction δΩ ≡ Ω− Ω0 = 〈U〉H0 .

(b) Let us calculate 〈U〉H0 explicitly at k1 6= k2:

〈U〉H0,k1 6=k2 =
U0

2V

k1 6=k2∑
k1,k2,k3,k4

δk1+k2−k3,k4〈â
†
k3
â†k4

âk2 âk1〉 =

=
U0

2V

k1 6=k2∑
k1,k2,k3,k4

δk1+k2−k3−k4 (δk1,k4δk2,k3 + δk1,k3δk2,k4)Nk1Nk2 =

=
U0

V

∑
k1 6=k2

Nk1Nk2 .

Here, Nk ≡ 〈â†kâk〉 is the distribution function of bosons.

Consider now the case k1 = k2:

〈U〉H0,k1=k2 =
U0

2V

∑
k1,k3,k4

δ2k1−k3,k4〈â
†
k3
â†k4

âk1 âk1〉 =
U0

2V

∑
k

〈â†kâ
†
kâkâk〉.

For two indistinguishable particles, we have 〈â†kâ
†
kâkâk〉 = 2〈â†kâk〉

2 (this result also
reflects the well-known Wick theorem). We obtain

〈U〉H0,k1=k2 = 2
U0

2V

∑
k

N2
k

Summing up the both results, we have:

δΩ = 〈U〉H0 = 〈U〉H0,k1 6=k2 + 〈U〉H0,k1=k2 =
U0N

2

V
.

3. Operators in the secondary quantized representation (bonus exercise) (25
Points)

In the lecture, the second quantization for bosonic operators F̂ (1) =
∑
a

f̂ (1)
xa has been

derived: F̂ (1) =
∑
ij

〈i|f̂ (1)|j〉 b̂†i b̂j. Here, |i〉 are the single particle states and the operator



f̂ (1)
xa acts on coordinates xa. The diagonal elements (i = j) of the bosonic operators are

given by

〈N1, N2, . . . |F̂ (1)|N1, N2, . . .〉 =
∑
i

Ni〈i|f̂ (1)|i〉, (1)

where |N1, N2, ...〉 =

(
N1!N2! . . .

N !

)1/2∑
P

φP1(x1)φP2(x2) . . . φPN
(xN) is the symmetrized

bosonic wavefunction. φi(xi) are the single particle wave functions (i is a quantum num-
ber). The non-diagonal elements (i 6= j) are

〈. . . , Ni, . . . , Nj − 1, . . . |F̂ (1)| . . . , Ni − 1, . . . , Nj, . . .〉 =
√
NiNj 〈i|f̂ (1)|j〉 (2)

where N =
∑
i

Ni. Analogously to the single-particle operators, the two-particle

bosonic operators F̂ (2) are introduced

F̂ (2) =
1

2

∑
iklm

〈ik|f̂ (2)|lm〉 â†i â
†
kâmâl (3)

with the matrix elements 〈ik|f̂ (2)|lm〉 =

∫∫
dx1 dx2 φ

?
i (x1)φ

?
k(x2) f̂

(2) φl (x1)φm(x2).

Derive the expression for F̂ (2) =
∑
a<b

f
(2)
ab of the form (3) where the operator acts on

coordinates xa and xb. To do that, find the expressions for two-particle operators that
are analogous to (1) and (2). Distinguish whether f (2) acts twice on the same single-
particle state or on two different ones.

Solution:

Single-particle operators

In the lecture, the single-particle operators in second quantization picture have been
derived. For single-particle operators, there are two possible matrix elements, diagonal
and non-diagonal. For two-particle operators there are, however, multiple diagonal and
off-diagonal matrix elements.

First we repeat how the one-particle operators work. The single-particle states are
φi(x), where i is a quantum number (e.g. momentum) and x is the coordinate (e.g.
location). The symmetric product state is then given as

Ψs(N1, N2, . . .) =

√
N1!N2! . . .

N !

∑
P∈S?

N

[
φP (1)(1)φP (2)(2) . . . φP (N)(N)

]
In this notation, large numbers denote the coordinates, e.g., 3 ≡ x3. The number P (3)
denotes a permuted quantum number at the position 3.

The scalar product is defined as usual in quantum mechanics:∫
dXφ?P (i)(X)φP̃ (j)(X) ≡ 〈P (i)|P̃ (j)〉 .



For demonstration purposes we check the norm of the symmetrized bosonic many-body
state:

〈Ψs|Ψs|Ψs|Ψs〉 =
N1!N2! . . .

N !

∑
P,P̃

〈P (1)|P̃ (1)〉〈P (2)|P̃ (2)〉 . . .︸ ︷︷ ︸
δP,P̃

=
N1!N2! . . .

N !

∑
P

=
N1!N2! . . .

N !

N !

N1!N2! . . .
= 1

The sum
∑
P

1 =
N !

N1!N2! . . .
takes into account all allowed permutations. The not

allowed one is a permutation of two particles that occupy the same coordinate. (Such
a situation can not happen for fermions because of the Pauli principle.) Since the set
of allowed permutations is not SN (all permutations), we introduced P ∈ S?N in the
definition of Ψs.

In the following we write simply |Ψs(N1, N2, . . .)〉 ≡ |N1, N2, . . .〉.
Now we finally start with single-particle operators. First, consider the diagonal elements
for bosons:

〈F (1)〉 =
N∑
a=1

〈f (1)
xa 〉

where

〈N1, N2, . . .| f (1)
xa |N1, N2, . . .〉 =

N1!N2! . . .

N !

∑
P,P̃

〈P (1)|P̃ (1)〉 . . . 〈P (a)|f (1)
xa |P̃ (a)〉 . . .

=
N1!N2! . . .

N !

∑
P

〈P (a)|f (1)
xa |P̃ (a)〉

In the last step the following has happened: the operator at the position a does not act
on any other positions. Because of the orthonormality of the single-particle states, the
following applies P (1) = P̃ (1), P (2) = P̃ (2) etc. Only for P (a) and P̃ (a) this does not
applies because f (1) is not necessarily diagonal in φi(X). However, if P = P̃ for all but
one of the numbers from 1 . . . N holds, then this last number is also fixed: P (a) = P̃ (a),
so P = P̃ still applies to all 1 . . . N .

We build a permutation P by choosing the quantum numbers 1, . . . , N for i = P (a) that

contribute to a sum
N∑
i=1

. Now the sum runs over all permutations except the remaining

N − 1 numbers, that results in (N − 1)! identical contributions. But again we have to
extract wrong permutations. Here you have to note that from the original Ni particles



in the i-th state only Ni − 1 are available. Finally we obtain

〈N1, N2, . . .| f (1)
xa |N1, N2, . . .〉 =

N1!N2! . . .

N !

N∑
i=1

〈i|f (1)|i〉 (N − 1)!

N1! . . . (Ni − 1)! . . .

=
N∑
i=1

Ni

N
〈i|f (1)|i〉

We get the final result by taking the sum over a: enters:

〈N1, N2, . . .|F (1) |N1, N2, . . .〉 =
N∑
a=1

N∑
i=1

Ni

N
〈i|f (1)|i〉 =

∑
i

Ni〈i|f (1)|i〉

Now to the off-diagonal matrix elements:

〈. . . , Ni, . . . , Nj − 1, . . .| f (1)
xa |. . . , Ni − 1, . . . , Nj, . . .〉

=
N1! . . . Ni−1!Ni+1! . . . Nj−1!Nj+1! . . .

N !

√
Ni!(Ni − 1)!Nj!(Nj − 1)!×∑

P,P̃

〈P (1)|P̃ (1)〉 〈P (2)|P̃ (2)〉 . . . 〈P (a)|f (1)
xa |P̃ (a)〉 . . .

In this case, we choose P (a) = i and P̃ (a) = j. All further permutations P and P̃ must
be equal (with the same argumentation as with the diagonal elements):

=
N1! . . . Ni−1!Ni+1! . . . Nj−1!Nj+1! . . .

N !

√
Ni!(Ni − 1)!Nj!(Nj − 1)!

∑
P

〈i|f (1)|j〉

Again, only N − 1 particles are allowed to be permuted. We have to divide by the
numbers of wrong permutations of Ni − 1 and Nj − 1 particles:

=
N1! . . . Ni−1!Ni+1! . . . Nj−1!Nj+1! . . .

N !

√
Ni!(Ni − 1)!Nj!(Nj − 1)!〈i|f (1)|j〉 ×

(N − 1)!

N1! . . . (Ni − 1)!(Nj − 1)! . . .

=

√
NiNj

N
〈i|f (1)|j〉

The summation over a again eliminates the N in the denominator and we find for the
off-diagonal matrix element: 〈F (1)〉 =

√
NiNj 〈i| f (1) |j〉.

The operator can be written as

F (1) =
∑
ij

〈i| f (1) |j〉 a†iaj

because∑
ij

〈N1, N2, . . .| 〈i| f (1) |j〉 a†iaj |N1, N2, . . .〉

=
∑
ij

〈i| f (1) |j〉
√
NiNjδij =

∑
i

〈i| f (1) |i〉Ni



and∑
ij

〈. . . , Ni, . . . , Nj − 1, . . .| 〈i| f (1) |j〉 a†iaj |. . . , Ni − 1, . . . , Nj, . . .〉

= 〈i| f (1) |j〉
√
NiNj

for the non-diagonal elements. The sums are omitted here, since there is only one
contribution, and exactly when a†i acts on the state i and aj on the state j. One gets 0
in the opposite case due to the orthogonality of the states.

Two-particle operators:

In this part we arrive at two-particle operators, F (2) =
∑
a<b

f (2). Note the sum
∑
a<b

will

yield a factor N(N − 1)/2.

Diagonal elements for bosons:

〈N1, N2, . . .| f (2)
xaxb
|N1, N2, . . .〉 =

N1!N2! . . .

N !

∑
P,P̃

. . . 〈P (a)P (b)|f (2)
xaxb
|P̃ (a)P̃ (b)〉

=
N1!N2! . . .

N !

∑
P

〈P (a)P (b)|f (2)
xaxb
|P̃ (b)P̃ (a)〉

Here we have to distinguish between the two cases: either f (2) acts on two single-
particle states with the same quantum number i or on two single-particle states with
the different quantum numbers i and j:

〈N1, N2, . . .| f (2)
xaxb
|N1, N2, . . .〉 =

=


N1!N2! . . .

N !

∑
i

〈ii|f (2)|ii〉 (N − 2)!

N1! . . . (Ni − 2)! . . .
=
∑
i

Ni(Ni − 1)

N(N − 1)
〈ii|f (2)|ii〉

= . . . =
∑
ij

NiNj

N(N − 1)

(
〈ij|f (2)|ji〉+ 〈ij|f (2)|ij〉

)
We also obtain

〈F (2)〉 =
∑
a<b

∑
i

Ni(Ni − 1)

N(N − 1)
〈ii|f (2)|ii〉 =

1

2

∑
i

〈ii|f (2)|ii〉Ni(Ni − 1) (4)

and

〈F (2)〉 =
1

2

∑
i 6=j

(
〈ij|f (2)|ji〉+ 〈ij|f (2)|ij〉

)
NiNj . (5)

One more comment concerning the permutations. We calculated
∑
P

as follows: We

choose i = P (a) and j = P (b) (and vice versa) from the set 1 . . . N . The remaining
(N−2) numbers are permuted, which results in the factor (N−2)!. The matrix element



(4) is zero due to the Pauli principle. Calculating (5) we should be careful with the
fermion permutation sign. As a result, we obtain:

〈N1, N2, . . .| f (2)
xaxb
|N1, N2, . . .〉=

1

N !

∑
P,P̃

(−1)χP (−1)χP̃ . . .〈P (a)P (b)|f (2)
xaxb
|P̃ (a)P̃ (b)〉

=
1

N !

N∑
i=1

N∑
j=1
j 6=i

(
〈ij|f (2)|ij〉 − 〈ij|f (2)|ji〉

)
(N − 2)!

〈F (2)〉 =
∑
i,j

1

2

(
〈ij|f (2)|ij〉 − 〈ij|f (2)|ji〉

)

Non-diagonal elements for bosons:

〈Ni, . . . , Nj, . . . , Nl − 1| f (2)
xaxb
|Ni − 1, . . . , Nj, . . . , Nl〉 =

N1! . . . , Nj! . . .

N !

√
Ni!(Ni − 1)!Nl!(Nl − 1)!

∑
P,P̃

. . . 〈P (a)P (b)|f (2)
xaxb
|P̃ (a)P̃ (b)〉

=
· · ·
· · ·
√
· · ·

∑
j

(
〈ij|f (2)|lj〉+ 〈ij|f (2)|jl〉

) (N − 2)!

N1! . . . (Ni − 1)!(Nj − 1)!(Nl − 1)! . . .

=
∑
j

Nj

√
NiNl

N(N − 1)

(
〈ij|f (2)|lj〉+ 〈ij|f (2)|jl〉

)

〈F (2)〉 =
∑
j

1

2
Nj

√
NiNl

(
〈ij|f (2)|lj〉+ 〈ij|f (2)|jl〉

)

Analogously, the following non-diagonal matrix elements can be found for bosons:

〈. . . Ni . . . Nj − 1 . . . Nl . . . Nm − 1 . . .|F (2) |. . . Ni − 1 . . . Nj . . . Nl − 1 . . . Nm . . .〉

=
1

2

√
NiNjNlNm

(
〈il|f (2)|jm〉+ 〈il|f (2)|mj〉

)
(6)

and

〈. . . Ni . . . Nl − 2 . . .|F (2) |. . . Ni − 2 . . . Nl . . .〉

=
1

2

√
Ni(Ni − 1)Nl(Nl − 1) 〈ii|f (2)|ll〉 (7)


