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1. Hartree-Fock approximation in graphene (10 + 20 + 20 = 50 Points)

In the lecture notes, the Hartree-Fock equations have been derived for the Jellium
model which assumes a homogeneous distribution of ions. However, we know that the
ion cristalline structure modifies the dispersion relation. We propose in this exercise
to do the same derivation for the graphene near one of the Dirac points. A special
feature is that in addition to the position and spin coordinates, a sublattice coordinate
α = A,B is needed. Then the field operator is a 2-spinor in A,B-space, Ψ̂α,σ(r). The
Hamilton operator is

Ĥ =
∑
σ,α,β

∫
d2r
{

Ψ̂†α,σ(r)hα,βΨ̂β,σ(r) + Ψ̂†α,σ(r)U (1)(r)δα,βΨ̂β,σ(r)
}

+
∑

σ1,σ2,α1,α2

1

2

∫ ∫
d2r1d

2r2 Ψ̂†α1,σ1
(r1)Ψ̂†α2,σ2

(r2)
e2

|r1 − r2|
Ψ̂α2,σ2

(r2)Ψ̂α1,σ1
(r1) .

The Potential U (1)(r) is the homogeneous part of the Jellium potential for ions (the
inhomogeneous part, i.e. crystalline structure, is already taken into account by hα,β).

The 2×2 matrix hα,β is the Hamiltonian operator in graphene in the vicinity of a Dirac
Point:

ĥ = v

(
0 px + ipy

px − ipy 0

)
.

This representation is correct for momentum |p| < Λ, where Λ is a cut-off. The energy
spectrum is then linear Ep = ±v|p|. For simplicity, we consider only one valley.

Category A

(a) Derive the Hartree-Fock equations.

Solution: First, we substitute the definition of Ψ̂-operators, Ψ̂α,σ(r) =
∑
p

φα,σ,p(r)ĉp,

into the Hamiltonian (p is the momentum that labels the unknown single-particle
eigenstates φα,σ,p(r) of H, φα,σ,p(r) is a bispinor):

Ĥ =
∑
σ,α,β

∫
d2r
∑
p,p′

φ∗α,σ,p(r)
(
hα,β + U (1)(r)

)
φβ,σ,p(r)ĉ†pĉp′ +

+
1

2

∑
σ1,2,α1,2

∫∫
d2r1d

2r2

∑
p,k,k′,p′

φ∗α1,σ1,p
(r1)φ∗α2,σ2,k

(r2)
e2

|r1 − r2|
φα2,σ2,k′(r2)φα1,σ1,p′(r1)×

×ĉ†pĉ
†
kĉk′ ĉp′ .



The ground state, which determines the Fermi sea, is |Φ〉=
∏

α,σ,|p|<kF

ĉ†α,σ,p|vacuum〉. In

the Jellium model, the ion potential is U (1)(r) = −nU0, where n is the density of

ions and the extensive constant U0 is given by U0 =

∫
d2r

e2

|r|
. Then we define the

Lagrange functional L with the multipliers Ep:

L = 〈Φ|Ĥ|Φ〉 −
∑
α,σ,p

Ep
∫
d2r|φα,σ,p(r)|2 .

For the unperturbed part we have for the average:

〈Φ|ĉ†pĉp′|Φ〉 = δp,p′ .

For the interaction term we have:

〈Φ|ĉ†pĉ
†
kĉk′ ĉp′|Φ〉 = δp,p′δk,k′ − δp,k′δk,p′ .

Now we can write for the energy stored by the state |Φ〉 (in all sums we assume
|p| < kF ):

〈Φ|Ĥ|Φ〉 =
∑
σ,α,β

∫
d2r
∑
p

φ∗α,σ,p(r)
(
hα,β − nU0

)
φβ,σ,p(r) +

+
1

2

∑
σ1,2,α1,2

∫∫
d2r1d

2r2

∑
p,k

φ∗α1,σ1,p
(r1)φ∗α2,σ2,k

(r2)
e2

|r1 − r2|
φα2,σ2,k

(r2)φα1,σ1,p
(r1)−

− 1

2

∑
σ1,2,α1,2

∫∫
d2r1d

2r2

∑
p,k

φ∗α1,σ1,p
(r1)φ∗α2,σ2,k

(r2)
e2

|r1 − r2|
φα2,σ2,p

(r2)φα1,σ1,k
(r1)

The condition for the variation of the Lagrangian,
δL

δφ∗α,σ,p(r)
= 0, yields

Epφα,σ,p(r) =
δ〈Φ|Ĥ|Φ〉
δφ∗α,σ,p(r)

=
∑
β

(
hα,β − nU0δα,β

)
φβ,σ,p(r)+

+
∑
σ1,α1

∫
d2r1

∑
k

φ∗α1,σ1,k
(r1)

e2

|r− r1|
φα1,σ1,k

(r1)φα,σ,p(r)−

−
∑
σ1,α1

∫
d2r1

∑
k

φ∗α1,σ1,k
(r1)

e2

|r− r1|
φα,σ,k(r)φα1,σ1,p

(r1) .

In the second line (Hartree term), we calculate the sum over one of momenta k and

obtain an electron density at the position r1: n(r1) =
∑
α1,σ1,k

φ∗α1,σ1,k
(r1)φα1,σ1,k

(r1).

Assuming that n(r1) is homogeneous, i.e., n(r1) = n, the integral over r1 yields∫
d2r1

e2n(r1)

|r− r1|
= nU0. As a result, the Hartree term cancels the term related to ion

density in the first line. Finally, the Hartree-Fock equation reads:

Epφα,σ,p(r) =
∑
β

hα,βφβ,σ,p(r)−
∑
σ1,α1

∫
d2r1

∑
k

φ∗α1,σ1,k
(r1)

e2

|r− r1|
φα,σ,k(r)φα1,σ1,p

(r1) .



In this equation, the Fock term can be also written as a convolution,

Epφα,σ,p(r) =
∑
β

hα,βφβ,σ,p(r)−
∑
σ1,β

∫
d2r1Fα,β,σ,σ1(r, r1)φβ,σ1,p(r1) .

Here, the effective matrix potential Fα,β,σ,σ1 acting on φα,σ,p(r1) is created by other
particles; it reads

Fα,β,σ,σ1(r, r1) =
∑
k

φα,σ,k(r)
e2

|r− r1|
φ∗β,σ1,k(r1).

(b) Show that the eigenstates of the operator ĥ are also solutions of Hartree-Fock equa-
tions.

Use the following representation:

ĥ = vp

(
0 eiϕp

e−iϕp 0

)
,

where
cosϕp =

px
p
, sinϕp =

py
p
, p ≡ |p|.

Solution: We obtain below an approximate solution of the Hartree-Fock equation
in graphene. The equation is non-linear and one can solve it iteratively. Let us find
the solution after the first iteration, φ(1)

α,σ,p. In this case, the zero approximation for
φα,σ,p is given by the known wave functions of non-interacting electrons in graphene,
ψα,σ,p, i.e., φ(0)

α,σ,p = ψα,σ,p. Namely, ψα,σ,p satisfies the Schrödinger equation with

the non-interacting Hamiltonian,
∑
β

hα,βψβ,p(r) = E (0)
p ψα,p(r). (The spin operators

commute with h, hence, we omitted the σ-index here.) This solution is given by

a spinor in α-space: ψp,b(r) =
1√
2S

(
beiθp

1

)
eipr where S is the area in 2D space

and θp = arctan
py
px

. The energies corresponding to the wave vectors p define the

Dirac spectrum E (0)
p = bvp, where p =

√
p2
x + p2

y and b = ±1 determines the states

in the upper (lower) Dirac cones. We use this solution to obtain an approximate

form of the potential Fα,β,σ,σ1(r, r1) ≈ δσ,σ1F
(0)
α,β(r − r1) where F

(0)
α,β-matrix involves

φ(0)
α,p = ψα,p:

F (0)(r) =
1

2S

∑
k

e2eikr

|r|

[
beiθk

1

] [
be−iθk 1

]
=

e2

2S|r|
∑
k

eikr
[

1 beiθk

be−iθk 1

]
.

The equation for φ(1)
α,σ,p becomes linear under the above approximation:

E (1)
p φ(1)

α,p(r) =
∑
β

hα,βφ
(1)
β,σ,p(r)−

∑
β

∫
d2r1F

(0)
α,β(r− r1)φ

(1)
β,p(r1) .

We find solutions in a basis of plane waves, φ
(1)
α,b,p(r) = Cα,b,pe

ipr, where Cα,p-
components are to be found. Using this substitution, we have

E (1)
p,bCα,b,p =

∑
β

(
hα,β,p − F (0)

α,β,p

)
Cβ,b,p .



where the Fourier transformed matrix potential is F (0)
p =

∫
d2rF (0)(r)e−ipr. It

reads

F (0)
p =

∫
d2r

e2

2S|r|
∑
k

e−i(p−k)r

[
1 beiθk

be−iθk 1

]
= Λ

e2

2

[
1 0
0 1

]
+b
∑
k

Up−k

[
0 eiθk

e−iθk 0

]
(1)

where Λ is a cutoff momentum (it determines the minimal possible distance in our
theory, |r| ∼ 1/Λ) and the Fourier transformed Coulomb potential,

Uq =

∫
d2r

e2

2S|r|
e−iqr =

e2

2S

∞∫
0

rdr

2π∫
0

dϕ
e−i|q|r cosϕ

r
=

e2

2S

π∫
0

dϕ

∞∫
−∞

e−i|q|x cosϕdx =

=
e2

2S

π∫
0

dϕ2πδ(|q| cosϕ) =
πe2

S|q|
.

The term ∼ Λ in (1) is not important, it shifts the background potential. The
second one in (1) is most relevant:

b
∑
k

Up−k

[
0 eiθk

e−iθk 0

]
= b

∫
Sd2k

(2π)2

πe2

S|p− k|

[
0 eiθk

e−iθk 0

]
=

= b
e2

4π

∞∫
0

2π∫
0

kdkdϕ√
p2 + k2 − 2pk cosϕ

[
0 eiθp+iϕ

e−iθp−iϕ 0

]
.

In the last line we introduced the angle ϕ between k and p. Hence, the angle of the
vector k is θk = θp + ϕ. We should leave only the even in ϕ part of the integrand
(∼ cosϕ) because the odd one (∼ sinϕ) gives zero. As a result, we have for the
Fock term:

b
∑
k

Up−k

[
0 eiθk

e−iθk 0

]
= b~Vp

[
0 px + ipy

px − ipy 0

]
(2)

where the momentum dependent correction for the velocity v of Dirac fermions has
been introduced,

Vp =
e2

4π~p

∞∫
0

2π∫
0

k cosϕ dkdϕ√
p2 + k2 − 2pk cosϕ

. (3)

We note that the matrix structure in (2) is the same as for the graphene Hamiltonian

hp = ~v
[

0 px + ipy
px − ipy 0

]
. It means that the wave functions, which are given

by the solution Cp of Hartree-Fock equation are the same as for ψp in the non-
interacting case. However, the dispersion relation E (1)

p changes, i.e., the Dirac cone
is deformed:

E (1)
±,p = ±~(v + Vp)p .

In this result we have chosen b = −1 in the Fock term (2) to obtain the positive
energies E (1)

p > 0 in the conduction band. The negative sign b = −1 compensates

the minus sign in the Fock term. To obtain E (1)
p < 0 in the valence band with we

choose b = 1 in the Fock term.

Category B



(c) Assume that the lower band is occupied while the upper band is empty. Using
the Fock correction, derive the following results for the effective Hartree-Fock band
energy:

Ep = ±v(p)|p|, v(p) = v

(
1 +

e2

4~v
ln

Λ

|p|

)
.

Solution: If the valence band is occupied and the conduction one is empty then the
Fermi level crosses the Dirac point where p = 0. We calculate Vp near this point
(the long wavelength limit of small p). The integral (3) is accumulated at large
momenta k ∼ Λ while at small ones, k . p, the integrating function is regular.
To obtain the asymptotic expression for Vp we expand the integrand in the leading
order in small 1/k and set the lower limit as p (it plays a role of the cutoff at small
momenta):

Vp ≈
e2

4π~p

Λ∫
p

dk

2π∫
0

(
1 +

p

k
cosϕ

)
cosϕ dϕ =

e2

4~

Λ∫
p

dk

k
=
e2

4~
ln

Λ

p
.

Finally, we find for the renormalized velocity near the Dirac point:

v(p) = v

(
1 +

e2

4v~
ln

Λ

p

)
.

It diverges logarithmically at p→ 0.


