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1. Phonons in two-dimensional triangular lattice (154+10=25 Points)

Consider a two-dimensional triangular lattice of particles of mass m and lattice con-
stant a. Let 7;; is a set of six unit vectors pointing from the equilibrium location
R; of the particle ¢ to the equilibrium location of six nearest neighbor particles with
the coordinates ﬁj. Let u; gives the two-dimensional displacement of the particle
¢ from its equilibrium location. Suppose that the force acting on the particle 7 is

F, = mwéZFiﬁj (ﬁﬁj (U — ﬁz)) (Note that j in the sum indexes the six nearest
J

neighbors of i.)
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FTo ﬁi, where the

displacement at the moment of time ¢ is u;(t). Use the plane wave ansatz of the form

(a) Consider the Newtonian equation of motion of i-particle, m

—

u; p(t) = A,;emjk’“"ﬁt, derive a set of two equations on the components of the vector

— A —
A= < Az> , which determines the amplitude of the plane wave of the momentum k and
y
frequency wy. Obtain the equation for the dispersion relation wj for vibrations of the

lattice.

. : ) . (1 [ 1)2 _[(-1)2
Solution: The unit vectors for all j read ry ; = <0>, ry; = <\/§/2> rs; = (\/3/2>

— —-1/2 1/2 -
ry; = < 01), rs; = <_\/§//2>’ re; = <_\//§/2) The force F; can be written in a

matrix form:

F, = 77;/(,‘_)(2] Z ri,jrz:j (uj — ui) — QWLwOeikRi*iwkt (|:é 8:| (cos(akr)—l)—F

KR, —i A
— _an(Q]eLkRZ Mkt]\/fk[ T :

Y

Ay
k., 3k .aky, . 3k,
3 — 2cos(ak,) — cos @B cos av/3hy V3sin 2% sin av/3k,
where My = 2 2 2 2
. ak, . aV3k, ak, a/\/gk:y
3sin 53 sin 5 : 3 — 3cos cos 5 :

. . . Ay Ay o
The classical equation of motion becomes wp [ A ] = wj My [ A ] This yields the
v v



eigenvalue problem: det(wj — wg M) = 0. This equation has two solutions,

ak, a\/§ky
cos

2 2

wio(k) = (3 — 2cos ak, — cos F

k
\/§2a Y + (2cos(ak,) — 1) cos \/gaky — cos ak, + cos 2ak,

1 ak,
—1 /3 — 4cos — cos ak, cos
2 \/ 2

that determine two phonon modes (see Figure).

(b) Take the long wavelength limit, i.e., & — 0, and find the transverse and longitu-
dinal phonon velocities of the lattice. (The transverse component of the velocity is
perpendicular to k& and the longitudinal one is parallel to k.)

1
Solution: In the long wavelength limit, k,, < —, the matrix My in the leading order
a

in k reads 2 )
a a
< (32 + k) Z(Bkwky)
Mo = a2 0%, ,
Z(3kmk:y) 'y (lcm + 3l<:y)

The solution of det(wj — wa My_0) = 0 and the respective eigenvectors read:

3 —
wi(k<a™) = %wm, A~ { e ] ,
Y

and

3 -
CUQ(k<<CL_1) = m&&){ﬂkh A2 ~ |:Zz:| .
Yy

The eigenvector A is perpendicular to k, i.e., the mode wy is transversal; it has the ve-

3 -
locity v; = Q—ﬁawo. The eigenvector A, is parallel to k, i.e., the mode wy is longitudinal
3
and has the velocity vy = ——=awy.
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Category B

. Phonons in graphene ( 25 Points)

Consider the honeycomb lattice in graphene. Let Rfr":])ﬂ and Rgﬁ)n denotes respectively
the position of ions in sublattice A and B where m and n stand for the indices of the
Bravais cell. The distance between neighbouring ions A and B at rest is set to 1 and
one considers only nearest-neighbor couplings within harmonic approximation. The
potential energy between neighbouring ions is given by:
2
- 1) } .

3 2 |t - min] 1) (R - R

Find the phonon spectrum of graphene assuming that the carbon atoms move only
within the two-dimensional plane.

m—1,n

1)2 + (‘R;le ~RP

Solution:

The position of each ion can be represented by the average position R (position at
rest) plus a deviation w (displacement field). There are two ions (A and B) per unit
cell.

A(0
Rmfn) = ma; + nas,

and

REL(”) ma, + nas — (537

where the lattice vectors are:
3 3
C'/1_51—(53_\2[ <\/§71>7 02_52—53_\2[ (\/57_1>7
where §; points to the nearest neighbor (see Figure):

= (1.v3), &=5(1-v3), &=(-10).

Now, the position of ions A and B can be written as:

RY = ma, + nay + u( ) Rff,)l = maj + nas — 03 + Uy(fq)m

m,n

The potential energy is:

) (’Rm n R1(nBiZL71

)
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When we develop the expression up to order 2 we obtain in w :

UA):K

2
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Equation of motions are:

2
ML (A oy
Az g (uii?)
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Explicitely it gives:

e W), = 5 ), = [, g () g () ]

\/g A A
0 (), - (with) -

Using the Fourier transform of u :

(A,B) _ A(AB) iwt_—iR%) q
(umyn )xy _ Axyy € € o )

The dispersion relation is written in matrix form:

M o, 1
M 2A=-DA
K Y i



where

T Y x v
and
6 0 — [4 + el 4 emlq] V3 [emzq — emlq}
Z/D\ B 0 6 \/g [eia2q _ eia1q] -3 [eiazq + eialq]
=1 [4 + 6—i02q + e—ialq} \/g [e—iazq o e—ialq} 6 0
\/g [e—iazq _ e—ialq} -3 [6—ia2q + e—ialq} 0 6

The eigenvalues of D are:

3¢, 3
Eq =12, FEyp =0, Ei:6:|:2\/3+4cos% cos%—l—Zcosx/gqy.

The expansion for small ¢ (here ¢ = |q|) is:

We find two acoustic phonons

w2 =0, w-=1\/ 577G,

8M

and two optical phonons

3K 3K ] q
COEN T T g 16)

The two phonons wy; and wpe have no dispersion. This is an artefact of our approxi-
mation. Phonons in graphene are better described when one considers next-to-nearest
neighbour couplings.



