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Category A

1. Phonons in two-dimensional triangular lattice (15+10=25 Points)

Consider a two-dimensional triangular lattice of particles of mass m and lattice con-
stant a. Let ~ri,j is a set of six unit vectors pointing from the equilibrium location
~Ri of the particle i to the equilibrium location of six nearest neighbor particles with
the coordinates ~Rj. Let ~ui gives the two-dimensional displacement of the particle
i from its equilibrium location. Suppose that the force acting on the particle i is
~Fi = mω2

0

∑
j

~ri,j
(
~ri,j · (~uj − ~ui)

)
. (Note that j in the sum indexes the six nearest

neighbors of i.)

(a) Consider the Newtonian equation of motion of i-particle, m
d2~ui

dt2
= ~Fi, where the

displacement at the moment of time t is ui(t). Use the plane wave ansatz of the form

~uj,~k(t) = A~ke
i ~Rj

~k−iω~k
t, derive a set of two equations on the components of the vector

~A =

(
Ax

Ay

)
, which determines the amplitude of the plane wave of the momentum ~k and

frequency ω~k. Obtain the equation for the dispersion relation ω~k for vibrations of the
lattice.

Solution: The unit vectors for all j read r1,j =

(
1
0

)
, r2,j =

(
1/2√
3/2

)
, r3,j =

(
−1/2√

3/2

)
,

r4,j =

(
−1
0

)
, r5,j =

(
−1/2

−
√

3/2

)
, r6,j =

(
1/2

−
√

3/2

)
. The force ~Fi can be written in a

matrix form:

Fi = mω2
0

∑
j

ri,jr
T
i,j(uj − ui) = 2mω0e

ikRi−iωkt

([
1 0
0 0

]
(cos(akx)−1)+

+

[
1/4

√
3/4√

3/4 3/4

]
(cos a

kx+
√

3ky
2

−1) +

[
1/4 −

√
3/4

−
√

3/4 3/4

]
(cos a

kx−
√

3ky
2

−1)

)[
Ax

Ay

]
=

= −mω2
0e

ikRi−iωktMk

[
Ax

Ay

]
,

where Mk =

3− 2 cos(akx)− cos
akx
2

cos
a
√

3ky
2

√
3 sin

akx
2

sin
a
√

3ky
2

√
3 sin

akx
2

sin
a
√

3ky
2

3− 3 cos
akx
2

cos
a
√

3ky
2


The classical equation of motion becomes ω2

k

[
Ax

Ay

]
= ω2

0Mk

[
Ax

Ay

]
. This yields the



eigenvalue problem: det(ω2
k − ω2

0Mk) = 0. This equation has two solutions,

ω1,2(k) =

(
3− 2 cos akx − cos

akx
2

cos
a
√

3ky
2
∓

∓ 1√
2

√
3− 4 cos

akx
2

cos akx cos

√
3aky
2

+ (2 cos(akx)− 1) cos
√

3aky − cos akx + cos 2akx


1
2

,

that determine two phonon modes (see Figure).

ω1(k)

ω2(k)

kxa

kya

ω
(k)

/ω 0

(b) Take the long wavelength limit, i.e., k → 0, and find the transverse and longitu-
dinal phonon velocities of the lattice. (The transverse component of the velocity is

perpendicular to ~k and the longitudinal one is parallel to ~k.)

Solution: In the long wavelength limit, kx,y �
1

a
, the matrix Mk in the leading order

in k reads

Mk→0 ≈

 3a2

8

(
3k2

x + k2
y

) a2

4
(3kxky)

a2

4
(3kxky)

3a2

8

(
k2
x + 3k2

y

)
 .

The solution of det(ω2
k − ω2

0Mk→0) = 0 and the respective eigenvectors read:

ω1(k�a−1) =

√
3

2
√

2
aω0|k|, ~A1 ∼

[
kx
−ky

]
,

and

ω2(k�a−1) =
3

2
√

2
aω0|k|, ~A2 ∼

[
kx
ky

]
.

The eigenvector ~A1 is perpendicular to k, i.e., the mode ω1 is transversal; it has the ve-

locity v1 =

√
3

2
√

2
aω0. The eigenvector ~A2 is parallel to k, i.e., the mode ω2 is longitudinal

and has the velocity v2 =
3

2
√

2
aω0.



Category B

2. Phonons in graphene ( 25 Points)

Consider the honeycomb lattice in graphene. Let R(A)
m,n and R(B)

m,n denotes respectively
the position of ions in sublattice A and B where m and n stand for the indices of the
Bravais cell. The distance between neighbouring ions A and B at rest is set to 1 and
one considers only nearest-neighbor couplings within harmonic approximation. The
potential energy between neighbouring ions is given by:

U =
K

2

∑
m,n

[(∣∣∣R(A)
m,n −R(B)

m,n

∣∣∣− 1
)2

+
(∣∣∣R(A)

m,n −R
(B)
m,n−1

∣∣∣− 1
)2

+
(∣∣∣R(A)

m,n −R
(B)
m−1,n

∣∣∣− 1
)2]

.

Find the phonon spectrum of graphene assuming that the carbon atoms move only
within the two-dimensional plane.

Solution:

The position of each ion can be represented by the average position R(0) (position at
rest) plus a deviation u (displacement field). There are two ions (A and B) per unit
cell.

RA(0)
m,n = ma1 + na2,

and
RB(0)

m,n = ma1 + na2 − δ3,

where the lattice vectors are:

a1 = δ1 − δ3 =

√
3

2

(√
3, 1
)
, a2 = δ2 − δ3 =

√
3

2

(√
3,−1

)
,

where δj points to the nearest neighbor (see Figure):

δ1 =
1

2

(
1,
√

3
)
, δ2 =

1

2

(
1,−
√

3
)
, δ3 = (−1, 0) .

Now, the position of ions A and B can be written as:

R(A)
m,n = ma1 + na2 + u(A)

m,n, R(B)
m,n = ma1 + na2 − δ3 + u(B)

m,n.

The potential energy is:

U =
K

2

∑
m,n

[(∣∣∣R(A)
m,n −R(B)

m,n

∣∣∣− 1
)2

+
(∣∣∣R(A)

m,n −R
(B)
m,n−1

∣∣∣− 1
)2

+
(∣∣∣R(A)

m,n −R
(B)
m−1,n

∣∣∣− 1
)2]

.



When we develop the expression up to order 2 we obtain in u :

U (A)
m,n =

K

2

{[(
u(A)

m,n

)
x
−
(
u(B)

m,n

)
x

]2
+

1

4

[(
u(A)

m,n

)
x
−
(
u

(B)
m,n−1

)
x
−
√

3
(
u(A)

m,n

)
y

+
√

3
(
u

(B)
m,n−1

)
y

]2

+
1

4

[(
u(A)

m,n

)
x
−
(
u

(B)
m−1,n

)
x

+
√

3
(
u(A)

m,n

)
y
−
√

3
(
u

(B)
m−1,n

)
y

]2}
.

Equation of motions are:

M
d2

dt2
(
u(A,B)

m,n

)
x,y

= − ∂U

∂
(
u

(A,B)
m,n

)
x,y

.

Explicitely it gives:

−M

K

d2

dt2
(
u(A)

m,n

)
x

=
3

2

(
u(A)

m,n

)
x
−
[(
u(B)

m,n

)
x

+
1

4

(
u

(B)
m,n−1

)
x

+
1

4

(
u

(B)
m−1,n

)
x

]

+

√
3

4

[(
u

(B)
m,n−1

)
y
−
(
u

(B)
m−1,n

)
y

]
,

−M

K

d2

dt2
(
u(A)

m,n

)
y

=
3

2

(
u(A)

m,n

)
y
− 3

4

[(
u

(B)
m,n−1

)
y

+
(
u

(B)
m−1,n

)
y

]

+

√
3

4

[(
u

(B)
m,n−1

)
x
−
(
u

(B)
m−1,n

)
x

]
,

−M

K

d2

dt2
(
u(B)

m,n

)
x

=
3

2

(
u(B)

m,n

)
x
−
[(
u(A)

m,n

)
x

+
1

4

(
u

(A)
m,n+1

)
x

+
1

4

(
u

(A)
m+1,n

)
x

]

+

√
3

4

[(
u

(A)
m,n+1

)
y
−
(
u

(A)
m+1,n

)
y

]
,

−M

K

d2

dt2
(
u(B)

m,n

)
y

=
3

2

(
u(B)

m,n

)
y
− 3

4

[(
u

(A)
m,n+1

)
y

+
(
u

(A)
m+1,n

)
y

]

+

√
3

4

[(
u

(A)
m,n+1

)
x
−
(
u

(A)
m+1,n

)
x

]
.

Using the Fourier transform of u :(
u(A,B)

m,n

)
x,y

= A(A,B)
x,y eiωte−iR

A(0)
m,n .q,

The dispersion relation is written in matrix form:

M

K
ω2A =

1

4
D̂A,



where
AT =

(
A(A)

x , A(A)
y , A(B)

x , A(B)
y

)
,

and

D̂ =


6 0 −

[
4 + eia2q + eia1q

] √
3
[
eia2q − eia1q

]
0 6

√
3
[
eia2q − eia1q

]
−3
[
eia2q + eia1q

]
−
[
4 + e−ia2q + e−ia1q

] √
3
[
e−ia2q − e−ia1q

]
6 0√

3
[
e−ia2q − e−ia1q

]
−3
[
e−ia2q + e−ia1q

]
0 6

 .

The eigenvalues of D̂ are:

E01 = 12, E02 = 0, E± = 6± 2

√
3 + 4 cos

3qx
2

cos

√
3qy
2

+ 2 cos
√

3qy.

The expansion for small q (here q = |q|) is:

E− ≈
3

2
q2, E+ ≈ 12− 3

2
q2.

We find two acoustic phonons

ω02 = 0, ω− ≈
√

3K

8M
q,

and two optical phonons

ω01 ≈
√

3K

M
, ω+ ≈

√
3K

M

(
1− q2

16

)
.

The two phonons ω01 and ω02 have no dispersion. This is an artefact of our approxi-
mation. Phonons in graphene are better described when one considers next-to-nearest
neighbour couplings.


