INSTITUTE FOR THEORETICAL CONDENSED MATTER PHYSICS

Condensed Matter Theory I WS 2022/2023

Prof. Dr. A. Shnirman	Sheet 12
Dr. D. Shapiro, Dr. H. Perrin	Tutorial: 02.02.2022

Category A

- 1. Dielectric function for the non-interacting electron gas (15 + 10 = 25 points)In this problem, we propose to compute the dielectric function for the non-interacting electron gas, $\epsilon(\boldsymbol{q}, \omega)$. Consider a semi-classical electron gas with band mass m.
 - (a) Starting from the Boltzmann equation at equilibrium with the electric field $\boldsymbol{E} = \boldsymbol{E}_0 e^{i(\boldsymbol{q}\boldsymbol{r}-\omega t)} = -\nabla_{\vec{r}}\varphi(\vec{r},t)$, show that the induced current in Fourier space is

$$\mathbf{j}_{\text{ind}}(\mathbf{q},\omega) = \frac{e^2 k_F^3}{(2\pi)^2 m \omega} \left[\frac{2}{3} + \frac{2}{5} \left(\frac{k_F q}{m \omega}\right)^2\right] \mathbf{q}\varphi(\mathbf{q},\omega)$$

for small \mathbf{q} .

(b) Derive the relation

$$\mathbf{j}_{\text{ind}}(\mathbf{q},\omega) = -\frac{i\omega}{4\pi} [\epsilon(\mathbf{q},\omega) - 1] \mathbf{E}(\mathbf{q},\omega) = -\frac{\omega}{4\pi} [\epsilon(\mathbf{q},\omega) - 1] \mathbf{q}\varphi(\mathbf{q},\omega)$$

using the continuity equation for the induced current and density, $\omega \rho_{\text{ind}} = \mathbf{q} \cdot \mathbf{j}_{\text{ind}}$, the relation between ρ_{ind} and the polarisation \mathbf{P} , $\rho_{\text{ind}} = -i\mathbf{q} \cdot \mathbf{P}$, where $\mathbf{P} = \frac{\epsilon(\mathbf{q},\omega) - 1}{4\pi} \mathbf{E}$. Then, identify the dielectric function $\epsilon(\mathbf{q},\omega)$.

Category B

2. Debye-Waller factor

(5+5+5+10 = 25 Points)

In the lecture the following expression for the structure factor of phonons for a monoatomic crystal was derived

$$S(\boldsymbol{q},\omega) = e^{-2W} \int \frac{dt}{2\pi} e^{i\omega t} \sum_{\boldsymbol{R}} e^{-i\boldsymbol{q}\boldsymbol{R}} \exp\langle [\boldsymbol{q}\boldsymbol{u}(0)] [\boldsymbol{q}\boldsymbol{u}(\boldsymbol{R},t)] \rangle,$$

where $\boldsymbol{u}(\boldsymbol{R},t)$ is the atomic displacement, \boldsymbol{R} denotes the vectors of the Bravais lattice, and W is the Debye-Waller factor, given by the expression

$$W = \frac{1}{2} \langle [\boldsymbol{q}\boldsymbol{u}(0)]^2 \rangle.$$

(a) Show, that the Debye-Waller factor can be written as

$$W = \frac{V}{2} \int \frac{d^d k}{(2\pi)^d} \sum_s \frac{[\boldsymbol{q}\boldsymbol{\epsilon}_s(\boldsymbol{k})]^2}{2M\omega_s(\boldsymbol{k})} \coth \frac{\omega_s(\boldsymbol{k})}{2T}.$$

Here V is the appropriate cell volume and s denotes the phonon branch.

- (b) Show that $e^{-2W} = 0$ in one and two dimensions. What are the implications of this result for the possible existence of one- and two-dimensional crystalline ordering? *Hint* Consider the behavior of the integrand for small k.
- (c) Estimate the size of the Debye-Waller factor for a monoatomic three-dimensional crystal. Analyze your result for the limiting cases of temperatures low and high as compared to the Debye temperature.
- (d) Evaluate the one-phonon contribution to the structure factor. Interpret the result in terms of absorbtion and emission of phonons.
 Hint The one-phonon contribution corresponds to the linear term in the expansion of the last exponential in the above expression for the structure factor.