KARLSRUHE INSTITUTE OF TECHNOLOGY INSTITUTE FOR THEORETICAL
CONDENSED MATTER PHYSICS

Condensed Matter Theory I =~ WS 2022/2023

Prof. Dr. A. Shnirman Solutions 12
Dr. D. Shapiro, Dr. H. Perrin Tutorial: 02.02.2022
Category A

1. Dielectric function for the non-interacting electron gas (15 + 10 = 25 points)

In this problem, we propose to compute the dielectric function for the non-interacting
electron gas, €(q,w). Consider a semi-classical electron gas with band mass m.

(a) Starting from the Boltzmann equation at equilibrium with the electric field E =

Eqe'7=%D — _V (7, 1), show that the induced current in Fourier space is
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Jind(q, w) = —m [g 5 (%) qy(q, w)

for small q.
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Solution: We start from the Boltzmann equation af(k,r,t) = —I[f(k,r,t)] for
the distribution function f(k,r,t) = fo(k) + f(k,r, t). Here, fy is the equilibrium
distribution and f oc Ep is a small correction induced by the field. In the linear
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response regime of sufficiently small Fjy, we neglect —f in the kinetic equation on
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f. Therefore, in T-approximation for I[f(k,r,t)]), we have
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Using the identities r = v = k/m and k = F = —¢E, and applying the Fourier
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transformation (— — —iw and — — iq) in the equation, we find for the correction:
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; _ ep(q, w) dfo(k)
flk,qw) = k-q/m—(w+ Z'T_l)q. ok

where we used eE(q,w) = —iqy(q,w). Substitute it into the induced current:
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Using that K = —éx0(k — kp) at kT < ep where éx = k/k and k = |k|,

we switch the integral to spherical coordinates choosing z-axis parallel to q (the



corresponding unit vector is e, = 9):
q
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Consider the regime of homogeneous in space field, which means ¢ — 0, and assume

finite w. It means that |z| > 1. The logarithm is expanded in =" series as follows:
r+1 2 2
T = —+4+ — + — + ... . Therefore we find in ¢ — 0 limit
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(b) Derive the relation

Jinal@,w) = =7 le(@,0) — UE(@.w) = = [e(a.w) ~ ap(q.)
using the continuity equation for the induced current and density, wpiwa = q -
Jind, the relation between p;,q and the polarisation P, pi,q = —iq - P, where P =
€(q7 CU) -1

1 E. Then, identify the dielectric function e(q,w).
m

Solution: Using the two last relations we have:
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Injecting this expression in the continuity equation we have for any q:
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Therefore we deduce the expression of the question. Finally, neglecting 7~ com-

pared to w, we have
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2. Debye-Waller factor (30 Points)

In the lecture the following expression for the structure factor of phonons for a monoatomic
crystal was derived

S(qw) = eV / 3 e qu(0)lgu(R.0),

where u(R,t) is the atomic displacement, R denotes the vectors of the Bravais lattice,
and W is the Debye-Waller factor, given by the expression
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W =3 (qu(0))

(a) Show, that the Debye-Waller factor can be written as

dek [ges(k ws(k)
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Here V' is the appropriate cell volume ans s denotes the phonon branch.

(b) Show that e™* = 0 in one and two dimensions. What are the implications of this
result for the possible existence of one- and two-dimensional crystalline ordering?
Hint Consider the behavior of the integrand for small k.

(c) Estimate the size of the Debye-Waller factor for a monoatomic three-dimensional
crystal. Analyze your result for the limiting cases of temperatures low and high as
compared to the Debye temperature.

(d) Evaluate the one-phonon contribution to the structure factor. Interpret the result
in terms of absorbtion and emission of phonons.

Hint The one-phonon contribution corresponds to the linear term in the expansion
of the last exponential in the above expression for the structure factor.

Solution:
(a) We calculate

1 . , )
_ b <[q <uk151€zk1R . uLlsleﬂklRﬂ [q (ukm()zkgR I uzzszefzkgRﬂ > 7

in which

Ups — €,
’ 2]\[wks ’

We calculate the mean (...) for the same ground state, so only the diagonal
terms contribute:
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(b) For acoustic phonons applies

For small k

Therefore the integral
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(¢) Three acoustic branches occur in a 3D monoatomic crystal: 1 longitudinal and
2 transverse. We choose the branch with

e(k)la = (qe(k))’ ="

diverges for d < 2.

Then we introduce the density of states of the phonons

d3k 3w?

and find
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(d) We expand the structure factor to the first order

exp (¢ - u(0) (q-u(R))) = 1+ ((q-u(0))(q-u(R))).

Calculate the average value
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From this we find the structure factor

g1) — 2w (qes(q))?
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The 0 functions correspond to the conservation laws:
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Generation (emission) of phonons — = — + Wgs;
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Absorption of phonons — = — — Wgs-
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Conservation of momentum: (K is a reciprocal lattice vector)
K+tgq=k+ K,

namely (wq = w_q)
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