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Category A

1. Phonon-mediated interaction of electrons, Schrieffer-Wolf-transformation
(5 + 5 + 5 + 15 = 30 points)

In this task, we propose to show that the electron-phonon interaction induces an ef-
fective electron-electron interaction using the canonical transformation (Schrieffer-Wolf
transformation)

(a) A canonical transformation of an operator H is defined by

H̃ = e−SHeS

Show that, up to order 2 in S, the above transformation is equivalent to

H̃ = H + [H,S] +
1

2
[[H,S] , S] +O(S3)

Solution:

Using the Taylor expansion:

eS = 1 + S +
1

2
S2 +O(S3)

we obtain:

H̃ =

(
1− S +

1

2
S2 +O(S3)

)
H

(
1 + S +

1

2
S2 +O(S3)

)
= H + (HS − SH) +

1

2

(
HS2 + S2H − 2SHS

)
+O(S3)

= H + [H,S] +
1

2

(
(HS − SH)S + S(SH −HS)

)
+O(S3),

= H + [H,S] +
1

2
[[H,S] , S] +O(S3).

(b) Now, we consider an Hamiltonian H0 with a small perturbation V

H = H0 + V



The idea of the canonical transformation is to choose the operator S such that the
modified Hamiltonian H̃ does not contains terms linear with respect to V .

For S � H0, show that this condition is equivalent to

V + [H0, S] = 0

Solution: Cancellation of the linear in V term means that S ∼ V . Performing
the expansion we find:

H̃ = e−S (H0 + V ) eS = H0 + V + [(H0 + V ), S] +
1

2
[[H0, S] , S] +O(S3)

In order to cancel the linear term, the following condition must be fulfilled:

V + [H0, S] = 0. (1)

Finally, we have

H̃ = H0 + [V, S] +
1

2
[[H0, S] , S] +O(V 3) = H0 +

1

2
[V, S] +O(V 3).

(c) Use the eigenstates of the unperturbed Hamiltonian 〈n| and show that S can be
written as

〈n|S|m〉 =
〈n|V |m〉
Em − En

where En is the energy corresponding to the state |n〉 of the unperturbed Hamilto-
nian and show that for the modified Hamiltonian, now, holds the equality:

H̃ = H0 +
1

2
[V, S] +O(V 3)

Solution: From Eq. (1), we find :

〈n| (V + [H,S]) |m〉 = 0 ⇒ Vnm + EnSnm − EmSnm = 0,

and (if En 6= Em)

Snm =
Vnm

Em − En
.

(d) Let’s now consider the Frölich Hamiltonian

He−ph =
∑
p,q,σ

V (q)c†p+q,σcp,σ

(
aq + a†−q

)
,

which describes the electron-phonon interaction, as a perturbation for the Hamil-
tonian

H0 =
∑
k,σ

εkc
†
kσckσ +

∑
q

~ωqa
†
qaq,

with c(c†) are the annihilation (creation) operators for electrons, a(a†) are phonons
operators, (aq + a†−q) ∝ u(q) where u is the displacement of the ions, and ω−q = ωq.



Using a canonical transformation, derive the effective electron-electron Hamilto-
nian at zero T . To do this, evaluate the matrix elements of S. Since we are
only interested in the low-temperature behavior, the relevant matrix elements in
S are determined by transitions between states |0〉ph|1p〉e (zero phonons and an
electron with the momentum p) and |1q〉ph|1p−q〉e (extra phonon with a momen-
tum q, and a fermion with the momentum p − q). Rewrite S in the form S =∑
p,q,σ

V (q)c†p+q,σcp,σ

(
αp,qaq + βp,qa

†
−q

)
which is true for low-excitation limit of low

T . Then, the matrix elements with respect to phonons, 〈1q|[He−ph, S]|0〉ph, for the
correction to the unperturbed Hamiltonian ([He−ph, S]) can be considered as an
effective electron-electron interaction.

Solution: We calculate first the matrix elements of He−ph averaged with respect
to states with zero and one phonon |n〉 = |0〉ph|1p〉e and |m〉 = |1q〉ph|1k〉e:

[Ĥe−ph]nm = e〈1p|ph〈0|Ĥe−ph|1q〉ph|1k〉e =

=
∑

p′,q′,σ

V (q′)e〈1p|ĉ†p′+q′,σ ĉp′,σ|1k〉e ph〈0|
(
âq′ + â†−q′

)
|1q〉ph

=
∑

p′,q′,σ

V (q′)δp′,kδp,p′+q′δq′,q = V (q)δp,k+q

and
Vmn = e〈1p|ph〈1q|Ĥe−ph|0〉ph|1k〉e =

=
∑

p′,q′,σ

V (q′)e〈1p|ĉ†p′+q′,σ ĉp′,σ|1k〉e ph〈1q|
(
âq′ + â†−q′

)
|0〉ph

=
∑

p′,q′,σ

V (q′)δp′,kδp,p′+q′δ−q′,q = V (−q)δp,k−q.

Therefore, we find the matrix elements Snm:

Snm =
V (q)δp,k+q

εk + ~ωq − εp
, Smn =

V (−q)δp,k−q
εk − εp − ~ωq

.

We reinstate the operator Ŝ that reproduces Snm in a single phonon case written
above:

Ŝ =
∑

p′,q′,σ

V (q′)ĉ†p′+q′,σ ĉp′,σ

(
âq′

εp′ + ~ωq′ − εp′+q′
+

â†−q′

εp′ − εp′+q′ − ~ω−q′

)
.

Let us define it as follows

Ŝ =
∑

p′,q′,σ

V (q′)ĉ†p′+q′,σ ĉp′,σ

(
âq′αp′,q′ + â†−q′βp′,q′

)

where α(β)p,q =
1

εp − εp+q ± ~ωq

. (We used ωq = ω−q here.) The effective

electron-electron interaction at zero temperature is given by

Ĥe−e =
1

2
ph〈0|[Ĥe−ph, Ŝ]|0〉ph



where the average is taken with respect to phonon ground state. We have:

ph〈0|Ĥe−phŜ|0〉ph =∑
p,q,p′,q′,σ,σ′

V (q′)V (q)ĉ†p′+q′,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ ph〈0|
(
âq′ + â†−q′

)(
âqαp,q + â†−qβp,q

)
|0〉ph =

=
∑

p,q,p′,σ′,σ

βp,q|V (q)|2ĉ†p′−q,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ (2)

and

ph〈0|ŜĤe−ph|0〉ph =∑
p,q,p′,q′,σ,σ′

V (q′)V (q)ĉ†p′+q′,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ ph〈0|
(
âq′αp′,q′ + â†−q′βp′,q′

)(
âq + â†−q

)
|0〉ph =

=
∑

p,q,p′,σ′,σ

αp′,−q|V (q)|2ĉ†p′−q,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ. (3)

In the last line in (3) we permute fermion bilinear terms ∼ ĉ†ĉ and obtain for the
quartic fermion term, ĉ†p′−q,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ → ĉ†p+q,σ ĉp,σ ĉ

†
p′−q,σ′ ĉp′,σ′ . (Quadratic

terms that appear after the permutation are absorbed by Ĥ0 and are not important.)
After that we replace p′ → p and q → −q. As a result, we find for the electron-
electron Hamiltonian:

He−e =
1

2

∑
p,q,p′,σ′,σ

(βp,q − αp,q)|V (q)|2ĉ†p′−q,σ′ ĉp′,σ′ ĉ†p+q,σ ĉp,σ =

=
1

2

∑
p,q,p′,σ′,σ

~ωq|V (q)|2

(εp − εp−q)2 − ~2ω2
q

ĉ†p′+q,σ′ ĉp′,σ′ ĉ†p−q,σ ĉp,σ.

The effective interaction is attractive, if |εp − εp−q| < ~ωq.

Category B

2. Cooper problem (20 Points)

It was shown in the lecture that electrons above the Fermi sea can form bounded pairs
even for vanishingly small attractive interactions. We extend this example taking into
account holes excitations below the Fermi level.

The electron-electron interaction is reduced to

gk,q =

{
−g |εk − εk−q| 6 ωD

0 |εk − εk−q| > ωD
,

i.e., in the interval of the width 2ωD the interaction constant and attractive, and vanishes
beyond. Dispersion of the quasiparticles in the vicinity of the Fermi level is linearly
approximated.

Analogous to the lecture, calculate the energy of the state with two quasiparticles
(electrons or holes) and find the binding energy ∆ per quasiparticle.



Solution: Analogous to the lecture, we choose the wave function in the form

|Ψ〉 =
∑

−~ωD<εk

α(k)χ(σ1, σ2)ck,σ1c−k,σ2 |Ψ0〉+
∑

εk<~ωD

α(k)χ(σ1, σ2)c
†
k,σ1

c†−k,σ2 |Ψ0〉 (4)

where |Ψ0〉 =
∏
k≤kF

c†k,σ |0〉 represents a Fermi sea.

In contrast to the lecture, Eq. (4) contains not only the electron-like quasiparticles
but the hole-like ones as well. We measure the energies E and εk relative to the Fermi
level EF . The further argumentation is based directly on the lecture script and runs
completely analogous to the example in there.

The Schrödinger equation E |Ψ〉 = (H0 +Hel−el−ph) |Ψ〉 yields

(2|εk| − E)α(k) =
g

V

∑
−~ωD<εk1< hbarωD

α(k1) ,

where α(k) describes now hole excitations for εk < 0 and particle excitations for εk > 0.

We introduce

C =
1

V

∑
−~ωD<εk1<~ωD

α(k) ,

and insert it into the self-consistency equation for E:

1 =

∫ ~ωD

−~ωD
dε

ν(ε)g

2|ε| − E
. (5)

We have already converted the sum into an integral, 1/V
∑
k

→
∫
ν(ε)dε. The density

of states per spin ν(ε) is approximated by a constant, ν(ε) ≈ ν0, near the Fermi level.
The integration (5) gives the same result as in the lecture, multiplied by a factor of 2.
So we get the equation on E:

1

gν0
= ln

~ωD − E/2
−E/2

.

The binding energy per electron is ∆ = −E/2. In the weak coupling limit gν0 � 1 we
find

∆ = ~ωDe−
1
gν0 .


