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Category A

1. Properties of the BCS ground state (5 + 15 + 10 + 5 = 35 points)

The BCS ground state |ΦBCS⟩ was derived in the lecture.

(a) Show that the ground state is properly normalized, ⟨ΦBCS |ΦBCS⟩ = 1.

Solution: The BCS ground state is given by

|ΦBCS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ .

Here, |0⟩ is the vacuum and therefore ckσ |0⟩ = ⟨0| c†kσ = 0. Therefore,

⟨ΦBCS|ΦBCS⟩ = ⟨0|
∏
k,k′

(
u∗
k′ + v∗k′c−k′↓ck′↑

)(
uk + vkc

†
k↑c

†
−k↓
)
|0⟩

=
∏
k

[
u∗
kuk + v∗kvk ⟨0| c−k↓ck↑c

†
k↑c

†
−k↓ |0⟩

]
=

∏
k

(
|uk|2 + |vk|2

)
where we have used that∏

k,k′

u∗
k′uk = u∗

k1
u∗
k2
· · ·u∗

kN
uk1uk2 · · ·ukN

=
∏
k

|uk|2 .

As you know from the lecture, |uk|2 + |vk|2 = 1. Hence ΦBCS is normalized.

(b) Calculate the expectation value of the electron number operator N =
∑
kσ

c†kσckσ

and its standard deviation in the ground state.

Solution: Let us evaluate the expectation values of N↑ =
∑
k

c†k↑ck↑ and N↓ =∑
k

c†k↓ck↓ separately. It is convenient to express the electron operators in terms of

the Bogoliubov operators,

ckσ = ukbkσ + σvkb
†
−k−σ; c†kσ = u∗

kb
†
kσ + σv∗kb−k−σ;



such that we can use that bkσ |ΦBCS⟩ = 0. It follows for the expectation values that

⟨ΦBCS| N̂↑ |ΦBCS⟩ =
∑
k

⟨ΦBCS|
(
u∗
kb

†
k↑ + v∗kb−k↓

)(
ukbk↑ + vkb

†
−k↓

)
|ΦBCS⟩

=
∑
k

|vk|2 ⟨ΦBCS| b−k↓b
†
−k↓ |ΦBCS⟩ =

∑
k

|vk|2 ,

⟨ΦBCS| N̂↓ |ΦBCS⟩ =
∑
k

⟨ΦBCS|
(
u∗
kb

†
k↓ − v∗kb−k↑

)(
ukbk↓ − vkb

†
−k↑

)
|ΦBCS⟩

=
∑
k

|vk|2 ⟨ΦBCS| b−k↓b
†
−k↓ |ΦBCS⟩ =

∑
k

|vk|2 .

Consequently, ⟨N⟩ = ⟨N↑ +N↓⟩ = 2
∑
k

|vk|2. Now let us calculate the expectation

value of N2 = N2
↑ +N2

↓ + 2N↑N↓:

⟨ΦBCS|N2
↑ |ΦBCS⟩ =

∑
k,k′

{
v∗ku

∗
kuk′vk′ ⟨ΦBCS| b−k↓bk↑b

†
k′↑b

†
−k′↓ |ΦBCS⟩

+|vk|2|vk′|2 ⟨ΦBCS| b−k↓b
†
−k↓b−k′↓b

†
−k′↓ |ΦBCS⟩

}
=

∑
k

|uk|2|vk|2 +
∑
k,k′

|vk|2|vk′ |2

⟨ΦBCS|N2
↓ |ΦBCS⟩ = ⟨ΦBCS|N2

↑ |ΦBCS⟩ ,

⟨ΦBCS|N↑N↓ |ΦBCS⟩ =
∑
k,k′

{
− v∗ku

∗
kuk′vk′ ⟨ΦBCS| b−k↓bk↑b

†
k′↓b

†
−k′↑ |ΦBCS⟩

+|vk|2|vk′ |2 ⟨ΦBCS| b−k↓b
†
−k↓b−k′↑b

†
−k′↑ |ΦBCS⟩

}
=

∑
k

|uk|2|vk|2 +
∑
k,k′

|vk|2|vk′|2 .

In total,

⟨ΦBCS| N̂2 |ΦBCS⟩ = 4
∑
k,k′

|vk|2|vk′ |2 + 4
∑
k

|uk|2|vk|2

and the standard deviation is

δN =

√
⟨N2⟩ − ⟨N⟩2 = 2

√∑
k

|uk|2|vk|2 .

(c) Let us define the operator of Cooper-pair creation, B†
k = c†k↑c

†
−k↓ (Not to be confused

with the Bogoliubov operator bk!). Calculate the expectation value < B†
k > in the

BCS ground state. Show that < B†
k > as a function of k has a maximum at the

Fermi momentum (∆(k) ≡ ∆ ∈ R for simplicity).

Solution:

⟨ΦBCS| c†k↑c
†
−k↓ |ΦBCS⟩ = ⟨ΦBCS| (u∗

kb
†
k↑ + v∗kb−k↓)(u

∗
kb

†
−k↓ − v∗kbk↑) |ΦBCS⟩

=u∗
kv

∗
k .



Figure 1: The expectation value of Cooper pair creation
〈
B†

k

〉
in the BCS ground state

for momentum-independent gap ∆.

You know from the lecture that

uk =

√√√√1

2

(
1 +

ξk√
ξ2k +∆2

k

)
, vk =

√√√√1

2

(
1− ξk√

ξ2k +∆2
k

)
,

such that 〈
B†

k

〉
=

1

2

|∆|√
ξ2k +∆2

=
1

2

|∆|√
(ℏ2k2/(2m)− µ)2 +∆2

The Fermi momentum is related to µ by kF =
√
2mµ/ℏ and ξ|k|=kF = 0. We find

that

∂

∂k

〈
B†

k

〉
=

ℏ2k
2m

∂

∂ξ

|∆|√
ξ2 +∆2

= −ℏ2k
2m

|∆| ξ

(ξ2 +∆2)3/2

and therefore

∂

∂k

〈
B†

k

〉∣∣∣∣
|k|=kF

= −ℏ2kF
2m

|∆| ξ

(ξ2 +∆2)3/2

∣∣∣∣∣
ξ=0

= 0.

There is only one other local extremum (k = 0). On the one hand,〈
B†

k

〉
k=0

=
1

2

|∆|√
µ2 +∆2

<
〈
B†

k

〉
k=kF

=
1

2

and on the other hand
〈
B†

k

〉
→ 0 as k → ∞. Therefore, k = kF must be a

local maximum and also the global maximum of the function (cf. Fig. 1). Pair
creation therefore happens mostly at kF . Note that the same behavior is found in
the standard deviation of the particle number (previous subtask), which is of course
related to the Cooper pair formation.

(d) Calculate the commutators [Bk, B
†
k′ ], [Bk, Bk′ ], and [B†

k, B
†
k′ ] and their ground-state

expectation values. Decide whether Cooper pairs are bosons.



Solution: It is easy to see that

[Bk, Bk′ ] =
[
B†

k, B
†
k′

]
= 0

because all involved electron operators anticommute with each other. This agrees
with the bosonic commutation relations [ak, ak′ ] = [a†k, a

†
k′ ] = 0. For the remaining

commutator, we find[
Bk, B

†
k′

]
=
[
c−k↓ck↑, c

†
k↑c

†
−k↓

]
= δkk′

(
1− c†−k↓c−k↓ − c†k↑ck↑

)
= δkk′ (1−Nk)

with the expectation value [see part (b) for ⟨N⟩]〈[
Bk, B

†
k′

]〉
= δkk′

(
1− |vk|2 − |v−k|2

)
.

If k = k′, we obtain
〈[

Bk, B
†
k′

]〉
< 1 whenever |v|2 ̸= 0, i.e., whenever ∆ ̸= 0

(always in the superconducting phase). Thus, Cooper pairs are not bosons.

Category B

2. 4-component Nambu spinor with spin-orbit coupling (15 bonus points)

Let us generalize the 2 × 2 Nambu matrix formalism (see lecture notes) to explicitly
spin-dependent cases, where ξk in the mean-field Hamiltonian is replaced by h0(k) =
ξk + bk · σ with a vector bk. Thus, h0 is a 2×2 matrix in spin space. Let us define

the 4-Nambu spinor
(
c†k,↑, c

†
k,↓, c−k,↓,−c−k,↑

)
. Find the corresponding 4×4 Hamiltonian.

Remark: Note that this Hamiltonian is redundant. If terms can be expressed through
more than one matrix element, distribute them evenly between these elements.

Solution:

The standard mean-field Hamiltonian reads in the 2×2 basis (see lecture notes)

H =
∑
k

(
c†k,↑ c−k,↓

)( ξk −∆
−∆∗ −ξk

)(
ck,↑
c†−k,↓

)
.

making the dispersion relation spin dependent, as specified in the task we obtain

H →
∑
k

(
c†k,↑ c−k,↓

)( ξk −∆
−∆∗ −ξk

)(
ck,↑
c†−k,↓

)
+
∑
k

(
c†k,↑ c†k,↓

)
σbk

(
ck,↑
ck,↓

)
.

With

σbk =

(
b3,k b1,k − ib2,k

b1,k + ib2,k −b3,k

)
and a new spinor basis for the Hamiltonian(

c†k,↑ c†k,↓ c−k,↓ −c−k,↑

)
we find

H =
∑
k

(
c†k,↑ c†k,↓ c−k,↓ −c−k,↑

)
ξk + b3,k b1,k − ib2,k −∆ 0
b1,k + ib2,k ξk − b3,k 0 0

−∆∗ 0 0 0
0 0 0 0




ck,↑
ck,↓
c†−k,↓
−c†−k,↑

 .



Distributing everything evenly, as demanded in the task:

H =
∑
k

(
c†k,↑ c†k,↓ c−k,↓ −c−k,↑

)
H̃(k)


ck,↑
ck,↓
c†−k,↓
−c†−k,↑

+
1

2

∑
k

ξk

H̃(k) =
1

2


ξk + b3,k b1,k − ib2,k −∆ 0
b1,k + ib2,k ξk − b3,k 0 −∆

−∆∗ 0 −ξ−k + b3,−k b1,−k − ib2,−k

0 −∆∗ b1,−k + ib2,−k −ξ−k − b3,−k

 .


