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1. An application of the Born-Oppenheimer approximation
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γ

Figure 1: Quantum
oscillator consisting of a
spring and two masses.

Consider a quantum mechanical oscillator with two masses, m
and M , at positions r and R, respectively, connected by a spring
with the spring constant γ, see Fig. 1. The Hamiltonian Ĥ for
this system is given as

ĤΨ(r,R) =

[
− ∂2

r

2m
−

∂2
R

2M
+

1

2
γ(r −R)2

]
Ψ(r,R) (1)

where we set ℏ = 1.
The eigenvectors and eigenvalues of this Hamiltonian can be
obtained exactly by a change of variables into the center of mass
R0 =

mr+MR
M0

and the relative position ρ = r −R. M0 = m+M

is the total mass and µ = mM
M0

is the reduced mass. With the new variables, the Hamiltonian is
decoupled:

ĤΨ(R0, ρ) =

[
−

∂2
R0

2M0
−

∂2
ρ

2µ
+

1

2
γρ2

]
Ψ(R0, ρ) . (2)

Consequently, the system is effectively described by a free particle, corresponding to the free
motion of the center of mass (mass M0), and a simple harmonic oscillator with the mass µ. The
eigenvector is given by Ψn(R0, ρ) ∝ eiKR0Φn(ρ), where Φn(ρ) are the eigenvectors corresponding
to the n-th level of a simple harmonic oscillator. The eigenvalues (energies) are given by

En(K) =
K2

2M0
+ ωeff

(
n+

1

2

)
, (3)

with K the linear momentum of the motion of the center of mass, ωeff =
√
γ/µ the oscillation

frequency, and n = 0, 1, 2, ... the energy levels of the harmonic oscillator.
In this exercise, we apply the Born-Oppenheimer approximation to this problem in the limit of
m ≪ M and compare the approximated eigenvalues to the exact results.

a) For the Born-Oppenheimer approximation, the original Hamiltonian in Eq. 1 is decomposed
into a fast (instantaneous) part Ĥ0 and a slow part T̂ ,

Ĥ0 = − ∂2
r

2m
+

1

2
γ(r −R)2 and T̂ = −

∂2
R

2M
, (4)

such that Ĥ = Ĥ0+T̂ . The instantanous eigenvalue problem Ĥ0ϕn(r−R) = εnϕn(r−R)
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is a simple harmonic oscillator problem with εn = ω(n + 1/2), ω =
√

γ/m, and the
exact expressions for the wavefuntion ϕn are known. 1

The full eigenvalue problem is given by EΨ = (Ĥ0+T̂ )Ψ. By expressing the wavefunction
in the basis of the instantaneous eigvenvectors, Ψ(r,R) =

∑∞
n=0 φn(R)ϕn(r−R), show

that the coefficients satisfy

Eφl = εlφl −
1

2M
∂2
Rφl −

1

M

∞∑
n=0

⟨ϕl|∂Rϕn⟩∂Rφn − 1

2M

∞∑
n=0

⟨ϕl|∂2
Rϕn⟩φn, (5)

where the Dirac notation implies the usual inner product, ⟨ϕl|ϕn⟩ =
∫
dr ϕ∗

l ϕn.
Show that the Fourier component of φl(R) satisfy

Eφql = εlφql +
q2

2M
φql −

iq

M

∑
n

⟨ϕl|∂Rϕn⟩φqn − 1

2M

∑
n

⟨ϕl|∂2
Rϕn⟩φqn, (6)

where φn(R) =
∫ dq
2π φqne

iqR.

1Note: εn for the instantaneous problem here does not depend on R, in contrast with that of the
lecture notes. There are some parallel features between the problem here and the formulation in the
lecture notes, but they are not identical.

b) Equation (6) can be expressed in a matrix form using the infinite dimensional vector
φ⃗q = (φq0, φq1, · · · )T as

Eφ⃗q =


ε0

ε1
ε2

. . .

 φ⃗q + Vqφ⃗q , (7)

where the matrix Vq has elements (Vq)ln = q2

2M δln+
iq
M ⟨ϕl|∂rϕn⟩− 1

2M ⟨ϕl|∂2
rϕn⟩, and δln

is the Kronecker delta.
Show that the matrix elements are explicitly given by

(Vq)ln =
q2

2M
δln − iq

M

√
mω

2

(
δl,n+1

√
n+ 1− δl,n−1

√
n
)

− mω

4M

[
δl,n+2

√
(n+ 1)(n+ 2)− δln(2n+ 1) + δl,n−2

√
n(n− 1)

]
. (8)

Hint 1: The operator −i∂r can be viewed as a momentum operator, which can be written
in terms of the ladder operators â† and â as p̂ = i

√
mω
2 (â† − â).

Hint 2: The action of the ladder operators is â† |ϕn⟩ =
√
n+ 1 |ϕn+1⟩ and â |ϕn⟩ =√

n |ϕn−1⟩.

c) We can now compute the eigenvalue E perturbatively by viewing Vq as the perturbation.
To second order, the correction from Vq on the eigenvalue εn is given by

En ≈ εn + (Vq)nn +
∑
l ̸=n

(Vq)nl(Vq)ln
εn − εl

. (9)

Show that this yields

En ≈
(
1− m

M

) q2

2M
+

(
1 +

1

2

m

M
− 1

8

m2

M2

)(
n+

1

2

)
ω . (10)
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Moreover, use a Taylor expansion for m/M ≪ 1 to show that the exact result is indeed
identical to the perturbative Born-Oppenheimer result in Eq. (10). This demonstrates
an explicit application of the Born-Oppenheimer approximation, whose full power is
even more appreciated when the problem at hand does not have any exact solution.

2. Diatomic Chain

Consider an infinite diatomic chain as shown in the figure below. It is given by a one-dimensional
chain of alternating masses m1 and m2 connected by springs with spring constant γ. In
equilibrium, they are equally separated by a distance of a/2.

m1 m2 m1 m2 m1 m2
γ γ γ γ γ

Aa/2A

a) What is the primitive unit cell in the cases m1 ̸= m2 and m1 = m2, respectively? What
is the volume of the unit cell VUC and what is the volume of the 1st Brillouin zone in
both cases? How many phonon branches do you expect in the two cases?

In the following, we choose a Bravais lattice whose lattice points coincide with the equilibrium

positions, x
(0)
j,1 = ja, of the atoms with mass m1 and a unit cell with two atoms.

The Hamiltonian of the chain reads

H =
∞∑

j=−∞

[
p2j,1
2m1

+
p2j,2
2m2

+ Vj({xm,µ})

]
(11)

where the index j labels the unit cell and pj,1 and pj,2 are the momenta and xj,1 and xj,2 are
the positions of the atoms with masses m1 and m2, respectively. Note that in contrast to the
lecture, we are not using atomic units! In the harmonic approximation, the effective potential
is given by

Vj({xm,µ}) =
γ

2

(
(δxj,2 − δxj,1)

2 + (δxj−1,2 − δxj,1)
2
)
, (12)

where δxj,1 = xj,1−x
(0)
j,1 and δxj,2 = xj,2−x

(0)
j,2 are the deviations from the equilibrium positions

x
(0)
j,1 and x

(0)
j,2 of the two atoms with mass m1 and m2, respectively, within the jth unit cell.

b) Use the transformations

δxj,µ =
√
a

π/a∫
−π/a

dk

2π

1
√
mµ

eikx
(0)
j,1 qµ(k) and pj,µ =

√
a

π/a∫
−π/a

dk

2π

√
mµe

−ikx
(0)
j,1pµ(k) .

(13)

to show that the Hamiltonian can be put into the form

H =

π/a∫
−π/a

dk

2π

1

2

[∑
µ

pµ(k)pµ(−k) +
∑
µ,ν

qµ(k)D̃µ,ν(k)qν(−k)

]
. (14)

with the hermitian matrix

D̃(k) = 2γ

(
1
m1

− 1√
m1m2

eika/2 cos ka
2

− 1√
m1m2

e−ika/2 cos ka
2

1
m2

)
. (15)
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c) Determine the positive eigenvalues dn(k) with n = 1, 2 of the matrix D̃(k), Eq. (15),
from which follow the phonon dispersions ωn(k) =

√
dn(k). Identify which n belongs

to the acoustic and optical branch. Calculate the sound velocity.

d) Sketch the dispersion relations ωn(k) for the general case m1 ̸= m2 for momenta
within the first Brillouin zone (k ∈ (−π

a ,
π
a )). The use of computer programs such

as Mathematica or Python is explicitly recommended to generate a set of plots with
various values for m1/m2. Discuss the limit m1 = m2. How is the result related to
question 1(a)?

e) Consider the adiabatic limit m1 ≫ m2. Show that in leading order in m2/m1, the
massesm1 andm2 behave as independent oscillators with frequencies ω1 ≈ ω01| sin(ak/2)|
and ω2 ≈ ω02, respectively. Here, ω0µ =

√
2γ/mµ.

f) Consider oscillations form1 > m2 at the edge of the Brillouin zone, i.e., with wavevectors
k = ±π/a. Using the eigenvectors of the dynamical matrix D̃, show that for the acoustic
branch the massesm2 remain immobile and the massesm1 of adjacent unit cells oscillate
in anti-phase, and vice versa for the optical branch.

g) (not graded) Use a computer program, e.g., Mathematica or Python, to visualize the
dynamics of the chain with tunable control parameters m1, m2, γ, and k.
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