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1. Specific heat of phonons

Let us consider the phonon Hamiltonian Hph ≡ H in the harmonic approximation

H =
∑

k∈1.BZ;n=1,2,...,d r

ℏωn(k)

(
b†k,nbk,n +

1

2

)
. (1)

Here, b†k,n and bk,n are the bosonic creation and annihilation operators, respectively. The index
n = 1, 2, ..., d r labels the phonon branches for r ions per unit cell in d spatial dimensions. ωn(k)
denotes the energy dispersion as function of the momentum k. The average occupation number
of a phonon mode at temperature T is given by the Bose-Einstein distribution function

nB(βℏωn(k)) ≡ ⟨b†k,nbk,n⟩H =
1

eβℏωn(k) − 1
(2)

with β = 1
kBT . The quantity of interest is the specific heat per unit cell C given by

C(T ) =
∂E

∂T
, with E =

1

N
⟨H⟩H, (3)

where N is the number of unit cells in the crystal.

a) High-temperature limit: The phonon dispersions are bounded from above with a maximum
value ωmax ≡ max

n,k
{ωn(k)}. Show that for temperatures T ≫ ℏωmax/kB, the specific

heat follows the law of Dulong-Petit and is given by the constant value

C = d r kB . (4)

b) Phonon density of states: Show that the specific heat can be written in the form

C = d r kB

∞∫
0

dε g(ε)
(βε)2eβε

(eβε − 1)2
, (5)

where g(ε) is the phonon density of states:

g(ε) =
1

d r N

∑
k∈1.BZ;n=1,2,...d r

δ(ε− ℏωn(k)) . (6)

Evaluate the integral
∫∞
0 dεg(ε).

1

https://ilias.studium.kit.edu/goto.php?target=crs_2219528


c) Diatomic chain: The dispersion relation ωn(k) for the one-dimensional, diatomic chain,
that was considered in Sheet 03, consists of two branches (n = 1, 2),

ω1,2 = ω0κ
−1/2

(
1±

√
1− κ2 sin2

ka

2

)1/2

, (7)

where the coefficient 0 < κ ≤ 1 is determined by the ratio of masses. Show that the
density of states can be written in the form

g(ε) =
a

2πℏ
∑
n=1,2

Θ(ε− ωmin
n )Θ(ωmax

n − ε)

|ω′
n(k0n)|

, (8)

where Θ(x) is Heaviside step function, ωmin
n and ωmax

n are the minimum and maximum
frequency of the n-th branch, respectively, and k0n is determined by the equation
ℏωn(k0n) = ε. How many singular points does the function g(ε) possess? Compute
g(ε = 0).

d) Low-temperature limit: After substituting ε = xkBT in Eq. (5), argue that the low-
temperature limit of the specific heat is in general governed by the phonon density
of states for small energies. At small energies ε, the phonon density of states g(ε) is
solely determined by the d acoustic phonon branches. Also, the acoustic dispersions are
approximately given by ωj(k) = cj |k| with j = 1, ..., d. Show that g(ε) ∼ εd−1 for ε → 0.
With the help of this result evaluate the phonon specific heat at low temperatures to
show that C ∼ T d. Calculate the prefactor in d = 3 dimensions for constant sound
velocities cj(k̂) ≡ c and in d = 2 dimensions for the two-dimensional triangular lattice
considered in Sheet 04 (use the sound velocities obtained in 1e).

Hint:
∫∞
0 dx x4 ex

(ex−1)2
= 4π4

15 ;
∫∞
0 dx x3 ex

(ex−1)2
= 6ζ(3), where ζ(x) is Riemann zeta-

function.

2. Debye model

In order to describe the crossover between the low- and high-temperature limits, one often uses
the Debye model. Here, the phonon density of states is assumed to have the form

gD(ε) =
d εd−1

εdD
Θ(εD − ε), (9)

where εD is the Debye energy, which also defines the Debye temperature TD = εD/kB.

a) Show that this density of states is correctly normalized by evaluating the integral∫∞
0 dεgD(ε).

b) Confirm that the expression (5) for the specific heat with the Debye density of states (9)
indeed recovers the Dulong-Petit law at high temperatures and the behavior C ∼ T d

at low temperatures.

3. Kronig–Penney model
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Figure 1: The periodic potential V (x).

Consider a periodic rectangular potential with periodicity a and strength V0 as shown in Fig. 1,

V (x) =

{
V0 x ∈ [na, na+ a

2 )

0 x ∈ [na− a
2 , na)

(n ∈ Z) . (10)

We want to solve the Schrödinger equation(
−ℏ2∂2

x

2m
+ V (x)

)
Ψ(x) = EΨ(x) (11)

in order to determine the band structure. According to Bloch’s theorem,

Ψnk(x) = eikxunk(x), withunk(x) = unk(x+ma) for all m ∈ Z, (12)

it is sufficient to solve problem only in one period of the potential, for example x ∈ [−a/2, a/2].

a) Exact solution, part 1/2: Show that the ansatz

ΨI(x) = Aeiαx +Be−iαx (0 < x < a/2) (13)

ΨII(x) = Ceiβx +De−iβx (−a/2 < x < 0) (14)

where α =

√
2m(E−V0)

ℏ and β =
√
2mE
ℏ solves the Schrödinger equation in the respective

range. At the origin x = 0 the following conditions must be obeyed

ΨI(0) = ΨII(0) , (15)

Ψ′
I(0) = Ψ′

II(0) . (16)

Furthermore, in order to comply with Bloch’s theorem, the boundary conditions at
x = ±a/2 are

uI(a/2) = uII(−a/2) , (17)

u′I(a/2) = u′II(−a/2) . (18)

Write the four conditions in the form of a matrix equation

M(E, k)


A
B
C
D

 =


0
0
0
0

 (19)

and determine M(E, k). A non-trivial solutions exists if its determinant vanishes

detM(E, k)
!
= 0 (20)
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b) Exact solution, part 2/2: Show that Eq. (20) is equivalent to

cos(ak) = cos(
aα

2
) cos(

a β

2
)− α2 + β2

2αβ
sin(

aα

2
) sin(

a β

2
) . (21)

This equation can not be solved analytically for the dispersion E(k). Visualize the
electronic dispersion relation E(k) by plotting its inverse k(E).
Hint: For simplicity, set a, ℏ,m, and V0 to 1.

c) Perturbation theory: Start from the eigenstates of the free Hamiltonian H0

H0 |p⟩ = Ep |p⟩ =
ℏ2k2

2m
|p⟩ (22)

with ⟨x| p⟩ = eipx/
√
2π. Treat the effect of the periodic potential H1 with matrix

elements ⟨x|H1 |x′⟩ = V (x)δx,x′ in perturbation theory. To do so, show that the matrix
elements of the periodic potential in momentum space are given by

⟨p|H1

∣∣p′〉 = V0

∞∑
m=−∞

eiπm − 1

2πim
δp−p′, 2πm

a
(23)

There is an overall energy shift ⟨p|H1 |p⟩ = V0/2. Identify the points within the 1. BZ
where the unperturbed spectrum is degenerate. Apply degenerate perturbation theory
in lowest order in the periodic potential in order to calculate the band gaps. Show that
in this approximation the nth band gap with n = 1, 2, 3, ... is given by

∆n =

{
2V0
πn , n odd

0, n even
, (24)

i.e., only every second degeneracy is lifted. Sketch the result in the reduced zone scheme.
In which limit does perturbation theory yield a good approximation for the spectrum
E(k)?
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