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1. Magnetic unit cell for 2D electrons in a uniform magnetic field

We consider the Landau problem of an electron in two dimensions placed inside a uniform
magnetic field B. We will see how the magnetic field introduces a length scale which leads to
a magnetic unit cell and, thereby, enables the application of the Bloch theorem. To see this,
consider the quantum mechanical Hamiltonian

H =
1

2me

(
π2x + π2y

)
, (1)

where πi = pi + eAi is the mechanical momentum operator with i = x, y and e > 0. Choose the
symmetric gauge for the vector potential Ai = (−B/2)

∑
j=x,y ϵijxj . ϵij is the two-dimensional

version of the Levi-Civita symbol, i.e., ϵxy = −ϵyx = 1 and ϵxx = ϵyy = 0.

a) Using the commutation relation between the position operator and the canonical momentum
operator, [xi, pj ] = iℏδij , show that

[πi, πj ] = iCϵij , (2)

and compute the constant C. Unlike the canonical momentum operators pi, which
commute with one another, the mechanical momentum operators πi do not commute.
Show also that they do not commute with the Hamiltonian either by computing [πi, H].

b) Application of the Bloch theorem in two dimensions requires a translation operator
along the x-direction and a translation operator along the y-direction, both of which
commute with each other as well as the Hamiltonian. The first step to construct the
translation operators is to define π̃i = pi − eAi. Show that

[π̃i, π̃j ] = −iCϵij , (3)

[π̃i, πj ] = 0, (4)

[π̃i, H] = 0. (5)

c) The magnetic translation operator along the i-th direction is Ti(d) = e−iπ̃id/ℏ where d
is a distance. Show that the magnetic translation operators act on the wavefunction as

Tx(d)ψ(x, y) = eieAxd/ℏψ(x− d, y) (6)

Ty(d)ψ(x, y) = eieAyd/ℏψ(x, y − d) (7)

for the symmetric gauge for the vector potential Ai. Show that Ti(d) commutes with
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Figure 1: Schematic plot of the magnetic translation operations, T−1
y T−1

x TyTx = e2πiϕ/ϕ0 , along
a loop encircling a magnetic flux ϕ.

the Hamiltonian, [Ti(d), H] = 0.

d) Show that

Tx(dx)π̃yT
−1
x (dx) = π̃y + eBdx (8)

Ty(dy)π̃xT
−1
y (dy) = π̃x − eBdy . (9)

One can thus also view, for example, Tx(dx) as a translation operator for the π̃y
operator. Using this result, show that

Tx(dx)Ty(dy) = e−i2πϕ/ϕ0Ty(dy)Tx(dx) , (10)

where ϕ = Bdxdy is the magnetic flux enclosed by the rectangular area defined by dx
and dy, and ϕ0 = 2πℏ/e is the magnetic flux quantum. This implies that consecutive
application of magnetic translations around a closed loop leads to a phase factor
determined by the magnetic flux enclosed by the loop, see Fig.1.

e) Assuming that dx = dy = d, compute the commutator [Tx(d), Ty(d)]. For which values
of d does the commutator vanish? The smallest non-zero d defines the magnetic length
as well as a square-shaped magnetic unit cell. With all these, we have set a stage for an
application of the Bloch theorem. The resulting band structure can be identified with
the Landau levels. Compute the degeneracy of each Landau level.

2. Model of free electrons

In the model of free spin-1/2 electrons, the interaction of the conduction electrons with the ionic
potential is neglected and the electrons are considered as a free Fermi gas. This exercise shall
familarize you with the effect of a weak lattice potential on the free electron energy spectrum.

a) For a two-dimensional square lattice with the lattice constant a, determine the concentration
of free electrons at which the third Brillouin zone starts to get filled.

b) Consider a monoatomic monovalent (giving a single electron per atom) fcc material,
whose electrons are approximated as a free electron gas. Show that the ratio of the
Fermi sphere volume to the volume of the first Brillouin zone is 1/2. Do you get a
metal or an insulator in this case when the periodic potential is treated in lowest order
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perturbation theory?

3. Weak periodic potential

In momentum space, the Schrödinger equation in the presence of a periodic potential has the
following form (

ℏ2k2

2m0
− ε

)
ψ
k⃗
+
∑
G⃗

VG⃗ψk⃗−G⃗
= 0 . (11)

Here, VG⃗ = V −1
puc

∫
Vpuc

V (r⃗)e−iG⃗·r⃗dr⃗ is the Fourier component of the periodic potential with

the translational invariance of the underlying Bravais lattice, V (r⃗) = V (r⃗ + R⃗). R⃗ and G⃗
denote points of the Bravais and reciprocal lattices, respectively. If the potential is weak,
|VG⃗| ≪ ℏ2k2/(2m0), then one can use for an N-fold degenerate point k⃗d in the first Brillouin zone
the N-component approximation and apply degenerate perturbation theory. N is the number
of degenerate solutions G⃗ such that ℏ2(k⃗d − G⃗)2/2m0 = ℏ2k⃗2d/2m0. This problem illustrates an
estimate of the energy gaps caused by the lattice potential.

a) For a one-dimensional symmetrical potential V (x) = V (−x), show that them-th energy
gap is ∆εm ≈ |2VG|, with the reciprocal lattice vector G = 2πm/a.

b) For the two-dimensional potential V (x, y) = 4U cos(2πx/a) cos(2πy/a), determine the
energy gap for the point k⃗d = π

a (1, 1)
T at the corner of the first Brillouin zone.

3


