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1. A tight-binding description of Sr2RuO4

In the tight-binding approximation, the dispersion ϵ
nk⃗

is obtained by diagonalizing the matrix

Hmm′(k⃗) = −
∑
R⃗

tm,m′(R⃗)eik⃗·R⃗, m,m′ = 1, 2, . . . , N . (1)

The hopping amplitude tmm′(R⃗) describes an electron hopping between the N distinct orbitals
m and m′, separated by the lattice vector R⃗.
In the case of Sr2RuO4, the relevant orbitals are the N = 3 so-called t2g orbitals, i.e., dxy, dyz,
and dxz, see Fig. 1, of the Ruthenium (Ru) ions. The crystal structure is tetragonal but, for
simplicity, consider only a two-dimensional sheet of Ruthenium ions which form a square lattice
with lattice constant a. In the following, we use a notation where we label hopping from/to the
dyz-orbital with m = x, dxz with m = y, and dxy with m = z.

a) Consider only nearest neighbor hopping. Using symmetries such as the mirror with
respect to the x-y-plane, argue that the hopping amplitude between distinct orbitals
vanishes. Similarly, argue that the following hopping amplitudes are identical: ty,y(ax̂) =
tx,x(aŷ) = tz,z(ax̂) = tz,z(aŷ) ≡ t and ty,y(aŷ) = tx,x(ax̂) ≡ t′. Construct the matrix

H(1)(k⃗) from Eq. (1) which takes into account the nearest neighbor hoppings.

b) Based on part a), neglecting t′ as we can assume t ≫ t′, determine the Bloch energies
ε
nk⃗

for the three bands n = 1, 2, 3. Identify each band index n with an orbital. Sketch

the constant-energy surfaces for ε
nk⃗
/2t = −1/2, 0, 1/2. Evaluate the four points k⃗0 in

the first Brillouin zone where the bands corresponding to dxz and dyz are degenerate
for a given Fermi energy εF .

c) The degeneracy of the bands at k⃗0 will be lifted by including next-nearest-neighbor
hopping. The next-nearest-neighbor hopping matrix reads

H(2)(k⃗) =

−4txx cos(akx) cos(aky) 4txy sin(akx) sin(aky) 0
4txy sin(akx) sin(aky) −4txx cos(akx) cos(aky) 0

0 0 −4tzz cos(akx) cos(aky)

 ,

(2)
where we used that cos(a(kx + ky)) − cos(a(kx − ky)) = −2 sin(akx) sin(aky) and
cos(a(kx + ky)) + cos(a(kx − ky)) = 2 cos(akx) cos(aky). Convince yourself that indeed
only the next-nearest-neighbor hoppings txx, txy, and tzz are allowed by symmetry. Use

a computer program such as Mathematica to diagonalize H(k⃗) = H(1)(k⃗) + H(2)(k⃗).
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Figure 1: Sketches of the five d-orbitals, from left to right: dz2 , dxz, dyz, dxy, dx2−y2 . The color
blue/red denotes the sign of the wave function. In particular, note that dxz is antisymmetric
under mirror operations with respect to the x-y-plane or the y-z-plane, and similar antisymmetric
mirror planes exist for dyz and dxy.

Figure 2: Theoretically (left) and experimentally (right) determined α, β and γ sheets of the
Fermi surface of Sr2RuO4 (A. Damascelli et al., Phys. Rev. Lett. 85 5194, 2000).

Plot the Fermi surface for εF = 0 for various combinations of hopping amplitudes
until you find a combination that qualitatively resembles the experimental result in
Fig. 2. Which bands in the experimental result correspond to the hybridized dxz and
dyz orbitals? Which band corresponds to the dxy orbital?

2. Bloch oscillations

Consider an electron with charge −e < 0 in a one-dimensional tight-binding band. The
dispersion is given as εk = −2J cos(ka), where J > 0 is the hopping amplitude in order to
avoid confusion with the time t used below. Additionally, a constant electric field E is applied.

a) Solve the semiclassical equations of motion:

ℏk̇ = −eE and ẋ =
1

ℏ
∂kεk (3)

for the initial conditions x(t = 0) = x0 and k(t = 0) = k0. Plot x(t) as a function of t
and determine the amplitude xa and period T of its Bloch oscillation.
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b) Using the solutions k(t) and x(t) obtained in part a), show that the energy E = εk(t) +
eEx(t) is independent of time. Argue that the conservation of energy inhibits the
electron to escape to x→ ±∞.

c) The probability P (x) to find the electron at a certain position x is obtained by

P (x) =
1

T

∫ T

0
dtδ(x− x(t)) (4)

where T is the time period of a Bloch oscillation and x(t) is the semi-classical solution.
Evaluate P (x) for energy E = 0 and express your result in terms of the amplitude xa.

d) Consider now the quantum mechanical problem, i.e., the electron wavefunction with

energy E , Ψ(x, t) = e−iEt/ℏψE(x). Its Fourier transform ψE(k) with ψE(x) =
∫ π/a
−π/a

dk
2πψE(k)e

ikx

obeys the stationary Schrödinger equation

EψE(k) = (−2J cos(ka) + eEi∂k)ψE(k) . (5)

Obtain the solution ψE(k) up to a normalization factor.

e) Show that if ψE(x) is an eigenfunction with energy E then ψE(x+na) with n ∈ Z is an
eigenfunction with energy E +naeE, i.e., ψE+naeE(x), giving rise to the Wannier-Stark
ladder.
Hint: In order to show this, you do not need to evaluate the integral explicity since
i∂k = x in position representation!

f) Consider the wavefunction with energy E = 0, i.e., ψE=0(x). Show that this wavefunction
ψ0(x) with x = na, n ∈ Z, is ψ0(na) ∝ Jn(2J/eEa), i.e., proportional to the Bessel
function

Jn(z) =
1

2π

∫ π

−π
dτeinτ−iz sin τ . (6)

With the help of Mathematica, plot the probability distribution |ψ0(na)|2 on the
discrete lattice in the small-electric-field limit 2J/aeE ≫ 1, e.g. 2J/aeE = 100. Compare
the result with the semi-classical probability P (x) from part (c).

3


