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1. Tight-binding band structure of graphene

Graphene is a single sheet of carbon atoms which form a hexagonal lattice. The goal of this
exercise is to determine the band structure of graphene in the tight-binding approximation.

A hexagonal lattice is not a Bravais lattice. The
primitive unit cell consists of two atoms, leading to the
red and blue sublattice in Fig. The Bravais lattice
vectors a and the vectors w which connect atoms on
adjacent lattice sites are given by
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where a is the lattice constant. = We restrict the
discussion to only one orbital per atom, the so-called
m-orbital, with the wave function ¢(r —7) for an atom
at position rg. The tight-binding ansatz for the total
wave function is then given as

Figure 1: The hexagonal atomic lattice
of graphene consists of the blue and
red sublattice.
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The respective basis vectors d,, in Eq. are 04 = 0 and 6 = u1. The coefficients are given

by the eigenvalue problem Hy <Zk> = e(k) <Zk> which determines the dispersion (k) in the
k k

tight-binding approximation. When considering only hopping between nearest neighbors, the
tight-binding Hamiltonian in the most simple case is given by
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Here, t is the hopping amplitude. €4 and ep are the orbital eigenenergies on sites A and B,
respectively. In this exercise, we set h = 1.
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a) Assume that the two sublattices are equivalent, €4 = e = £/2. In the following,
consider an energy shift such that ¢ = 0. Calculate the dispersion 4 (k) of the two
bands and plot them, for example using Mathematica. Show that the two bands touch
at the so-called Dirac points
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in the 1. BZ where ¢4 (K) =4 (K') = 0.

b) Show that the dispersion around the Dirac points takes the form
e+ (K + k) = top|k| (7)

and similarly for K’. This linear dispersion is the reason for the special electric
properties of graphene. Determine the Fermi velocity vp of graphene and express it by
a and t.

c) Consider now the case €4 # e€p. This inequivalence may be caused, for example, by
the substrate underneath the two-dimensional graphene. Expand the tight-binding
Hamilton operator around the Dirac points and show that it can be written in the form

HK+k%UF(kyO'x—kixO'y)—l-AO'z—f—&‘]l (8)
where the ¢ are the Pauli matrices. Here, A = (¢4 —ep)/2 and € = (¢4 +€5)/2.

d) Diagonalize the Hamiltonian matrix of Eq. . Show that the degeneracy of the bands
is lifted if A # 0, i.e., they do not touch anymore.

2. Berry curvature

Consider the tight- binding Hamilton matrix ’H = —dy - & which is defined via the three-
dimensional vector di. The wave vector is k = (k, ky k2). Let |uk) denote a state with
(ux|uk) = 1 which fulfills

dic - &) = Juxc) (9)

where dy = di / |dx| is normalized. For this to be well-defined, we assume in the following that
the length of dy is finite everywhere in the 1. BZ, |di| > 0. The Berry curvature, which gives
rise to transport properties, is in momentum space defined as O = Vi x Ay with the vector
potential Ay = —i(uy|Vi|ux). The goal of this exercise is to express the Berry curvature by
properties of the unit vector cik.

a) Using Eq. @D, show that
(Ok, dio) o' [uxe) = 2Py |ux) (10)

with j = z,y, 2z and Einstein’s summation convention for the index i. Moreover, we
defined the projector P = (1 — dy&) = 1 — |uy){ux| with P = P2, Based on this
result, show that
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which is written in shortened notation where d;, = 9;.
Reminder: o'cd = dij + ieijgaf.



b) Calculate the curvature Q; = €;;,0; 4, and show that it is given by

Q, = ignmgdk- ((0ndi) x (D1 (12)

The expression in Eq. has a geometric interpretation where ) is the solid angle spanned by
the derivatives dy on the unit sphere. The sources of Berry curvature V - 2 are monopoles in
momentum space.
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As an example for the geometric interpretation, consider d = vphk whose amplitude
|dk| vanishes at k = 0. Calculate Q2 and the monopole charge. For the latter, use Gauss’
law fv dBkV - Q = fav do - € where the volume is a ball around k = 0 with radius k..

Sketch dyx (you may either draw or use a computer program).

As a second example, consider now the tight-binding Hamilton matrix H = v rh(kzo® +
kyo¥) + Ac* with vp > 0, c.f. Eq. . Determine its unit vector dy and calculate the
Berry curvature with the help of Eq. . As the vector dj varies only in the k,-k,-
plane, O has only one non-vanishing component

Q, = %Cik ((ak:zdk) X (@ﬁk)) : (13)

Show that the integral over the two-dimensional plane yields the universal result [ dk,dk,Q, =

msign(A) which only depends on the sign of A. Sketch dic (you may either draw or use
a computer program).



