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1. Tight-binding band structure of graphene

Graphene is a single sheet of carbon atoms which form a hexagonal lattice. The goal of this
exercise is to determine the band structure of graphene in the tight-binding approximation.

x

y

u1

u2

u3

a1

a2

Figure 1: The hexagonal atomic lattice
of graphene consists of the blue and
red sublattice.

A hexagonal lattice is not a Bravais lattice. The
primitive unit cell consists of two atoms, leading to the
red and blue sublattice in Fig. 1. The Bravais lattice
vectors a and the vectors u which connect atoms on
adjacent lattice sites are given by
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where a is the lattice constant. We restrict the
discussion to only one orbital per atom, the so-called
π-orbital, with the wave function ϕ(r− r0) for an atom
at position r0. The tight-binding ansatz for the total
wave function is then given as

Ψk = akΨ
(A)
k + bkΨ

(B)
k (3)

where
Ψ

(α)
k =

∑
R∈Bravais lattice

eikRϕ (r − (R− δα)) with α = A,B . (4)

The respective basis vectors δα in Eq. (4) are δA = 0 and δB = u1. The coefficients are given

by the eigenvalue problem Hk
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)
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bk

)
which determines the dispersion ε(k) in the

tight-binding approximation. When considering only hopping between nearest neighbors, the
tight-binding Hamiltonian in the most simple case is given by

Hk =

(
εA γ(k)

γ∗(k) εB

)
=

(
εA −t

∑3
n=1 e

iun·k

−t
∑3

n=1 e
−iun·k εB

)
. (5)

Here, t is the hopping amplitude. εA and εB are the orbital eigenenergies on sites A and B,
respectively. In this exercise, we set ℏ = 1.
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a) Assume that the two sublattices are equivalent, εA = εB = ε/2. In the following,
consider an energy shift such that ε = 0. Calculate the dispersion ε±(k) of the two
bands and plot them, for example using Mathematica. Show that the two bands touch
at the so-called Dirac points

K =

(
0
4π
3a

)
and K ′ =

(
0

−4π
3a

)
(6)

in the 1. BZ where ε±(K) = ε±(K
′) = 0.

b) Show that the dispersion around the Dirac points takes the form

ε±(K + k) ≈ ±vF |k| (7)

and similarly for K ′. This linear dispersion is the reason for the special electric
properties of graphene. Determine the Fermi velocity vF of graphene and express it by
a and t.

c) Consider now the case εA ̸= εB. This inequivalence may be caused, for example, by
the substrate underneath the two-dimensional graphene. Expand the tight-binding
Hamilton operator around the Dirac points and show that it can be written in the form

HK+k ≈ vF (kyσ
x − kxσ

y) + ∆σz + ε1 (8)

where the σi are the Pauli matrices. Here, ∆ = (εA − εB)/2 and ε = (εA + εB)/2.

d) Diagonalize the Hamiltonian matrix of Eq. (8). Show that the degeneracy of the bands
is lifted if ∆ ̸= 0, i.e., they do not touch anymore.

2. Berry curvature

Consider the tight-binding Hamilton matrix Hk = −d⃗k · σ⃗ which is defined via the three-
dimensional vector d⃗k. The wave vector is k = (kx, ky, kz). Let |uk⟩ denote a state with
⟨uk|uk⟩ = 1 which fulfills

d̂k · σ⃗|uk⟩ = |uk⟩ , (9)

where d̂k = d⃗k/|d⃗k| is normalized. For this to be well-defined, we assume in the following that
the length of d⃗k is finite everywhere in the 1. BZ, |d⃗k| > 0. The Berry curvature, which gives
rise to transport properties, is in momentum space defined as Ω⃗ = ∇⃗k × A⃗k with the vector
potential A⃗k = −i⟨uk|∇⃗k|uk⟩. The goal of this exercise is to express the Berry curvature by
properties of the unit vector d̂k.

a) Using Eq. (9), show that

(∂kj d̂
i
k)σ

i|uk⟩ = 2P∂kj |uk⟩ (10)

with j = x, y, z and Einstein’s summation convention for the index i. Moreover, we
defined the projector P = 1

2(1 − d̂kσ⃗) = 1 − |uk⟩⟨uk| with P = P 2. Based on this
result, show that

4(∂n⟨uk|)P (∂m|uk⟩) = (∂nd̂
i
k)(∂md̂jk)(δij + iεijℓd

ℓ
k) , (11)

which is written in shortened notation where ∂kj ≡ ∂j .

Reminder: σiσj = δij + iεijℓσ
ℓ.
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b) Calculate the curvature Ωi = εijℓ∂jAℓ and show that it is given by

Ωn =
1

4
εnmℓd̂k ·

(
(∂md̂k)× (∂ℓd̂k)

)
. (12)

The expression in Eq. (12) has a geometric interpretation where Ω⃗ is the solid angle spanned by
the derivatives d̂k on the unit sphere. The sources of Berry curvature ∇⃗ · Ω⃗ are monopoles in
momentum space.

c) As an example for the geometric interpretation, consider d⃗k = vFℏk⃗ whose amplitude
|d⃗k| vanishes at k = 0. Calculate Ω⃗ and the monopole charge. For the latter, use Gauss’
law

∫
V d3k∇⃗ · Ω⃗ =

∫
∂V dσ̂ · Ω⃗ where the volume is a ball around k = 0 with radius kr.

Sketch d̂k (you may either draw or use a computer program).

d) As a second example, consider now the tight-binding Hamilton matrix H = vFℏ(kxσx+
kyσ

y) + ∆σz with vF > 0, c.f. Eq. (8). Determine its unit vector d̂k and calculate the

Berry curvature with the help of Eq. (12). As the vector d̂k varies only in the kx-ky-

plane, Ω⃗ has only one non-vanishing component

Ωz =
1

2
d̂k

(
(∂kx d̂k)× (∂ky d̂k)

)
. (13)

Show that the integral over the two-dimensional plane yields the universal result
∫
dkxdkyΩz =

πsign(∆) which only depends on the sign of ∆. Sketch d̂k (you may either draw or use
a computer program).
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