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1. The anomalous skin effect

The skin effect describes the limited penetration depth δ of an electromagnetic wave into a
metal. Under the assumption that the electric field E is approximately uniform on the scale of
the electron’s mean free path ℓ, i.e., assuming δ ≫ ℓ, one can derive that the penetration depth
is approximately given as

δ ≈ c√
2πσ0ω

, (1)

where σ0 = ne2τ/m is the Drude conductivity, c is the speed of light, and ω is the frequency of
the wave. The dependence δ ∝ 1/

√
ω is characteristic of the normal skin effect.

However, for clean metals at low temperature, both σ0 and ℓ are large. If the frequency ω is also
large enough then from Eq. (1) we note that δ becomes very small and, in particular, smaller
than ℓ. Hence, in this limit, Eq. (1) does not hold anymore. Instead, for δ ≪ ℓ the so-called
anomalous skin effect determines the penetration depth δ. The goal of this exercise is to derive
an expression for the anomalous skin effect using the linearized Boltzmann equation.

As a first qualitative estimate, consider that only electrons which propagate their whole mean free
path within the skin layer are significantly influenced by the electric field E.
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Figure 1: Cross-section of the metal surface. Vectors
E and H are perpendicular to z.

For these electrons dθ ∼ δ/ℓ, see
Fig. 1. For the number of electrons
with momenta directed in a certain solid
angle element dΩ one obtains an effective
electron density

neff ∼ n
dΩ

4π
∼ n

δ

ℓ
. (2)

The effective conductivity follows as
σeff = neffe

2τ/m = ασ0δ/ℓ, where α is
an unknown factor.

a) Derive the penetration depth δ
by replacing σ0 with σeff in Eq. (1).
How is δ related to ω in this case?

A more elaborate calculation can be done by using the linearized Boltzmann equation with an
electric field E

∂tδf − e
∂f0
∂ϵk

vk ·E + vk ·∇rδf = −δf

τ
, (3)
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where δf ≡ δf(r,k, t) is the deviation from the equilibrium distribution f0(k) and vk = ℏ
mk.

b) Solve Eq. (3) for the Fourier transform δf(q,k, ω) with δf(q,k, ω) =
∫
dt

∫
d3r δf(r,k, t)e−i(qr−ωt).

Use the relation for the electrical current density j = 2(−e)
∫

d3k
(2π)3

vkδf to obtain the

components of the conductivity tensor σ defined via jα = σαβEβ. Show that

σαβ(q, ω) = 2e2
∫

d3k

(2π)3

(
−∂f0
∂ϵk

)
vαkv

β
k

1
τ + i(qvk − ω)

. (4)

Here α, β ∈ {x, y, z}.

In the following, consider the case q||ẑ shown in Fig. 1.

c) Show that all non-diagonal components of σαβ are zero and that σxx = σyy.

d) Consider the free-electron approximation and the zero temperature limit T → 0:

vk =
ℏ
m
k, ϵk =

ℏ2k2

2m
,

(
−∂f0
∂ϵk

)
= δ(ϵ− ϵF ), ϵF =

ℏ2k2F
2m

, kF = (3π2n)1/3.

Show that in this case

σxx(q, ω) =
e2

4π2m
k3F

1∫
−1

d(cos θ)
sin2 θ

τ−1 − i(ω − qvF cos θ)
. (5)

Convince yourself that in the limit q = 0 Eq. (5) reduces to the optical Drude conductivity
σxx = σ0/(1− iτω).

e) In the limit τ → ∞ and qvF ≫ ω, which is relevant for the anomalous skin effect, show
that

σ(q)xx ≈ 3π

4

σ0
τqvF

. (6)

Hint: Use the Sokhotski-Plemelj theorem limη→0+
1

x±iη = P
(
1
x

)
∓ iπδ(x), where P

denotes the Cauchy principal value.
Note for the German students: You may know this as the Dirac identity.

The dynamics of the electric field are described by the Maxwell equations. For an incoming
electromagnetic wave directed in z-direction with an oscillating electric field in x-direction, we
obtain the differential equation

∂2
zEx −

1

c2
∂2
tEx =

4π

c2
∂tjx . (8)

Note that the electric field profile depends on the current density jx which itself depends on
the electric field profile and the conductivity tensor, as derived in the previous tasks in Fourier
space. However, we cannot simply Fourier transform Eq. (8) due to the material parameter
jump at z = 0, see Fig. 2.
To solve this problem, we use the following trick: We can replace the vacuum half-space by the
mirror image of the metallic half-space. Thereby, we effectively obtain homogeneously metallic
sample with the only exception being at z = 0 where an additional delta-function encodes the
boundary conditions of the original setup, see Fig. 2. However, since we are not interested in
the precise value of the field but in its decay length, also the details of the boundary condition
are not important and it is sufficient to introduce them with a generic factor. Thus, in applying
this mirror trick we have to add a term +Aδ(z) to the right hand side of Eq. (8).
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Figure 2: Left: Sketch of the electric field profile in vaccum and in the metal. Right: Field profile
in ficticious metallic sample, obtained by extending the original field profile in the metallic half-
space via a mirror operation into the vacuum half-space.

f) Show that the electric field profile within the metal can be brought to the following
form

E0
x(z) = −A

∞∫
−∞

dq
eiqz

q2 − ω2

c2
− i4π

c2
σ(q)ω

. (9)

g) Substitute (6) into (9) and neglecting the term ω2/c2 in denominator of the integrand
in (9) show that the penetration depth is

δ ≈
(

τc2vF
3π2σ0ω

)1/3

. (10)

Hint: Use the residue theorem.

3


