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1. Hartree-Fock effective mass near k = 0

In the lecture, the Hartree-Fock approximation for free electrons was discussed. In this approximation,
the single-particle energy is given by εHF

k = ℏ2k2
2m + εexk with the exchange correction

εexk = −2e2

π
kFF (k/kF ), (1)

where F is the Lindhard function

F (x) =
1

2
+

1− x2

4x
ln

(
1 + x

1− x

)
. (2)

For the limit of small k, show that the energy is still parabolic, εHF
k ≈ ℏ2k2

2m∗ , and that the effective
mass is given by

m∗
k→0 ≈

m

1 + 0.22(rs/a)
. (3)

As in the lecture, rs = [3/(4πn)]1/3 is the radius of a sphere with volume 1/n and a = ℏ2/(me2)
is the Bohr radius.
Hints: kF = (3π2n)1/3 and ln(1− x) = −

∑
n x

n/n and ln(1 + x) = −
∑

n(−x)n/n.

2. Magnetic Friedel oscillations

In the lecture, it was derived that the Lindhard theory of screening leads to Friedel (2kF -
)oscillations in the Coulomb potential. The goal of this exercise is to show that similar oscillations
exist in the magnetization far from magnetic impurities. Therefore, we will first determine
the perturbative corrections to the free electron wavefunction in the presence of a magnetic
impurity and, in a second step, use this result to compute the magnetization which requires
careful treatment of the Lindhard function.
Consider a spin-12 Fermi gas with the Hamiltonian Ĥ0 and its eigenstates |k, σ⟩0:

Ĥ0 |k, σ⟩0 =
ℏ2k2

2m
|k, σ⟩0 = ϵ

(0)
k |k, σ⟩0 , ⟨r|k, σ⟩0 = Ψ

(0)
k,σ(r) =

eik·r√
V
ψσ, ψ↑ =

(
1
0

)
, ψ↓ =

(
0
1

)
(4)

where V is the volume. Additionally, consider a magnetic impurity

V (r) = −gµB
2

σ ·B(r) (5)

which we will treat in the following as a small perturbation, assuming that B is smalll. For
simplicity, set B(r) = Bẑδ(r) such that the number of spin-↑ and spin-↓ fermions is separately
conserved and they can be treated as two independent Fermi seas.
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a) Determine the correction to the eigenfunctions in lowest order perturbation theory in
B: |k, σ⟩ = |k, σ⟩0 + |k, σ⟩1. Show that the result is

Ψ
(1)
k,σ(r) = ⟨r|k, σ⟩1 = −gµBB

2V 3/2

∑
p̸=k

eip·r

ϵ
(0)
k − ϵ

(0)
p

σψσ (6)

with σ = 1 and −1 for σ =↑ and ↓, respectively.

b) Calculate the energy difference ∆ϵk = ϵ
(1)
k,σ=1 − ϵ

(1)
k,σ=−1 between the spin-↑ and spin-↓

fermions and discuss its value in the limit of an infinitely large volume, V → ∞.

The magnetization for a system with distribution function fk is given by

M(r) =
gµB
2

∑
k,σ,σ′

f(k)Ψ†
k,σ(r)σσ,σ′Ψk,σ′(r) , (7)

where the tensor σ is the vector of Pauli matrices and indices σ and σ′ denote the spin
components of the wave functions Ψ and each Pauli matrix, respectively. In the following we will

use the zero temperature equilibrium distribution f
(0)
k = Θ(EF − ϵk), where EF = ℏ2k2F /(2m)

is the Fermi energy.

c) Show that the magnetization is zero without a magnetic field, i.e. when Ψk,σ(r) =

Ψ
(0)
k,σ(r).

To linear order inB, the response of the system to the perturbation results in a finite magnetization
in z-direction:

Mz(r) =
gµB
2

∑
k,σ=±1

σf
(0)
k

(
Ψ

(0)†
k,σ (r)Ψ

(1)
k,σ(r) + Ψ

(1)†
k,σ (r)Ψ

(0)
k,σ(r)

)
. (8)

d) Using the result in Eq. (6), show that Eq. (8) takes the form

Mz(r) =
(gµB

2

)2
ν(EF )

2k2F
π2|r|

g(2kF |r|) B , (9)

where ν(EF ) = mkF /(ℏ2π2) is the density of states at the Fermi energy and

g(a) =

∫ ∞

0
dxx sin(ax)F (x) . (10)

Here,

F (x) =
1

2
+

1− x2

8x
ln

((
1 + x

1− x

)2
)

(11)

denotes the Lindhard function, written in an alternative form where the square inside
the logarithm takes care of the sign of the argument.
Hints: Choose the polar coordinates for k relative to p and substitute k = kFy. Choose
the polar coordinates for p relative to r and substitute p = 2kFx.
Helpful integrals:∫ 1
−1

1
q+2kτ dτ = 1

2k ln
∣∣∣ q+2k
q−2k

∣∣∣∫ 1
0

y
2 ln

(
x+y
x−y

)2
dy = 2xF (x)

In the following, we investigate Mz(r) in the limit of large distance from the impurity, r → ∞,
and find an approximate, explicit expression for the result in Eq. (9). Taking this limit requires
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a discussion of the behavior of g(a → ∞). The asymptotic value of the integral, Eq. (10), is
dominated by the region z ≈ 1 where the integrand is non-analytic. To show the non-analyticity
more explicitly, one can rewrite g(a) using partial integration as

g(a) = −
∫ ∞

0
dx

(
−x cos(ax)

a
+

sin(ax)

a2

)
F ′(x) . (12)

e) Calculate the derivative of the Lindhard function which can be split into a smooth and
a divergent part, F ′(x) = F ′

smooth(x) + F ′
div(x). Show that the divergent part takes is

F ′
div =

1

2
ln(|1− x|) , (13)

i.e., there is a logarithmic singularity at x = 1. Use a computer program to visualize
this non-analyticity, i.e., first, plot the Lindhard function to convince yourself that it is
a smooth function and, next, plot F ′(x) together with F ′

smooth and F ′
div.

The logarithmic divergence around x = 1 determines the asymptotic behavior of g(a) for a→ ∞.
Therefore, Eq. (12) becomes

g(a) ≈
ε>0,a→∞

−
∫ 1+ε

1−ε
dx

(
−x cos(ax)

a
+

sin(ax)

a2

)
F ′
div(x)

=

∫ 1+ε

1−ε
dx

2 cos(ax) + ax sin(ax)

2a3(x− 1)
, (14)

where we have performed a partial integration from the first to the second line.

f) Since we focus on the limit a→ ∞, consider in Eq. (14) only the most slowly decaying
terms in a and show that, with εa→ ∞, the result becomes

g(a→ ∞) =
π

2

cos(a)

a2
+O

(
1

a3

)
. (15)

g) What is the asymptotic behavior Mz(|r| → ∞)?
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