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1. The Lindhard function in one and two spatial dimensions

In the lecture, the static susceptibility χ0(q) of an electron gas at T = 0

χ0(q) = 2e2
∫

ddk

(2π)d
fk − fk+q

ϵk − ϵk+q
≡ −e2νdFd

(
q

2kF

)
and Fd(0) = 1 . (1)

was discussed for spatial dimension d = 3, where νd is the density of states at the Fermi level
and Fd is the Lindhard function.
Evaluate the susceptibility in spatial dimensions d = 1 and d = 2 and determine the corresponding
Lindhard functions analytically. Sketch the functions Fd(x) for d = 1, 2, 3 in the range 0 ≤ x ≤ 2
and discuss the behavior at x = 1.

2. Dynamic susceptibility

The dynamic susceptibility reads

χ0(q, ω) = 2e2
∫

ddk

(2π)d
fk − fk+q

ℏω + ϵk − ϵk+q + i0+
, (2)

which reduces to Eq. (1) for ω = 0. Consider in the following a three-dimensional model, d = 3,
of free electrons at T = 0.

a) When the frequency in Eq. (2) is on-shell, i.e., when the denominator in the integrand
vanishes, the resulting spectrum describes the continuum of particle-hole excitations,
ℏωph(k, q) = ϵk+q − ϵk. Sketch the continuum ωph(k, q) as a function of |q| for a fixed
k with |k| = kF , i.e., determine the boundaries of the continuum within the (ω, |q|)
plane. The continuum arises because the angle between q and k can take all possible
values.

b) Consider the limit of small q. In this limit, you can perform a Taylor expansion of
both the numerator and denominator of the integrand of Eq. (2) up to linear order in
q. Show that in this limit the integral simplifies to

χ0(q, ω) ≈ e2ν

∫ 1

−1

dx

2

x
ω

qvF
− x+ i0+

, (3)

where vF is the Fermi velocity and ν is the density of states at the Fermi level. Evaluate
the remaining integral.

1

https://ilias.studium.kit.edu/goto.php?target=crs_2219528


c) Consider now additionally the limit of small frequencies, ω
qvF

≪ 1. Show that up to
linear order in ω

qvF
, the susceptibility takes the form

χ0(q, ω) ≈ −e2ν

(
1 + i

π

2

ω

qvF

)
. (4)

The real part is the Thomas-Fermi result from the lecture and the imaginary part is
known as Landau damping, i.e., damping due to the excitations of particle-hole pairs.
Indicate in the plot of a) the parameter regime which is considered here.

d) Consider now the limit of large frequencies ω
qvF

≫ 1. Expand χ0(q, ω) up to fourth

order in qvF
ω . Using this result, determine the dispersion of plasmons ωp(q) for small q

by solving ε(q, ω) = 0 where the dielectric function is given by ε(q, ω) = 1− 4π
q2
χ0(q, ω).

Show that it takes the form

ωp(q) ≈ ωp

(
1 +

9

10

q2

k2TF

)
, (5)

where kTF is the Thomas-Fermi wave vector with k2TF = 4πe2ν and ω2
p = 4πne2/m.

Indicate in the plot of a) the parameter regime which is considered here and add a
sketch of ωp(q).

3. Hartree-Fock approximation in graphene

The tight-binding Hamiltonian of two-dimensional graphene has been discussed on sheet 8.
There, it was derived that the band structure touches at the Dirac points K and K′ and that
a linear order expansion around these points yields the effective Hamiltonian

HK+k ≈ ℏvF (kyσx − kxσ
y) (6)

for 0 ≤ k < Λ where Λ is a momentum cut-off scale. The eigenenergies of this Hamiltonian
are given by ε±k = ±ℏvF |k| where kT = (kx, ky). We consider the groundstate where all states
with negative energies ε−k are occupied and all states with positive energies ε+k are unoccupied.
The goal of this exercise is to use the Hartree-Fock approximation to derive the correction to
ε±k caused by Coulomb interaction.

a) Convince yourself that a rotation transformation on the Pauli matrices can be used to
cast the Hamiltonian into the form

H = ℏvF (kxσx + kyσ
y) , (7)

which we will for convenience use as a modified starting point in the following. Rewrite
k in two-dimensional polar coordinates and determine the eigenvectors of H. Show that
the real-space eigenstates with eigenvalues εσki

take the form

ϕi,σ(r) =
1√
2V

eiki·r
(

σ
eiφi

)
, (8)

where σ = ±1 and i labels the state with wave vector ki whose direction in the two-
dimensional plane is described by the angle φi, e.g. ki,x = ki cos(φi).

b) The eigenfunctions (8) also solve the Hartree-Fock equations for the present problem.
Similar to free electrons, the Hartree term yields a uniform density which cancels
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against the uniform positive charge density background. The correction δεσki
to the

eigenenergies is then given by the Fock term which reads

δεσki
ϕi,σ(r) = −e2

∫
d2r′

∑
j

ϕ†
j,−1(r

′) · ϕi,σ(r
′)

|r − r′|
ϕj,−1(r) . (9)

Extract the energy correction by projecting this Schrödinger equation onto ϕ†
i,σ(r), i.e.,

multiply with this function and integrate over r. You can then shift r by r′. Perform
the Fourier transform of 1/r in two spatial dimensions by utilizing the Fourier transform
in three spatial dimensions and restrict it to z = 0. Use the result from Eq. (8) to show
that the energy correction takes the form

δεσk = − e2

4π

∫
d2k′

1− σ cos(φ− φ′)

|k − k′|
, (10)

where φ and φ′ are the angles parametrizing k and k′, respectively.

c) Verify that the integrand in Eq. (10) is trivial for k′ → 0 but diverges for k′ → ∞. To
capture the dominant divergent behavior, expand the integral to leading order in 1/k′.
Show that the Coulomb interaction in Hartree-Fock approximation leads to a correction

vF (k) = vF

(
1 +

e2

4ℏvF
ln

Λ

|k|

)
(11)

of the Fermi velocity.

This logarithmic divergence was also confirmed experimentally by D.C. Elias et.al, Nature
Physics 7, 701 (2011).
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