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1. The Lindhard function in one and two spatial dimensions

In the lecture, the static susceptibility xo(q) of an electron gas at 7' =0
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was discussed for spatial dimension d = 3, where v, is the density of states at the Fermi level
and F} is the Lindhard function.

Evaluate the susceptibility in spatial dimensions d = 1 and d = 2 and determine the corresponding
Lindhard functions analytically. Sketch the functions Fy(x) for d = 1,2, 3 in the range 0 < x < 2
and discuss the behavior at x = 1.

2. Dynamic susceptibility

The dynamic susceptibility reads
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which reduces to Eq. for w = 0. Consider in the following a three-dimensional model, d = 3,
of free electrons at T' = 0.

a) When the frequency in Eq. is on-shell, i.e., when the denominator in the integrand
vanishes, the resulting spectrum describes the continuum of particle-hole excitations,
fwph (K, q) = €k1+q — €. Sketch the continuum wpp(k, g) as a function of |g| for a fixed

k with |k| = kp, i.e., determine the boundaries of the continuum within the (w,|q|)
plane. The continuum arises because the angle between q and k can take all possible
values.

b) Consider the limit of small q. In this limit, you can perform a Taylor expansion of
both the numerator and denominator of the integrand of Eq. up to linear order in
g. Show that in this limit the integral simplifies to
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where vp is the Fermi velocity and v is the density of states at the Fermi level. Evaluate
the remaining integral.


https://ilias.studium.kit.edu/goto.php?target=crs_2219528

c) Consider now additionally the limit of small frequencies, -~ < 1. Show that up to
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linear order in QULF, the susceptibility takes the form
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The real part is the Thomas-Fermi result from the lecture and the imaginary part is
known as Landau damping, i.e., damping due to the excitations of particle-hole pairs.
Indicate in the plot of a) the parameter regime which is considered here.
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d) Consider now the limit of large frequencies -~ > 1. Expand xo(gq,w) up to fourth
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order in ©F. Using this result, determine the dispersion of plasmons wy(q) for small ¢
by solving (g, w) = 0 where the dielectric function is given by e(q,w) = 1— %Xo(q, w).
Show that it takes the form
9 ¢
~ 14+ ——5— 5
ol >y (14 3575 5)

where krp is the Thomas-Fermi wave vector with k%F = 4re?v and wg = 4mne? /m.
Indicate in the plot of a) the parameter regime which is considered here and add a
sketch of wp(q).

3. Hartree-Fock approximation in graphene

The tight-binding Hamiltonian of two-dimensional graphene has been discussed on sheet 8.
There, it was derived that the band structure touches at the Dirac points K and K’ and that
a linear order expansion around these points yields the effective Hamiltonian

Hi+k ~ hwp(kyo® — kyo¥) (6)

for 0 < k < A where A is a momentum cut-off scale. The eigenenergies of this Hamiltonian
are given by Elf = +hvp|k| where kT = (k;, k,). We consider the groundstate where all states
with negative energies ¢, are occupied and all states with positive energies eﬁ are unoccupied.
The goal of this exercise is to use the Hartree-Fock approximation to derive the correction to

sljf caused by Coulomb interaction.

a) Convince yourself that a rotation transformation on the Pauli matrices can be used to
cast the Hamiltonian into the form

H = hop(kgo® + kyo?) | (7)

which we will for convenience use as a modified starting point in the following. Rewrite
k in two-dimensional polar coordinates and determine the eigenvectors of H. Show that
the real-space eigenstates with eigenvalues 7 take the form
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where o = 1 and ¢ labels the state with wave vector k; whose direction in the two-
dimensional plane is described by the angle ¢;, e.g. ki, = ki cos(g;).

b) The eigenfunctions also solve the Hartree-Fock equations for the present problem.
Similar to free electrons, the Hartree term yields a uniform density which cancels



against the uniform positive charge density background. The correction 55% to the
eigenenergies is then given by the Fock term which reads
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Extract the energy correction by projecting this Schrédinger equation onto qﬁ; ,(7r), e,
multiply with this function and integrate over r. You can then shift r by r’. Perform
the Fourier transform of 1/r in two spatial dimensions by utilizing the Fourier transform
in three spatial dimensions and restrict it to z = 0. Use the result from Eq. to show
that the energy correction takes the form
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where ¢ and ¢’ are the angles parametrizing k and k’, respectively.

¢) Verify that the integrand in Eq. is trivial for & — 0 but diverges for ¥’ — oo. To
capture the dominant divergent behavior, expand the integral to leading order in 1/k’.
Show that the Coulomb interaction in Hartree-Fock approximation leads to a correction
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of the Fermi velocity.

This logarithmic divergence was also confirmed experimentally by D.C. Elias et.al, Nature
Physics 7, 701 (2011).



