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1. Fermionic Bogoliubov transformation

In the context of the BCS theory, we encountered a Hamiltonian with anomalous terms consisting
of two fermionic creation and annihilation operators. Such terms violate the U (1) gauge symmetry
of the Hamiltonian. Such Hamiltonians can be diagonalized with the help of a Bogoliubov
transformation, which will be considered in some detail in this exercise.

a) Consider fermionic creation and annihilation operators ¢l and ¢y, where spin up (1) or

down({|) is denoted as 0 = +1 or 0 = —1, respectively. New fermionic operators a,
T

and as can be introduced via the Bogoliubov transformation
Co = gy + Bral , and ¢ =akal + Bia_y , (1)

or, equivalently, for the Nambu spinor

(e (@)
c= (CI> =U <CLI> =Ua, (2)

where the matrix U is simply related to the coefficients a, and §,. By using the
fermionic operator algebra, show that this matrix U is a unitary matrix, i.e., UTU = 1.

b) Consider a system of fermions described by the Hamiltonian

7‘[:6(0,];C¢+610¢) 7A0$017A*c¢c¢ , ceR,AecC. (3)
Using Nambu spinors rewrite the Hamiltonian in matrix form, H = %E’TH ¢+ h and
determine the matrix H and the constant h. Diagonalize the matrix H with the help
of the Bogoliubov transformation and compute the eigenenergies.

Bonus: The eigenenergies come in pairs *+F. This is related to the particle-hole
symmetry 7Y H*7Y = —H, where 7Y is a Pauli matrix. Why?

2. Bosonic Bogoliubov transformation

In this exercise, we consider bosonic operators and examine the bosonic version of a Bogoliubov
transformation.

a) Consider bosonic creation and annihilation operators df and d. New bosonic operators
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are introduced via the bosonic Bogoliubov transformation

d=ab+ bl and df =o' + 3%, (4)

I (;):B@)Ega, (5)

where the matrix B is related to the coefficients « and 5. Using the bosonic operator
algebra, show that the matrix B fulfils the relation Bf7?B = 7%, where 77 is the Pauli
matrix, i.e., B is not unitary.

or, equivalently,

b) Consider the Hamiltonian
A AF
H:sde—EdeT—?dd, ceecR,AEC. (6)

Rewrite the Hamiltonian in matrix form, H = %cz T Hd+ h, and determine the matrix H
and the constant h. Diagonalize the matrix H with the help of the bosonic Bogoliubov
transformation and determine the eigenenergies.

Hint: The diagonalization requires to choose the coefficients of the matrix B such that
BYHB = D becomes a diagonal matrix D. Alternatively, you might want to use that
B~'7HB = Dr* where B = Br* and B~! = Bir=.

Bonus: The diagonal matrix D is proportional to the unit matrix D = E1. Why?

3. Superconductors and Coulomb interaction

In this exercise we investigate a minimal extension to the BCS theory of superconductivity that
was discussed in the lecture. As a generalization of the BCS model we introduce a momentum
dependent coupling Vi, and consider the Hamiltonian

H= Z ékCLUCkU + Z Vk/kCT—k’J,CLTCkTC*k,L'
k,o k!

a) Apply a mean-field approximation to the above Hamiltonian and write it in terms of
the now momentum dependent order parameter

Ap =) Viplepre-p).
p

and the Nambu spinors @Z_;k = (crt, ci i i)T‘ Calculate its eigenenergies. Before you start,
convince yourself that for H to be hermitian it must hold Viep = Vk-

b) In the lecture, the gap equation was derived self-consistently for 7' # 0. Repeat this
derivation for the new Hamiltonian and show that the gap equation has the form

E
A / d3p v tanh (TséjT) A
B (2r)3 " 2E, P

where E, is the eigenenergy of the mean-field Hamiltonian.

c) Inthe BCS model the coupling V},;, was approximated by a constant attractive potential
below the Debye frequency (|x|,|¢p| < wp). In the lecture, this was motivated by



overscreening from electron-phonon interaction. However, revisiting the results from the
lecture you may notice that above wp the effective potential is still repulsive. Therefore,
we introduce a repulsive interaction V', representing Coulomb repulsion, below some
large cut-off frequency we > wp, such that

Vip = —90(wp — |&))O(wp — &) + VO (we — |&])O(we — &)

where O is the Heavyside-function. It is then convenient to write the gap, which is of
course still constant on the respective intervals, as

Ao if [§| <wp,
A = A fwp< ‘§k| < wcg,

0 else.

Find the critical temperature for this model.

Background information: The resulting formula for T, is a special case of McMillan’s
formulaﬂ7 derived from the linearized Eliashberg equations. In the original form, McMillan’s
formula has three parameters: the electron phonon coupling strength A, the Coulomb
pseudo-potential p* and the average phonon frequency (w),

1. 1+ A
— xexp | — W .
wp A — A\t —

WD

1

I and p*7 =

1—gv
(V)" +1n o2, where v = v(Ep) is the density of states at the Fermi level, you should
obtain the result from the exercise.

Making the simplifying assumption (w) = wp and identifying A\ =

'W. L. McMillan, ” Transition temperature of strong-coupled superconductors”, Phys. Rev. 167
(1968), pp. 331-344. DOI:10.1103/PhysRev.167.331



