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1. Fermionic Bogoliubov transformation

In the context of the BCS theory, we encountered a Hamiltonian with anomalous terms consisting
of two fermionic creation and annihilation operators. Such terms violate the U(1) gauge symmetry
of the Hamiltonian. Such Hamiltonians can be diagonalized with the help of a Bogoliubov
transformation, which will be considered in some detail in this exercise.

a) Consider fermionic creation and annihilation operators c†σ and cσ, where spin up (↑) or
down(↓) is denoted as σ = +1 or σ = −1, respectively. New fermionic operators aσ
and a†σ can be introduced via the Bogoliubov transformation

cσ = ασaσ + βσa
†
−σ and c†σ = α∗

σa
†
σ + β∗σa−σ , (1)

or, equivalently, for the Nambu spinor

c⃗ ≡

(
c↑
c†↓

)
= U

(
a↑
a†↓

)
≡ Ua⃗ , (2)

where the matrix U is simply related to the coefficients ασ and βσ. By using the
fermionic operator algebra, show that this matrix U is a unitary matrix, i.e., U †U = 1.

b) Consider a system of fermions described by the Hamiltonian

H = ε
(
c†↑c↑ + c†↓c↓

)
−∆c†↑c

†
↓ −∆∗c↓c↑ , ε ∈ R,∆ ∈ C . (3)

Using Nambu spinors rewrite the Hamiltonian in matrix form, H = 1
2 c⃗

†Hc⃗ + h and
determine the matrix H and the constant h. Diagonalize the matrix H with the help
of the Bogoliubov transformation and compute the eigenenergies.
Bonus: The eigenenergies come in pairs ±E. This is related to the particle-hole
symmetry τyH∗τy = −H, where τy is a Pauli matrix. Why?

2. Bosonic Bogoliubov transformation

In this exercise, we consider bosonic operators and examine the bosonic version of a Bogoliubov
transformation.

a) Consider bosonic creation and annihilation operators d† and d. New bosonic operators
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are introduced via the bosonic Bogoliubov transformation

d = αb+ βb† and d† = α∗b† + β∗b , (4)

or, equivalently,

d⃗ ≡
(
d
d†

)
= B

(
a
a†

)
≡ Ba⃗ , (5)

where the matrix B is related to the coefficients α and β. Using the bosonic operator
algebra, show that the matrix B fulfils the relation B†τ zB = τ z, where τ z is the Pauli
matrix, i.e., B is not unitary.

b) Consider the Hamiltonian

H = εd†d− ∆

2
d†d† − ∆∗

2
dd , ε ∈ R,∆ ∈ C . (6)

Rewrite the Hamiltonian in matrix form, H = 1
2 d⃗

†Hd⃗+h, and determine the matrix H
and the constant h. Diagonalize the matrix H with the help of the bosonic Bogoliubov
transformation and determine the eigenenergies.
Hint: The diagonalization requires to choose the coefficients of the matrix B such that
B†HB = D becomes a diagonal matrix D. Alternatively, you might want to use that
B̃−1τ zHB̃ = Dτ z where B̃ = Bτ z and B̃−1 = B†τ z.
Bonus: The diagonal matrix D is proportional to the unit matrix D = E1. Why?

3. Superconductors and Coulomb interaction

In this exercise we investigate a minimal extension to the BCS theory of superconductivity that
was discussed in the lecture. As a generalization of the BCS model we introduce a momentum
dependent coupling Vkp and consider the Hamiltonian

H =
∑
k,σ

ξkc
†
kσckσ +

∑
k,k′

Vk′kc
†
−k′↓c

†
k′↑ck↑c−k↓.

a) Apply a mean-field approximation to the above Hamiltonian and write it in terms of
the now momentum dependent order parameter

∆k =
∑
p

Vkp⟨cp↑c−p↓⟩.

and the Nambu spinors ψ⃗k = (ck↑, c
†
−k↓)

T . Calculate its eigenenergies. Before you start,
convince yourself that for H to be hermitian it must hold V ∗

kp = Vpk.

b) In the lecture, the gap equation was derived self-consistently for T ̸= 0. Repeat this
derivation for the new Hamiltonian and show that the gap equation has the form

∆k = −
∫

d3p

(2π)3
Vkp

tanh
(

Ep

2kBT

)
2Ep

∆p,

where Ep is the eigenenergy of the mean-field Hamiltonian.

c) In the BCS model the coupling Vkp was approximated by a constant attractive potential
below the Debye frequency (|ξk|, |ξp| < ωD). In the lecture, this was motivated by
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overscreening from electron-phonon interaction. However, revisiting the results from the
lecture you may notice that above ωD the effective potential is still repulsive. Therefore,
we introduce a repulsive interaction V , representing Coulomb repulsion, below some
large cut-off frequency ωC > ωD, such that

Vkp = −gΘ(ωD − |ξk|)Θ(ωD − |ξp|) + VΘ(ωC − |ξk|)Θ(ωC − |ξp|)

where Θ is the Heavyside-function. It is then convenient to write the gap, which is of
course still constant on the respective intervals, as

∆k =


∆< if |ξk| < ωD,

∆> if ωD < |ξk| < ωC ,

0 else.

Find the critical temperature for this model.

Background information: The resulting formula for Tc is a special case of McMillan’s
formula1, derived from the linearized Eliashberg equations. In the original form, McMillan’s
formula has three parameters: the electron phonon coupling strength λ, the Coulomb
pseudo-potential µ∗ and the average phonon frequency ⟨ω⟩,

Tc
ωD

∝ exp

(
− 1 + λ

λ− λµ∗ ⟨ω⟩ωD
− µ∗

)
.

Making the simplifying assumption ⟨ω⟩ = ωD and identifying λ = gν
1−gν and µ∗−1 =

(V ν)−1+ln ωC
ωD

, where ν = ν(EF ) is the density of states at the Fermi level, you should
obtain the result from the exercise.

1W. L. McMillan, ”Transition temperature of strong-coupled superconductors”, Phys. Rev. 167
(1968), pp. 331–344. DOI:10.1103/PhysRev.167.331
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