Condensed Matter Theory 1 — Exercise 14

Winter term 2023/24

https://ilias.studium.kit.edu/goto.php?target=crs_2219528 To be discussed on: *Thursday 2024/02/15*

1. Josephson effect

The aim of this exercise is to calculate the Josephson current between two superconductors for T = 0. The two superconductors are labeled by 1 and 2 and are described by the BCS-Hamiltonians

$$\mathcal{H}_{\mathrm{BCS},1}^{\mathrm{MF}} = \sum_{\boldsymbol{k},\sigma} \xi_{\boldsymbol{k}} c_{\boldsymbol{k},\sigma}^{\dagger} c_{\boldsymbol{k},\sigma} - \sum_{\boldsymbol{k}} \Delta_{1}^{*} c_{-\boldsymbol{k},\downarrow} c_{\boldsymbol{k},\uparrow} - \sum_{\boldsymbol{k}} \Delta_{1} c_{\boldsymbol{k},\uparrow}^{\dagger} c_{-\boldsymbol{k},\downarrow}^{\dagger}$$
(1)

and

$$\mathcal{H}_{\mathrm{BCS},2}^{\mathrm{MF}} = \sum_{\boldsymbol{k},\sigma} \xi_{\boldsymbol{k}} d_{\boldsymbol{k},\sigma}^{\dagger} d_{\boldsymbol{k},\sigma} - \sum_{\boldsymbol{k}} \Delta_{2}^{*} d_{-\boldsymbol{k},\downarrow} d_{\boldsymbol{k},\uparrow} - \sum_{\boldsymbol{k}} \Delta_{2} d_{\boldsymbol{k},\uparrow}^{\dagger} d_{-\boldsymbol{k},\downarrow}^{\dagger}, \qquad (2)$$

respectively, where $\Delta_{1,2} = |\Delta| e^{i\phi_{1,2}}$. The electron annihilation operators for 1 and 2 are $c_{\mathbf{k},\sigma}$ and $d_{\mathbf{k},\sigma}$, resepctively, and the electron energy for both superconductors is $\xi_{\mathbf{k}} = \epsilon_{\mathbf{k}} - \mu$. The tunneling of electrons between the two superconductors is described by the Hamiltonian

$$\mathcal{H}_{\mathrm{T}} = \sum_{\boldsymbol{k}_{1},\boldsymbol{k}_{2},\sigma} V\left(c_{\boldsymbol{k}_{1},\sigma}^{\dagger}d_{\boldsymbol{k}_{2},\sigma} + d_{\boldsymbol{k}_{2},\sigma}^{\dagger}c_{\boldsymbol{k}_{1},\sigma}\right).$$
(3)

Here V is the spin-independent tunneling amplitude. An electron does not change its spin during the tunneling process. The total Hamiltonian reads

$$\mathcal{H} = \mathcal{H}_{\mathrm{BCS},1}^{\mathrm{MF}} + \mathcal{H}_{\mathrm{BCS},2}^{\mathrm{MF}} + \mathcal{H}_{\mathrm{T}}.$$
(4)

- a) Perform a gauge transformation so that the two order parameters Δ_1 and Δ_2 become real. The phases ϕ_1 and ϕ_2 should then appear in \mathcal{H}_T .
- b) The current operator in Heisenberg representation is defined as

$$I = -e\dot{N}_1 = -\frac{ie}{\hbar} \left[\mathcal{H}, N_1\right],\tag{5}$$

where $N_1 = \sum_{\boldsymbol{k},\sigma} c_{\boldsymbol{k},\sigma}^{\dagger} c_{\boldsymbol{k},\sigma}$ is the particle number operator. Obtain the operator I by evaluating the commutator. The term proportial to V is the tunnel current into the other superconductor which is important in the following. The other term, which is proportional to $|\Delta|$, is the current due to local pair creation/annihilation in the superconductor and can be disregarded for the following tasks.

We cannot exactly compute the expectation value $\langle I(t) \rangle$ of the current through the tunnel barrier since the states are not known. However, in the following, we derive a perturbative result, assuming that \mathcal{H}_{T} is a small perturbation that has been switched on adiabatically in the far past $(t \to -\infty)$. We thus split the Hamiltonian $\mathcal{H} = \mathcal{H}_0 + \delta \mathcal{H}$ into a time-independent and time-dependent contribution, $\mathcal{H}_0 = \mathcal{H}_{\mathrm{BCS},1}^{\mathrm{MF}} + \mathcal{H}_{\mathrm{BCS},2}^{\mathrm{MF}}$ and $\delta \mathcal{H} = \mathcal{H}_{\mathrm{T}}$.

c) The time evolution of the density matrix $\rho(t)$ is known to be $\partial_t \rho(t) = -\frac{i}{\hbar} [\mathcal{H}(t), \rho(t)]$. For treating $\delta \mathcal{H}$ as a perturbation, introduce the density matrix in the *interaction* picture which is given by

$$\rho_i(t) = e^{i\mathcal{H}_0 t} \rho(t) e^{-i\mathcal{H}_0 t}.$$
(6)

Compute $\partial_t \rho_i(t)$ and derive the perturbative expression

$$\rho_i(t) \approx \rho_0 - \frac{i}{\hbar} \int_{-\infty}^t [\delta \mathcal{H}_i(t'), \rho_0] dt' + \mathcal{O}(\delta \mathcal{H}_i^2)$$
(7)

where $\delta \mathcal{H}_i(t')$ is the perturbation in the interaction picture and ρ_0 the density matrix at $t \to -\infty$.

- d) Consider the case T = 0, i.e., both superconductors are in the groundstate. Use the first-order time-dependent perturbation theory result from Eq. (6) to bring the expectation value $\langle I(t) \rangle = \text{tr}\{\rho(t)I(t)\}$ into the form of an expectation value with respect to the groundstate of the superconductors.
- e) The current between the superconductors is known as Josephson current. Compute the Josephson current and show that it takes the form $I = I_c \sin(\phi_1 \phi_2)$. Bonus: What is the constant I_c ?