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1 Solids

fundamental states of matter: solid, liquid, gas

Figure 1: Phase diagram

At sufficiently low temperatures matter almost always assumes a solid state. Exception:
for example Helium (He) → superfluid state
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Figure 2: Phase diagram Helium

1.1 Crystalline Solids

Most solids are crystals characterized by a periodic arrangement of its constitutes e.g.
atoms in contrast to amorphous solides like gases. Solid crystals break the translation
and rotation invariance.
Consequences:

• a solid state is separated from liquid and gas state by a symmetry-breaking phase
transition. A liquid or a gas cannot be continuously transformed into a solid.
When a liquid freezes and solidifies it usually does not lead to a macroscopic solid
composed of a single crystal. It often consists of a large number of smaller crystals
generally known as domains, that have broken the symmetries in different fashions.
Such a material is a poly-crystal.

• solids possess as a symmetry-broken state a rigidity (Steifigkeit), structural rigid-
ity allows long distance transmission of forces and shear forces (Scherkräfte), i.e.
dissipationless momentum and angular momentum flow (similar to superconductor
that allows for dissipationless charge flow)

• a solid crystal is characterized by low-energetic excitations (Goldstone Modes) that
are the acoustic phonons. Phonon velocities are determined by the elastic moduli
like bulk and shear modules that quantify the rigidity of the crystal.

1.2 Crystal Structure

Geometrical properties of a periodic structure are characterized by the Bravais lattice.
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Bravais lattice

A (three-dimensional) Bravais lattice consists of all points with position vector ~R of the
form

~Rn = n1~a1 + n2~a2 + n3 ~a3

with ni ∈ Z. The primitive vectors ~ai are linearly independent. The choice of primitive
vectors is not unique.

1.2.1 Theorem (Auguste Bravais 1848)

There exist only 14 Bravais lattice types in 3 dimensions.
Examples:

• simple cubic (sc)
~a1 ⊥ ~a2 ⊥ ~a3 with |~a1| = |~a2| = |~a3|

• body-centered cubic (bcc)

~a1 = ax̂, ~a2 = bŷ, ~a3 =
a

2
(x̂+ ŷ + ẑ)

sc plus an additional point at the center of each cube

• face-centered cubic (fcc)

~a1 =
a

2
(x̂+ ẑ), ~a2 =

a

2
(ẑ + x̂), ~a2 =

a

3
(x̂+ ẑ)

sc plus an additional point at each centre of square faces

Figure 3: cubic Bravais lattices
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1.2.2 Coordination number z

The coordination number z is the number of nearest neighbors of each lattice point,
whereas the nearest neighbors are the points in the Bravais lattice that are nearest to a
given point:

sc bcc fcc

z 6 8 12

The bcc and fcc Bravais lattices are very important as an enormous variety of solids
crystallize in these forms with an atom or ion at each lattice site. Usually, the fcc lattice
is preferred at lowest temperatures since it possesses the larger coordination number z
(dichtest gepackt). In contrast, the sc lattice is very rarely realized.

1.2.3 Unit cell (UC)

The unit cell describes the volume of space, when translated through a subset of the
vectors of the Bravais lattice, which just fills all space without overlap itself or leaving
voids.

1.2.4 Primitive unit cell (PUC)

The primitive unit cell is a UC containing exactly a single lattice point. Note: there
does not exist a unique way of choosing a PUC for a given Bravais lattice. However, its
volume is fixed by the density of points in the Bravais lattice n:

VPUC =
1

n

A possible choice is:

PUC = {x1~a1 + x2~a2 + x3~a3 | 0 ≤ xi < 1, i = 1, 2, 3}

For a given PUC an arbitrary vector ~R is uniquely defined:

~R = ~Rn + ~x with ~x ∈ PUC and ~Rn = n1~a1 + n2~a2 + n3~a3

7



Figure 4: (primitive) unit cell

1.2.5 Wigner-Seitz primitive cell

The Wigner-Seitz primit primitive cell is a primitive unit cell about a lattice point
containing the region of space that is closer to that point than to any other lattice point.
The Wigner-Seitz cell possesses the full symmetry of the Bravais lattice.
Examples of a two-dimensional Bravis lattice are the triangular or the hexagonal lattice.

Figure 5: Wigner-Seitz cell of a triangular lattice
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1.2.6 Crystal structure

The Crystal structure consists of identical copies of the same physical unit, called the
basis, located at all points of the Bravais lattice. In particular, the basis specifies the
position of atoms within a unit cell.
Examples:

• mono-atomic Bravais lattice crystal structure with a basis consisting of a simple
atom or ion positioned for example at the point of the Bravais lattice. E.g. crystal
structure of Cr(bcc), Fe(bcc), Xl (fcc), Au(fcc)

• two-dimensional honeycomb (realized in Graphene), which is not a Bravais lattice

Figure 6: Honeycomb lattice

Its basis contains two points{
1

3
(~a1 + ~a2),

2

3
(~a1 + ~a2

}
• diamond structure

fcc lattice with two point basis {
0,

a

4
(x+ y + z)

}
• hexagonal close-pack structure

simple hexagonal lattice = stated two dimensional primitive vectors

~a1 = ax, ~a2 =
a

2
x+

√
3

2
ay, ~a3 = az,

with two point basis: {
0,

1

3
~a1 +

1

3
~a2 +

1

2
~a3

}
This structure is of similar importance as the mono-atomic bcc and fcc lattice.
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• structures that are necessarily described by a basis because two types of ions/
atoms are present:

– NaCl (sodium chloride)
fcc lattice, basis: Na at (0, 0, 0) and Cl at (a2 ,

a
2 ,

a
2 )

– CsCl (cesium chloride)
bcc lattice, basis: Cs at (0, 0, 0) and Cl at (a2 ,

a
2 ,

a
2 )

• Zincblende structure (Zns)
diamond structure but the two positions specified by the basis are occupied by
different atoms/ions.

18.10.2019

1.2.7 Classification of crystal structure

Crystal structures are classified according to their symmetries. One distinguishes

Point group

The point group is composed of all symmetry operations that leave a particular ion/
atom of the crystal fixed like reflection, inversion, rotation, combined rotation-reflection,
rotation-inversion. There are in total 32 crystallographic point groups. Symmetries of
the point group are important to determine the number of independent components of
tensor quantities that characterize properties of the crystal for example conductivity σij ,
polarizability αij , susceptibility ξij or the piezoelectric tensor dijk.

Space group

The space group is composed of the symmetry operations of the point group in addition

• translation through Bravais lattice vector

• combined translation-rotation (screw axis) and translation-reflexion (glide planes)
symmetry operations

and combinations thereof. There are in total 230 space groups.

1.2.8 Reciprocal lattice

Consider a function eg. a potential with a periodicity of Bravais lattice V (~r+ ~Rn) = V (~r)
with ~Rn = n1~a1 + n2~a2 + n3~a3. The Fourier transformation of the potential is given by:

V (~r) =
∑

V ~Gme
i ~Gm~r

where due to the periodicity the momenta ~Gm have the properties

ei
~Gm ~Rn = 1

10



or alternatively
~Gm ~Rn = 2πN with N ∈ Z.

The momenta are given by

~Gm = m1
~b1 +m2

~b2 +m3
~b3, m ∈ Z, i = 1, 2, 3

with

~ai~bj = 2πδij

Explicitly:

~b1 =
2π

VPUC
(~a2 × ~a3), ~b2 =

2π

VPUC
(~a3 × ~a1), ~b3 =

2π

VPUC
(~a1 × ~a2)

with the volume of the primitive cell which is given by the scalar triple product of the
basis vectors

VPUC = ~a1(~a2 × ~a3)

The ~bi are the primitive vectors of the reciprocal lattice. It is a Bravais lattice in Fourier
space.
Examples:

Bravais lattice sc fcc bcc simple hexagonal

reciprocal lattice sc bcc fcc simple hexagonal

1.2.9 First Brillouin Zone

The first Brillouin Zone (1BZ) is the Wigner Seitz primitive cell of the reciprocal lattice.
An arbitrary vector in wave-vector space is given by

~k = ~Gm + ~p with ~p ∈ 1BZ

The volume of the 1BZ is given by the scalar triple product of the reciprocal basis
vectors and is directly related to the volume of the primitive unit cell of the lattice in
position-space

V1BZ = ~b1(~b2 ×~b3) =
(2π)3

VPUC

Conventions:

• directions in the Bravais lattice: [n1, n2, n3] direction specified by n1~a1+n2~a2+n3~a3

• planes in the Bravais lattice (Miller indices): (m1,m2,m3) plane that is normal to
vector m1

~b1 +m2
~b2 +m3

~b3.
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1.3 Scattering from a crystal

Typical inter-atomic distances in a solid are of order: a ∼ 1 Å = 1× 10−10 m. Typical
energies needed for scattering can be calculated easily by the energy dispersion relation:
~ω = hc

λ ∼
hc
1 Å
≈ 12 keV.

incoming outgoing

crystal

~kin
~kout

Figure 7: Scattering experiment

Now, consider the matrix element of the scattering potential V (~r)

| 〈~kout|V (~r) |~kin〉| =
1

V

∫
d~re−i

~kout~rV (~r)ei
~kin~r

=
1

V

∫
d~r
∑
m

V ~Gme
i(~kin+ ~Gm−~kout)~r

=
∑
~Gm

V ~Gmδ~kin+ ~Gm−~kout

so we obtain the selection rule
~kout = ~kin + ~Gm

with a reciprocal lattice vector ~Gm.

1.3.1 Geometric interpretation

Consider two ions / atoms in the crystal separated by a Bravais lattice vector Rn that
both scatter in the incoming wave.
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~kin

~kout

~kin

~kout

~R~lin

~lout

Figure 8: Scattering on two adjacent lattice points resulting in path differences between
the wave vectors

Von Laue condition for constructive interference:
The two scattering events interfere constructively if the path difference ∆l is an integer
multiple of the wavelength λ.

∆l = lin + lout = λN with N ∈ Z, lin = ~Rk̂in, lout = −~Rk̂out

and assuming elastic scattering:

~kin =
2π

λ
k̂in, ~kout =

2π

λ
k̂out

It follows

~R(~kin − ~kout) = ~R(k̂in − k̂out)
2π

λ
= (lin − lout)

2π

λ
= 2πN with N ∈ Z

Also ~kin − ~kout is a reciprocal lattice vector.
Scattering examples allow for example to

• determine the Bravais lattice of a solid (Deye-Scherrer-method)

• orient the crystal (Laue method)

• obtain information about the basis of a crystal via the geometrical structure factor
and the atomic form factor.
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2 Solid as a quantum system

In general, a solid consists of ions, i.e. nuclei and the tightly bound electrons of the
inner shells, and valence electrons. Note that the separation of the core and the valence
electrons is not unique and depends on the context, material, etc.
The Hamiltonian of this many-particle system then reads (in non-relativistic limit)

H = Hel +Hion +Hinteraction

Hel =
∑
i

p2
i

2me
+
∑
i

∑
j<i

e2

|~ri − ~rj |
+ spin-orbit correction (Gaussian System)

Hion =
∑
n

p2
n

2Mn
+
∑
n<m

ZnZme
2

|~Rn − ~Rm|
+ correction from core electrons

Hint = −
∑
i,n

Zne
2

|~ri − ~Rn|

The Hamiltonian is quite well-known but too complicated to solve exactly! Even nu-
merically on a supercomputer only few particles can be treated but not 1023! Hence,
approximations and understanding of relevant degrees of freedom are essential! But how
can we identify the relevant degrees of freedom?
First of all we need to proceed from the classical Hamiltonian to the Hamilton operator.

H → Ĥ

[
~r → r̂ = ~r

~p→ p̂ = −i~∂~r

]
Consider the stationary Schrödinger equation

Hφ = Eφ

with wavefunction
φ = φ(~r1, ~r2, . . .︸ ︷︷ ︸

Nel

, ~R1, ~R2, . . .︸ ︷︷ ︸
Nion

)

This gives a 3(Nel +Nion)−dimensional space where the number of electrons and ions is
around Nel,ion = 1023 − 1025.
Consider the Hamiltonian in atomic units (CGS-units: 4πε→ 1):

• [ length ] = a0 = ~2
me2

Bohr radius

• [energy] = e2

a0
= 2Ry, with the Rydberg energy Ry = e2

2a0
≈ 13.6 eV.

Now, we want to write the Hamiltonian in quantum mechanical form with the units from
above.
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Hel =
∑
i

−~2

2m
∂2
~r +

∑
j<i

e2

|~ri − ~rj |
=
∣∣∣~̃r = 1

a0
~r
∣∣∣ = −

∑
i

~2

2m

1

a2
0︸ ︷︷ ︸

~2me2
2ma0~2

∂2
~r +

e2

a0

∑
j<i

1

|~ri − ~rj |

=
e2

a0

−∑
i

1

2
∂2
~r +

∑
ij

1

|~ri − ~rj |


Hion =

e2

a0

(∑
n

(
−1

2

m

Mn

)
∂2
~Rn

+
∑
n<m

ZnZm

|~R2
n − ~R2

m|

)

Hint = − e
2

a0

∑
i,n

Zn

|~ri − ~Rn|

Apart from the atomic numbers Zn the Hamiltonian only involves a single parameter
i.e. the mass ratio between masses of electrons and ions

m

Mn

∼= 10−3 to 10−5

Strategy: develop a systematic expansion in the small parameter m
Mn

by treating the
kinetic part of the ions, Tion, as a perturbation:

H = H0 + Tion

with

Tion =
∑
n

m

Mn

−∇2

2

2.1 Adiabatic approximation (Born-Oppenheimer) 1927

The definition of the terms adiabatic/ diabatic in thermodynamics (greek: unable/ able
to be crossed) is: an adiabatic process is a transfer of work without transfer of heat
ie. at constant entropy. Usage in Quantum mechanics: a gradually, slowly changing of
conditions allows the system to adapt as a function of time. If the system starts in an
eigenstate of the initial Hamiltonian, it will end in the corresponding eigenstate of the
final Hamiltonian (also

”
adiabatic theorem“of quantum mechanics and Landau-Zener

problem).
Here: electrons possess a smaller mass and are thus much faster than the ions. Hence,
electrons practically follow instantaneously the movement of the ions. It follows that the
dynamics of electrons and ions are decoupled and we can apply adiabatic approximation
systematically in the small parameter m

Mn
.

H = Hel +Hint + Tion + Vion

→ perturbative calculation with Tion

15



Figure 9: The system changes due to the changing conditions

Step 1: zero order approximation in m
Mn

Consider an electronic subsystem in the presence of a fixed ion configuration {R1, R2, ..., Rm}
described by the electronic many-particle wave function

ψa = ψa({r1, r2, ..., rN}, {R1, R2, ..., Rm})

where ψa is a complete system of orthogonal functions.
The ground state Hamiltonian is given by

H0 = Hel +Hint + Vion

and the eigenvalue problem for the adiabatic motion of electrons is

H0ψa({~ri}, {~Rn}) = εa({~Rn})ψa({~ri}, {~Rn})

with electronic quantum numbers εa ∈ R. The exact solution of this equation is in general
not possible, thus, further approximations are necessary (see later chapters). With the
help of the (approximate) ground state energy ε0({Rn}) one obtains the crystal structure

{R(0)
n } by minimizing with respect to the ion configuration

E0 = min
{Rn}

ε0({Rn}) = ε0({R(0)
n })

Step 2: Adiabatic corrections represent the full wave function in the eigenbasis

φ({~ri}, {~Rn}) =
∑
a

φa({~Rn})ψa({~ri}, {~Rn})

The full stationary Schrödinger equation now reads

E
∑
a

φa({~Rn})ψa({~ri}, {~Rn}) = (H0 + Tion)
∑
a

φa({~Rn})ψa({~ri}, {~Rn})

=
∑
a

[εa({~Rn}) + Tion]φa({~Rn})ψa({~ri}, {~Rn})

16



Idea: derive an effective Hamiltonian for the
”
expansion parameters“φa by using the

orthogonality of of ψa({~ri}, {~Rn}), ie. by projection:∫
d({~ri})ψa({~ri}, {~Rn}) · ψ∗b ({~ri}, {~Rn}) = δa,b

Multiplying
∫

d{ri}ψ∗b ({~ri}, {~Rn}) on both sides of the equation from the left one obtains

Eφb({~Rn}) = εaφb +

∫
d({~ri})ψ∗bTion(ψaφa)

with

Tionφaψa =
∑
n

~2

2Mn
(−∇2

n)φaψa

= −
∑
n

~2

2Mn

[
(∇2

nφa)ψa + φa(∇2
nψa) + 2(∇nφa)(∇nψa)

)
where we made use of

∂2
x(f(x)g(x)) = f ′′g + g′′f + 2g′f ′

The Schrödinger equation finally becomes

Eφb({~Rn}) = [ε({~Rn}) + Tion]φb +
∑
a

Cab({~Rn})φa

with the operator

Cab({~Rn}) =

∫
d({~ri})

∑
n

(
− ~2

2Mn

)
ψ∗b [∂

2
~Rn
ψa + 2(∂~Rnψa)∂~Rn ]

The off-diagonal part of this operator, in particular, induces transitions i.e. diabatic
processes between electronic states. However, at lowest order, this operator can be
neglected.
So, one arrives at an effective eigenvalue problem for the ions only

Eφb = (εb + Tion)φb

In particular for the electronic ground state this reads

Eφ0 = (ε0 + Tion)φ0
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What is about the neglected term Cab?

Cab({~Rn})φa =

∫
d{ri}

∑
n

~2

2Mn
[ψ∗b∂

2
~Rn
ψa + 2ψ∗b (∂~Rnψα)∂~Rn ]φα

∼ m

M
〈Tel〉+

1

M
〈Pel〉〈Pion〉

∼ m

M
Eel +

1

M

√
mEel

√
MEion

∼ m

M
Eel +

1

M

√
mEel

√
M

√
m

M
Eel

= Eel

[m
M

+
(m
M

)] 3
4

Since Cab �
√

m
MEel = Eion it can indeed be neglected.

The potential ε0({R}) is minimized by the particular crystal structure of the material.
In order to estimate the correction to the ground-state energy attributed to the kinetic
term T , one consider small deviations from the equilibrium configuration

δTn = Rn −R(0)
n

Taylor expanding the potential in δR gives

ε0({~Rn}) ≈ ε0({~R0
n}) +

1

2

∑
nm

δRnDnmδRm

with

(Dnm)ij =
∂ε({~Rn})

∂(~Rn)i∂(~Rm)j

∣∣∣∣∣
Rnm=R0

nm

One arrives at
Eφ0 = (ε0({~R(0)

n }+Heff)φ0

with the effective Hamiltonian (with Pn = −i∇n)

Heff =
∑
n

1

2

m

Mn

~P 2
n +

∑
n,m

1

2
δRnDnmδRm

corresponding to a higher-dimensional harmonic oscillator. The kinetic and the potential
term in Heff are of equal importance which becomes manifest by rescaling

δRn =

(
m

Mn

) 1
4

un, Pn =

(
m

Mn

)− 1
4

pn

and we get for a mono-atomic crystal (Mn = M):

Heff =
(m
M

) 1

2

(∑
n

1

2
~p2
n +

∑
n,m

1

2
unDnmum

)
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The zero-point motion leads to a adiabatic correction to the groundstate energy of the
order

δE = E − ε0({R(0)}) = O
(√

m

M

)
The next-to leading order correction derives from the Cab operator that can be estimated
as follows

Cab ∼=
∫

d{r}
∑
n

m

2Mn
2(ψ∗b∇nψa)~Pn =

∫
d{r}

∑
n

(
m

Mn

) 3
4

(ψ∗b∇nψa)~pn

so that
Cab
δE
∼ O

((
m

Mn

) 1
4

)
The adiabatic approximation is controlled in the parameter

α =
(m
M

) 1
4

with
(
m
M

)
∼ 10−5 to 10−3 follows α ∼ 10−2 to 10−1.

If α is too large the crystal structure will melt due to zero-point fluctuations (superfluid
3He and 4He).

E2
ion = ~2ω2 ∼ ~2 D

M
∼ ~2 Eel

a2
0M

=
m

M
Eel

me4

~2
=
m

M
E2

el

→ Eion ∼
√
m

M
Eel

with
Mẍ+Dx = 0.

Remember 25.10.2019

Eel =
e2

a0
=

e4

~2m
, a0 =

~2

me2

2.2 Cohesive energy of crystals

The crystal structure is obtained by minimizing the electronic ground state energy
ε0({~Rn}) with respect to the ion configuration {R}. The energy at the equilibrium

configuration {~R(0)
n }

ε0({~Rn}) = Veff({~Rn}) =
∑
n<m

V (|~Rn − ~Rm|) =
1

2

∑
n6=m

V (|~Rn − ~Rm|)

carries information about the cohesive energy or binding energy ie. the energy required
to disassemble it into its constituents.
The function ε0({~Rn}) is in general unknown. However, there are certain limits where
the origin of the cohesive energy can be identified.
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2.2.1 Phenomenological classification of bonding in crystals

Van-der-Waals bonding

Examples are molecular crystals consisting of the noble gases with closed electronic shells
(no valence electrons) like Ne, Ar, Kr, ... . The atoms interact pair-wise via the weak,
attractive van-der-Waals interaction due to fluctuation.

Figure 10: Groundstate

The zero-point fluctuation of the dipole moment is often described by the Lennard-Jones
potential

V (~r) = 4ε

(σr )12

︸ ︷︷ ︸
repulse

−
(σ
r

)6

︸ ︷︷ ︸
attract

 ε, σ ∈ R

V ′(r0) = 0

→ r0 = 2
1
6σ

Therefore

Veff({~Rn}) =
1

2
φε
∑
n6=m

( σ

|~Rn − ~Rm|

)12

−

(
σ

|~Rn − ~Rm|

)6


Respect the crystal structure by

|~Rn − ~Rm| = aPnm

and remember the double sum ∑
n 6=m

=

N∑
n=1

∑
m±n
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so

Veff = 2εN

[(σ
a

)12
C12 −

(σ
a

)6
C6

]
=︸︷︷︸

equilibrium

−1

2
Nε

C2
6

C12

with a0 at equilibrium and Cα:

a0 = σ

(
2
C12

C6

)12

, Cα =
∑
m6=n

1

Pαnm

For example fcc:

C12 ≈ 12.13

C6 ≈ 14.45

Ionic bonding

In ionic crystals consisting of oppositely charged ions those ions attract each other pair-
wise by means of the strong Coulomb interaction. Here, crystal structures with a large
coordination number z are preferred. Examples: NaCl, CsCl, ZnS.

V (r) = −Q
2

r
+

β

rσ︸︷︷︸
λe
−r
σ

Veff ≈
1

2

N∑
n

∑
m 6=n

−Q2

|~Rn − ~Rm|
+ zVrepulsive(P12)


=
N

2
ZVrep(P12)−NQ

a
CM

with C3D
M =

1

2

∑
m6=n

1

Pnm
=

1

2

∑
i 6=j 6=l

1√
i2 + l2 + j2

≈ 1.74

Covalent bonding

Covalent crystals are characterized by a distribution of valence electrons and substan-
tially differ from the isolated atoms/ions. The covalent bonding is similar to the chemical
bonding in molecules like H2 (Heitler-London theory). The bonding is spatially oriented
for example along the links of the diamond crystal structure of C, Si, Ge. The bond-
ing is due to exchange interaction (quantum mechanical corrections due to the spin
interactions).
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Figure 11: ions with valence electrons

Metallic bonding

The metallic bonding is mediated by valence electrons. The valence electrons are delo-
calised from the ion cores and become conduction electrons. The bonding is not spatially
oriented in contrast to the covalent case.
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29.10.2019

3 Harmonic lattice vibrations: phonons

The effective n-th ion Hamiltonian derived in the adiabatic approximation reads:

Heff = −
∑
n

m

Mn

∇2
n

2
+
∑
n,m

1

2
δi~Rn

Dij
nmδ

j
~Rm

where n,m ist the label of the ion, i, j the vector component, δ~Rn = ~Rn − ~R
(0)
n and

Dij
nm =

∂

∂ ~Rin

∂

∂ ~Rjm
ε0({~R})

∣∣∣∣∣
{~R(0)}

derives from the potential in the harmonic approximation and is the dynamical matrix.
The Hamiltonian Heff describes a system of coupled harmonic oscillators and can be
diagonalised by standard means. This identifies the normal modes of the lattice vibra-
tions similar as in molecules. For the characterization of the normal modes in a crystal
however, one exploits the translation symmetry of the crystal.
We can label the ions with the help of a Bravais lattice vectors ~l, ~m that specify a
specific primitive unit cell (PUC) of the crystal and an index λ, µ that counts the ions
within the PUC (λ, µ = 1, 2, . . . , r) for r ions in the unit cell.

Dij
nm → Dij( ~l, λ︸︷︷︸

n-th ion

; ~m, µ)︸ ︷︷ ︸
m-th ion

Due to the translation symmetry of the Bravais lattice we have

Dij(~l, λ; ~m, µ) = Dij(~l − ~n, λ; ~m− ~n, µ) = Dij(~l − ~m, λ;~0, µ)

for any ~n of the Bravais lattice. Choosing ~m = ~n one finds that D only depends on the
difference ~l − ~m. In order to proceed further we will make use of the Bloch’s theorem.

3.1 Bloch’s theorem

Consider a translation operator T~R defined for a Bravais lattice vector ~R that acts on a
wavefunction as

T~Rψ(~r) = ψ(~r + ~R)

Translation operators commute
[T~R, T~R′ ] = 0

as

T~RT~R′ψ(~r) = T~R′T~Rψ(~r) = ψ(~r + ~R′ + ~R) = T~R+~R′ψ(~r) (1)
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Furthermore, consider an operator H that commutes [H,T~R] = 0 for all ~R of the Bravais

lattice. We can then choose simultaneous eigenstates ψα of H and of T~R for all ~R:

Hψα = εψα

TRψα = Cα(~R)ψα

From equation (1) follows

Cα(~R)Cα(~R′) = Cα(~R+ ~R′) and Cα(~R)Cα(−~R) = 1

Moreover, from the normalization condition follows

1 =

∫
d~r|ψα(~r)|2 =

∫
dr|ψα(~r + ~R)|2 =

∫
dr|ψα(~r)|2|Cα(~R)|2 = |Cα(~R)|2

That in total implies

Cα(~R) = ei
~k ~R

where the wave vector ~k is specific for the ψα state. The eigenfunctions therefore obey

ψα(~r + ~R) = ei
~k ~Rψα(~r)

Bloch’s theorem.
As ei

~G~r = 1 for ~G of the reciprocal lattice, the wave vector ~k will be restricted to the
first Brillouin zone.
Identifying α with a set of quantum numbers containing ~k ∈ 1BZ; α = {~k, n}, we can
alternatively express ψα(~r) = ψ

n,~k
(~r) in the following form:

ψ
n~k

(~r) = ei
~k~ru

n~k
(~r)

where the Bloch function u
n~k

(~r) obeys u
n~k

(~r + ~R) = u
n~k

(~r) for all ~R of the Bravais
lattice.
Note: for systems that are invariant under arbitrary translations the momentum is con-
served and a good quantum number. In contrast, for systems that are invariant with
respect to discrete translations only, the quasi-momentum ~k is conserved, ie. the mo-
mentum modulo a reciprocal lattice vector, ~k ∈ 1BZ.

3.2 Diagonalization of the phonon Hamiltonian

We can use Bloch’s theorem to diagonalize the dynamical matrix

D̃ij(~l, λ; ~m, µ) =
m√
MλMµ

Dij(~l, λ; ~m, µ)

for later convenience.
Consider the eigenvalue problem∑

j,µ,~m

D̃ij(~l, λ; ~m, µ)ψjα(~m, µ) = dαψ
i
α(~l, λ)
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with eigenvalue d. Due to the discrete translation symmetry of the Bravais lattice we
have:

TRψ
i(~m, µ) = ψi(~m+ ~R, µ)

and
TRD̃

ij(~l, λ; ~m, µ) = D̃ij(~l + ~R, λ; ~m+ ~R, µ)TR = D̃ij(~l, λ; ~m, µ)TR

that is D̃ commutes with TR where ~R is a Bravais lattice vector. So it follows from
Bloch’s theorem that the eigenstates take the form

ψj~kn
(~m, µ) = ei

~k~muj~kn
(~m, µ) = ei

~k~m~ej~kn
(µ)

where the polarization vector

~ej~kn
(µ) = uj~kn

(~m, µ) = uj~kn
(~0, µ)

is the corresponding Bloch function.
We use the set of quantum numbers {~k, n} with ~k ∈ 1BZ for the eigenvalue problem:∑

j,µ,~m

D̃ij(~l, λ; ~m, µ)ψj~kn
(~m, µ) = d~knψ

i
~kn

(~l, λ)

Using the so-called Born- von Karmann boundary conditions

VPUC

∑
~R ∈ Bravais

ei
~k ~R = V δ~k,0

V→∞→ (2π)3δ(~k)

and ∑
~k∈1BZ

ei
~k ~R = Nδ~R,0

with number of lattice sites N = V
VPUC

and for V →∞ points in the 1BZ become dense,
so that ∫

1BZ

d~k

(2π)3
ei
~k ~R =

1

VPUC
δ~R,0

Reminder (2π)3

VPUC
= volume of 1BZ.

We get for the Fourier transformation (multiplying VPUC
∑
~l
e−i

~k~l from left) of the eigen-
value problem∑

j,µ,~m

VPUC

∑
~l

e−i
~k~lD̃ij(~l, λ; ~m, µ)ei

~k~m

︸ ︷︷ ︸
D̃ij
~k

(λ,µ)

êj~kn
(µ) = d~kn VPUC

∑
~l

e−i
~k(~l−~l)

︸ ︷︷ ︸
V

êi~kn(λ)

as D̃ij only depends on ~l − ~m.
With

∑
~m VPUC = V follows∑

j,µ

D̃ij
~k

(λ, µ)êj~kn
(µ) = d~knê

i
~kn

(λ)
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This is an eigenvalue problem that determines polarization vectors êkn, which corre- 5.11.2019
sponds to diagonalizing a 3r × 3r matrix with λ, µ = 1, 2, 3, . . . , r and r are the num-
bers of atoms/ions per unit cell. The eigenvectors are labeled by the quantum number
n = 1, 2, . . . , 3r. The eigenvalue problem has to be solved for each vector ~k of the 1.
Brillouin zone → evolution of eigenvalues d~kn as a function of ~k.
Orthonomally condition: ∑

λi

êi∗kn(λ)eikm(λ) = δn,m

Completeness relation: ∑
n

êi∗kn(λ)êjkn(µ) = δijδλ,µ

The dynamical matrix is real and symmetric:

D̃ij
nm = D̃ji

mn

Its Fourier transformation is thus hermitian:

D̃ij
k (λ, µ) =

(
D̃ji
k (µ, λ)

)∗
and the eigenvalues dkn are real. In addition, stability of the crystal requires positive
eigenvalues dkn ≥ 0.
Moreover, (

D̃ij
k (λ, µ)

)∗
= D̃ij

−k(λ, µ)

so that we can choose the quantum numbers in n such that dkn = d−kn and eigenvectors
ê∗−kn = êkn.

3.2.1 Expansion in normal modes

We expand position and momentum in normal coordinates qkn and pkn:

δ ~Ri(~m, µ) =
1√
N

∑
~kn

√
m

Mµ
ei
~k~mêi~kn(µ)q~kn

~P i(~m, µ) =
1√
N

∑
~kn

√
Mµ

m
e−i

~k~mêi∗~kn(µ)p~kn = −i∇{m,µ}

with N is the number of Bravais lattice sites. And

[qkn, qk′n′ ] = [pkn, pk′n′ ] = 0

[qkn, pk′n′ ] = iδkk′δnn′
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This ensures in particular that the commutator is obeyed:

[δRi(~m, µ), P j(~l, λ)] =
1

N

∑
knk′n′

ei
~k~m−i~k′~lêikn(µ)êj∗k′n′(λ)[qkn, pk′n′ ]

= i
1

N

∑
k

eik(m−l)

︸ ︷︷ ︸
δm,l

∑
n

êikn(µ)êj∗kn(λ)︸ ︷︷ ︸
=δµ,λδij

= iδ
~m,~l
δµ,λδi,j

The effective ionic Hamiltonian (diagonalized):

Heff =
∑
~m,µ

m

Mµ

1

2
~P 2(~m, µ) +

∑
~m,~l,µ,λ

1

2
δRi(~l, λ)Dij(~l, λ; ~m, µ)δRj(~m, µ)

becomes

Heff =
1

2

∑
~m,µ

1

N

∑
knk′n′

e−i
~k~m−i~k′ ~m︸ ︷︷ ︸
Nδ~k,−~k′

êi∗kn(µ)êi∗k′n′(µ)pknpk′n′

+
1

2

1

N

∑
knk′n′

∑
~m~lµλ

ei
~k~l+i~k′ ~mêikn(λ)

√
m2

MµMλ
Dij(~lλ; ~m, µ)︸ ︷︷ ︸

1
N

∑
~q∈1BZ e

i~q(~l−~m)D̃ijq (λ,µ)

êjk′n′(µ)qknqk′n′

after summation over ~m and ~l
→ N2δ~k+~q,0

δ~k′,~q

Heff =
1

2

∑
µ,n,n′,~k

êi∗kn(µ)êi∗−kn′(µ)pknp−kn′ +
1

2

∑
n,n′,λ,µ,~k

êikn(λ) D̃ij
−k(λ, µ)êj−k,n′(µ)︸ ︷︷ ︸
d−kn′ ê

i
−kn′ (λ)

qknq−kn′

using êi∗−kn = êikn, and orthonormality

Heff =
1

2

∑
~k∈1BZ

[p~knp−~kn + d~knq~knq−~kn]

with n = 1, 2, . . . 3r.
We introduce annhilation and creation operators (dkn ≥ 0):

qkn =
1√

2
√
dkn

(b†kn + b−kn), pkn = i

√√
dkn
2

(b†kn − b−kn)

exercise
[bkn, b

†
k′n′ ] = δkk′δnn′ , [bkn, bk′n′ ] = [b†kn, b

†
k′n′ ] = 0.
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Use dkn = d−kn:

Heff =
1

2

∑
kn

[
(−1)

√
dkn
2

(b†kn − b−kn)(b†−kn − bkn) + dkn
1

2
√
dkn

(b†kn + b−kn)(b†−kn + bkn)

]
=

1

2

∑
kn

√
dkn[b−knb

†
−kn + b†knbkn]

with ωkn = ω−kn =
√
dkn and bknb

†
kn = b†knbkn + 1. It follows a harmonic oscillator

Hamiltonian

Heff =
∑
~kn

ω~kn

(
b†~kn

b~kn +
1

2

)
Phonon Hamiltonian

Remarks:

• ωkn = ωn(k) define the phonon dispersions with ~k ∈ 1BZ

• there are n = 1, 2, . . . , 3r bands where r is the number of atoms/ ions in the unit
cell

• three of the 3r bands have the property ωn(k) → 0 for ~k → 0, these types of
phonons can be excited with very long wavelengths λ ∼ 2π

|~k|
, they are responsible

for the propagation of sound in the crystal (e.g. concert pitch A with 440 Hz and
sound velocity of gold v ∼ 3200 m

s → λ ∼ 7 m; in air v ∼ 340 m
s → λ ∼ 0.8 m))

We have acoustic phonon branches. Their existence is a consequence of the spontaneous
symmetry breaking of continuous translation symmetry by the crystal structure. In
general, the breaking of a continuous symmetry implies the presence of low-energetic
gapless excitations, so-called Goldstone bosons. The acoustic phonons are the Goldstone
bosons of the crystal.
Consider a constant translation of the crystal in any of the three directions in space

δ ~Ri(~l, µ) = δRi

with i = x, y, z. This translation should not cost any energy as a rigid translation does
not generate a restoring force of the crystal. Thus, there are 3 acoustic phonon branches.
For small ~k:

ωn(~k) ≈ cn(k̂)|~k|

with the sound velocities cn(k̂) that depend on the orientation

k̂ =
~k

|~k|
. 8.11.19
They are related to the elastic constants of the crystal like bulk and shear modules.
Note: a liquid/ gas in contrast only possesses a single longitudinal sound mode, no shear
modules!
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• other phonon branches are known as optical phonon branches because they can
often be excited by light

• dispersion relations ωn(~k) possesses the full symmetry of the point group

• anharmonic corrections ε
(3)
0 ({~R}) = 1

3!AnmlδRnδRmδRl result in an interaction
between phonons b†bb etc.
This is necessary to explain e.g. thermal expansion and finite thermal phonon
conductivity

3.3 Measuring phonon dispersions: neutron scattering

Phonon dispersion ωn(~k) can be measured by neutron scattering.

Figure 12: neutron scattering on crystal

Neutrons are neutral particles and interact mainly with the atomic nuclei and thus with
phonons (neutrons also interact with magnetic moments that is used for the investigation
of magnetism e.g. determination of magnetic order, spin wave dispersions etc.)
Neutron-ion interaction:

V (~r) =
∑

~l∈Bravais

∑
λ∈Basis

νλ(~r − ~R(~l, λ))
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the interaction potential νλ is very short ranged, its range being of order of typical
nuclear dimensions, 10× 10−15 m ∼ 1 fm. With respect to the typical length scale of
crystal lattice constants ∼ 10× 10−10 m ∼ 1 Å the potential can be approximated by
delta functions

V (~r) ∼=
∑
~l,λ

νλδ(~r − ~R(~l, λ))

The probability per unit time for the neutron to scatter from ~kin to ~kout in lowest order
perturbation theory is given by Fermi’s Golden rule:

Pi =
∑
f

2π

~

∣∣∣〈f,~kout

∣∣∣V (~̂r)
∣∣∣i,~kin

〉∣∣∣2 δ(Ef − Ei + ~ω)

where the sum runs over f which are all possible final states of the crystal, ~kout is the
final momentum of the neutron as detected by the detector, Ei,f are the initial and final

energy of the crystal, ~ω = (~~kout)2
2mn

− (~~kin)2

2mn
is the energy gained by the neutron in the

scattering process and mn is the mass of the neutron. This formula can be simplified in
the following way with usage of plane waves:

Pi =
∑
f

2π

~

∣∣∣∣ 1

V

∫
d~re−i

~kout~r 〈f |V (~r) |i〉 ei~kin~r
∣∣∣∣2 δ(Ef − Ei + ~ω)

whit volume V and final and initial states of the crystal 〈f | and |i〉. Now use the
transferred wave vector

~q = ~kout − ~kin

now we have

Pi =
∑
f

2π

~

∣∣∣∣∣∣ 1

V

∑
~l,λ

νλ 〈f | e−i~q
~R(~l,λ) |i〉

∣∣∣∣∣∣
2

δ(Ef − Ei + ~ω)

Usually the crystal is not in a definite eigenstate |i〉 but rather the states are thermally
populated. So, we use the thermally averaged transition rate

P = 〈Pi〉 =
∑
i

1

Z
e−βEiPi

with partition function

Z =
∑
i

e−βEi

The transition rate P is related to the measured scattering cross section

d2σ

dΩdω
dΩdω =

P × number of final states of neutron

incoming flux density of neutrons
=
PV d~kout

(2π)3

|~~kin|
mn

1
V

= PV 2 mn

~|~kin|
k2

outdkoutdΩ

(2π)3
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with the solid angle Ω
dω

d|kout|
=

~|kout|
mn

It follows
d2σ

dΩdω
= P

V 2

(2π)3

|kout|
|kin|

m2
n

~2

For a mono-atomic Bravais lattice this simplifies further to

d2σ

dΩdω
=
|kout|
|kin|

m2
nν

2
0

(2π)3~4
NS(~q, ω)

where N is the number of lattice sites and S is the dynamic structure factor

S(~q, ω) =
∑
f,i

e−βEi

Z

1

N

∑
~l,~m

〈i| ei~q ~R(~l) |f〉 〈f | e−i~q ~R(~m) |i〉 · 2π~δ(Ef − Ei + ~ω)

where ~l, ~m are Bravais lattice vectors. With∫
dteiωt = 2πδ(ω)

and
e−i

Ht
~ |i〉 = e−i

Ei
~ t |i〉

etc where H is the ionic Hamiltonian. This gives

S(~q, ω) =
∑
f,i

e−βEi

Z

∫ ∞
−∞

dteiωt
1

N

∑
~l~m

〈i| ei~q ~R(~l) |f〉 〈f | e
iHt
~ e−i~q

~R(~m)e−i
Ht
~ |i〉

= exp(−i~q ~R(~m, t))

which is an operator in the Heisenberg picture. Using the completeness relation∑
f

|f〉 〈f | = 1

this gives with Fourier transformation

S(~q, ω) =

∫
dteiωtS(~q, t)

where

S(~q, t) =
1

N

∑
~m,~l

∑
i

1

Z
〈i| e−βHei~q ~R(~l,t=0)e−i~q

~R(~m,t) |i〉

for a mono-atomic Bravais lattice:

~R(~m, t) = ~m+ δ ~R(~m, t)
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with the deviation δ ~R from the equilibrium by the phonons.

S(~q, t) =
1

N

∑
~m,~l

ei~q(
~l−~m)

〈
ei~qδ

~R(~l,0)e−i~qδ
~R(~m,t)

〉
which is a thermal average.
If the phonons are treated in the harmonic approximation the thermal average simplifies
to (without proof):

S(~q, t) ∼=
1

N

∑
~l,~m

ei~q(
~l−~m) exp

[
−1

2
〈(~qδ ~R(~l, 0))2〉 − 1

2
〈(~qδ ~R(~m, t))2〉+ 〈(~qδ ~R(~l, 0))(~qδ ~R(~m, t))〉

]

using that
〈(~qδ ~R(~l, 0))2〉 = 〈(~qδ ~R(~m, t))2〉 ≡ 2W

is independent of lattice site and time and

〈(~qδ ~R(~l, 0))(~qδ ~R(~m, t))〉 = 〈(~qδ ~R(~0, 0))(~qδ ~R(~m−~l, t))〉

due to discrete translation invariance of the Bravais lattice. Now we get

S(~q, t) = e−2W
∑
~m

e−i~q ~m exp
[
〈(~qδ ~R(~0, 0))(~qδ ~R(~m, t))〉

]
with Debye-Waller factor e−2W (temperature dependent) and ~m is element of the Bravais
lattice. Where 12.11.19

W = 〈(~qδ ~R(0, 0))2〉.

The time dependence is determined by the last factor that is treated in perturbation
theory using

ex =
∞∑
n=0

xn

n!

Zero-phonon contribution n = 0

S(0)(~q, ω) =

∫ ∞
−∞

dteiωte−2W
∑
~m

e−i~q ~m

where the index 0 of S refers to the state n = 0. Performing the integral and using the
reciprocal lattice and Fourier transformation gives:

S(0)(~q, n) = 2πδ(ω)e−2W (2π)3

VPUC

∑
~G

δ(~q − ~G)

where ~q is not necessarily within the first Brillouin zone. We get delta functions in
frequency and momentum space. Thus, the scattering Bragg peaks remain sharp. Only
the weight of the delta functions is reduced by the Debye-Waller factor.
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Single-phonon contribution n = 1

needed expectation value〈
δRi(0, 0)δRj(~m, t)

〉
=

〈
1

N

∑
~k,~k′

n,n′

ei
~k′ ~mêiknê

j
k′n′qkn(t = 0)qk′n′(t)

〉

where the sum runs over ~k,~k′ in the first Brilluoin zone.

〈qkn(0)qk′n′(t)〉 =
1

2

1
√
ωknωk′n′

〈(b†kn + b−kn)(b†k′n′(t) + b−k′n′(t))〉

=
1

2

1
√
ωknωk′n′

〈b†knb−k′n′e
−iωk′n′ t + b−knv

†
k′n′e

iωk′n′ t〉

The last term can be written by the commutator relation:

b−knb
†
k′n′ = bk′n′ † b−kn + δk′,−kδnn′

This gives

〈qkn(0)qk′n′(t)〉 =
1

2

1

ωkn
δ−k,k′δn,n′

[
nB(ωkn)e−iωknt + (1 + nb(ωkn))eiωknt

]
with ω−kn = ωkn, ê−k,n = êi∗kn. Thus, it follows:

S(1)(~q, ω) = e−2W
∑
~m

e−i~q ~m
1

N

∑
~kn

m

M
ei
~k~m|~qêkn|2

1

2ωkn

· [nB(ωkn)2πδ(ω − ωkn) + (1 + nB(ωkn))2πδ(ω + ωkn)]

and finally using
1

N

∑
~m

e−i(~q+
~k)~m =

∑
~G

δ
~q+~k, ~G

this gives

S(1)(~q, ω) = e−2W m

M

∑
n

|~qêkn|2
1

2ωqn
· [nB(ωqn)2πδ(ω − ωqn) + (1 + nB(ωqn))2πδ(ω + ωqn)]

The factor nB(ωqn) in the last term refers to absorption of phonons and the factor
1 + nB(ωqn) refers to spontaneous and stimulated emission of a phonon.

Figure 13: neutron scattering: emission and absorption
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The absorption and emission of a phonon during the scattering process results in addi-
tional sharp peaks at finite energy

~ω = ±~ω~qn

this allows for the measurement of the phonon dispersion by inelastic neutron scattering.

Figure 14: neutron scattering: phonon peaks produced by anharmonicities, background
due to multiphonon processes

Remarks:

• neutron scattering is the method of choice for measuring of phonon spectra. X-rays
are much less suitable due to linear dispersion of photons which gives difficulty in
energy resolution.

• photons in the visible range can be used to probe phonons with a small momentum
~k ≈ 0 (Γ point)

Brillouin scattering for acoustic phonons

Raman scattering for optical phonons

• phonon emission and absorption result in Stokes/ anti-Stokes components of scat-
tered radiation

3.4 Thermodynamics of phonons

(see exercise for more details)
Consider the specific heat C = ∂E

∂T with energy density E and temperature T .
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∼ T
3

C

3nr

T

Dulong-Petit
high-temperature limit

crossover between
low- and high-T limit
temperatures

due to acoustic phonons

Figure 15: Contribution from phonons

A particular modelling of the crossover is provided by the Debye-model where the
crossover occurs at the Debye temperature θD.
Typical values:

θD ∼ 160 K Au

θD ∼ 350 K Cu

θD ∼ 470 K Fe

θD ∼ 1860 K diamond

4 Non-interacting electrons in a crystal

Consider now an eigenvalue problem for electrons of step I in the adiabatic approximation
(chapter 2.1.). Here, we neglect the electron-electron interactions a priori unjustified
approximation because Coulomb repulsion energy between electrons is large (several
eV). However, due to the screening of the Coulomb interaction (see later chapters) the
non-interacting electron approximation turns out to be a very good effective description
of the electronic subsystem.

4.1 Electron in a periodic potential

The eigenvalue problem of a single effective particle in the ionic potential is given by

Hψ(~r) = εψ(~r)
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with

H(~r) = −~2∇2

2m
+ U(~r)

with spin-orbit coupling effects neglected (non-relativistic limit). The potential possesses
the discrete translation symmetry of the Bravais lattice

U(~r) = U(~r + ~R)

for all ~R ∈ the Bravais lattice. From Bloch’s theorem (chap. 3.1.) follows that the
eigenstates ψ(~r) can be chosen as

ψ
n~k

= ei
~k~ru

n~k
(~r)

with ~k ∈ 1.BZ and the Bloch function satisfies unk(~r + ~R) = u
n~k

(~r) for all ~R in the
Bravais lattice. 15.11.2019

Explicit proof in the present case:

Fourier expansion:

ψ(~r) =
∑
q

ei~q~rc~q

so
U(~r) =

∑
~G

ei
~G~rU ~G

where ~G is the reciprocal lattice vector.
The potential only has Fourier components U ~G due to the discrete translation symmetry

U(~r) = U(~r + ~R) with ei
~G~R = 1.

This leads to(
−~2

2m
∇2 + U(~r)

)
ψ(~r) =

∑
q

ei~q~r
~2~q2

2m
c~q +

∑
~q, ~G

ei(~q+
~G)~rU ~Gc~q

=
∑
q

ei~q~r
~2~q2

2m
c~q +

∑
~q′, ~G

ei~q~rU ~Gc~q− ~G

!
= ε

∑
~q

ei~q~rc~q

In the second last step, the index shift ~q → ~q − ~G has been applied. Now, from this
equation follows the Schrödinger equation in the Fourier space:

~2~q2

2m
c~q +

∑
~G

U ~Gc~q− ~G = εc~q
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with ~q = ~k + ~K with ~k ∈ 1BZ and reciprocal lattice vector ~K follows

~2(~k + ~K)2

2m
c~k+ ~K

+
∑
~G

U ~Gc~k+ ~K− ~G = εc~k+ ~K

For each ~k ∈ 1BZ we obtain the eigenfunctions c
n,~k+ ~K

of the Schrödinger equation with
eigenvalues ε

n~k
where n labels the quantum number.

ψ
n,~k

(~r) =
∑
q

ei~q~rcnq =
∑
~K

ei(
~k+ ~K)~rc

n,~k+ ~K
= ei

~k~r
∑
~K

ei
~K~rc

n,~k+ ~K
= ei

~k~ru
n,~k

(~r)

with the Bloch function

u
n,~k

(~r) =
∑
~K∈1BZ

ei
~K~rc

n,~k+ ~K
, u

n,~k
(~R+ ~r) = u

n,~k
(~r)

Consequences:

• ψ
n,~k

(~r) is not an eigenfunction of the momentum operator ~p as

−i~∇ψ
n~k

(~r) = ~~kψ
n,~k

(~r)− i~ei~k~r∇u
n~k

(~r)

thus ~~k is not a momentum but the crystal momentum or quasi momentum. It is

only conserved modulo a reciprocal lattice vector ~G as ei
~G~r = 1.

• the effective Schrödinger equation obeyed by the Bloch function reads[
~2

2m
(−i∇+ ~k)2 + U(~r)

]
u
n~k

(~r) = ε
n~k
u
n~k

(~r)

with the boundary condition u
n~k

(~r + ~R) = u
n~k

(~r).

Due to the periodicity of the Bloch function u
n~k

and the potential U(~r) we can restrict
ourselves solving this equation only within a single primitive unit cell. Such an eigenvalue
problem in a fixed volume VPUC will give rise to discretely spaced energy levels that will
be labeled with band index n. The functions u

n~k
(~r) will form a basis for each ~k for

continuous square-integrable functions defined in the primitive cells of volume VPUC.
Completeness ∑

n

u∗
n~k

(~r)u
n~k

(~r′) = VPUCδ(~r − ~r′)

and orthogonality∫
1BZ

d3~k

(2π)3

∑
n

ψ∗
n~k

(~r)ψ
n~k

(~r′) =

∫
1BZ

d3k

(2π)3
ei
~k(~r′−~r)︸ ︷︷ ︸

V −1
PUC

∑
n

u∗
n~k

(~r)u
n~k

(~r′)︸ ︷︷ ︸
VPUCδ(~r−~r′)

= δ(~r − ~r′)
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Such a basis contains infinitely many functions u
n~k

(~r). Thus, there are infinitely many
energy bands n = 0, 1, 2, .... (In contrast to the phonon problem where only a finite
number of bands were obtained.) The eigenstates and eigenvalues are periodic functions
of ~k in the reciprocal lattice.

ψ
n~k+ ~G

(~r) = ψ
n~k

(~r) and ε
n,~k+ ~G

= ε
n,~k

This represents the electronic bandstructure of the crystal. As an energy band εn(~k) for
a given n is periodic and for V →∞, continuous, it has an upper and lower band.

4.2 Electron in a weak, periodic potential

Assume that the Fourier components U ~G with |~G| 6= 0 are small. This is useful for a
qualitative understanding. The zero component U ~G=0 can be absorbed in the choice of
the zero point on the energy axis ε→ ε+U ~G=0 so that the Schrödinger equation becomes

~2(~k + ~K)2

2m
c~k+ ~K

+
∑
~G 6=0

U ~Gc~k+ ~K− ~G = εc~k+ ~K

Shift ~k′ = ~K − ~G:

~2(~k + ~K)2

2m
c~k+ ~K

+
∑
~k′ 6= ~K

U ~K−~k′c~k+~k′ = εc~k+ ~K

Zeroth order in U ~G with |~G| 6= 0

eigenenergies:

ε(0)(~k + ~K) =
~2(~k + ~K)2

2m

eigenfunctions:

ψ
(0)

n,~k+ ~K
(~r) = ei(

~k+ ~K)~r

for example: energy bands in one dimension (~Rn = na, ~Km = 2π
a m)
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Figure 16: energy bands in one dimension

The reciprocal lattice vector ~K plays here the role of a band index.

Perturbative correction due to U ~G

For most of the values of ~k ∈ 1BZ we can apply standard perturbation theory to evaluate
the effect of U ~G on the electronic band structure. However, there are special values of
~k where two or more bands are degenerate. We then need to apply the method of
degenerate perturbation theory.
For such a degeneracy point ~kd in the 1BZ we can restrict ourselves in lowest order to the 19.11.19
subspace of the Hilbert space spanned by the eigenfunctions with degenerate eigenvalues
at zero order in U ~G:
For a n-degenerate point

ε(0)(~kd + ~K1) = ε(0)(~kd + ~K2) = ε(0)(~kd + ~K3) = . . . = ε(0)(~kd + ~Kn)

reduce the Schrödinger equation with ~k ≈ ~kd:

ε(0)(~k + ~Ki)C~k+ ~Ki
+
∑
j 6=i

U ~Ki− ~KjC~k+ ~Kj
∼= εC~k+ ~Ki

with a restricted sum over j = 1, 2, . . . , n and i = 1, 2, . . . , n. This corresponds to a n×n
matrix equation for n-degenerate eigenstates!
Where do degeneracies occur?

ε(0)(~k + ~K1) = ε(0)(~k + ~K2) ⇔ |~k + ~K1| = |~k + ~K2|

The energies are equal, therefore, no energy is transmitted: we have elastic scattering.
Furthermore, the difference

(~k + ~K1)− (~k + ~K2) = ~K1 − ~K2 ∈ reciprocal lattice vector
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is again a reciprocal lattice vector. The two vectors ~k + ~K1 and ~k + ~K2 must fulfill the
Bragg or von-Laue condition for constructive interference.
For example: on all boundaries of the 1BZ

1BZ

Figure 17: 1BZ

Most importantly is the case with only two degenerate levels (2× 2 matrix equation):

ε(0)(~k + ~K1)C~k+ ~K1
+ U ~K1− ~K2

C~k+ ~K2
= εC~k+ ~K1

ε(0)(~k + ~K2)C~k+ ~K2
+ U ~K2− ~K1

C~k+ ~K1
= εC~k+ ~K2

eigenvalues with U−~k = U∗~k
:

ε =
ε

(0)
~k+ ~K1

+ ε
(0)
~k+ ~K2

2
±

√
(ε

(0)
~k+ ~K1

− ε(0)
~k+ ~K2

)2

4
+ |U ~K1− ~K2

|2

The interaction U ~K1− ~K2
leads to a level repulsion |U ~K1− ~K2

|2. At the degeneracy point

~k = ~kd:
ε(0)(~kd + ~K1) = ε(0)(~kd + ~K2)

and

ε = ε(0) ± |U ~K1− ~K2
|

splitting of the bands linear in |U ~K1− ~K2
| due to Bragg reflection.

ǫ

2jU
2~G
j

2jUGj

π

a
� π

a

k

Figure 18: Reduced zone scheme (1D): opening of band gaps in 1BZ
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Figure 19: extended (and reduced) and repeated zone scheme

Energy band gap

Generally, a weak periodic potential introduces energy gaps by splitting degeneracies
due to Bragg reflection. Energy bands then become separated by a finite energy gap
∆U ≈ 2|U ~K1− ~K2

|.

4.3 Fermi surfaces

The ground state of non-interacting electrons in a periodic potential (in zero magnetic
field) can be described in the following way:
all states with ~k ∈ 1BZ and band index n with ε

n~k
≤ εF are occupied once with a

spin-up and a spin-down configuration, where εF is the Fermi energy. The Fermi energy
is determined by the total number of electrons Ne:∑

σ=↑,↓

∑
n,~k∈1BZ

with ε
n~k
≤εF

V→∞→ 2 ·
∑
k

V

∫
1BZ

ε
n~k
≤εF

d~k

(2π)3

!
= Ne

How many electrons can occupy a single band?
with ∑

~k∈1BZ

V→∞→ V

∫
1BZ

d~k

(2π)3
= N

the number of Bravais lattice sites N follows that each band can be occupied by 2N
electrons (N with spin up and N with spin down).
One distinguishes two important cases:

1. All bands are either completely filled or completely empty

The Fermi energy is then located within a bandgap. The density of (non-interacting)
electrons corresponds then to an even number of electrons per unit cell as

Ne = 2
∑
n

V

∫
1BZ

d~k

(2π)3
= 2nbandsN
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ǫ
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empty band
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conduction
band

valence
band

ǫF

Figure 20: all bands are either completely filled or empty

where the factor 2 is from the different spins, nbands is the number of occupied
bands and N the number of unit cells. So, if the number of electrons per unit cell
is known, this gives information about the occupation of bands.
The most upper filled band is the valence band and the first empty band is the
conduction band. In order to excite electrons out of the ground state an energy
larger than the band gap is required whose magnitude is in the range of 1 eV to 7 eV.
Such materials are semiconductors or insulators. In the case of semiconductors the
room temperatures is in general large enough to excite electrons into the conduction
band.

2. The Fermi energy is located within one or more partially filled bands

−

π

a

π

a

ǫ

k

ǫF

ǫ

k

Figure 21: left: single band crosses the Fermi energy, right: two bands cross the Fermi
energy

The partially filled bands are here the conduction bands. Around the Fermi energy
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electrons can be excited with very low energies: metals:
The condition ε

n~k
=̂εF defines one or several D − 1 dimensional manifolds within

the first Brillouin zone that are the Fermi surface(s), respectively.

Example: two dimensional Fermi surface of single energy band with

εk = −2t(cos kxa+ cos kya)
!

= εF

Remarks:

• typical values for Fermi energies: εF ∼ 1- 10 eV, TF ∼ 104- 105 K.

• Fermi surfaces can have different topologies (open or closed)

• The Fermi volume is the volume enclosed by the Fermi surface and is fixed by
the electron density even in the presence of interactions (Luttinger’s theorem).
Interactions, however, can change the shape and the topology of the Fermi surface.

22.11.19

4.4 Density of states and van-Hove-singularities

The density of electron states at a given energy ε is defined by

ν(ε) = 2
1

V

∑
n,~k∈1BZ

δ(ε− ε
n~k

)

where the factor 2 is due to the spin configuration. Sometimes also the density of states
per spin is considered. Introducing the density of states of a band

ν(ε) =
∑
n

νn(ε)

for V →∞ we get

νn(ε) = 2

∫
1BZ

d~k

(2π)3
δ(ε− εnk)

with ∫ ∞
−∞

dενn(ε) = 2

∫
1BZ

d~k

(2π)3
1 = 2

N

V
= 2

1

VPUC

This is two times the density of the primitive unit cell. If the energy ε is located within
the n-th band, with min(εnk) ≤ ε ≤ max(εnk), the density of states ν(ε) is finite and
given by

νn(ε) =
2

(2π)3

∫
εnk=ε

dS

∫
dεnk
|∇kεnk|

δ(ε− εnk) =
2

(2π)3

∫
ε=εnk

dS
1

|∇kεnk|

Here, we integrated over the surface in k-space of constant energy and performed a
change of variables by substituting ~k with εnk.
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The density of states is determined by the integral over constant energy surfaces weighted
by the inverse of the group velocity

vnk =
1

~
∇kεnk

of the n-th band.
Compare with the density of states of free electrons

εk =
~2~k2

2m
, ~vk =

~~k
m

that is given by

ν(ε) =
2

(2π)3

∫
ε=εk

dS︸ ︷︷ ︸
4πk2

∫ ∞
0

dε

|~2 ~k
m |
δ(ε− εk) =

1

π2

km

~2
=

1

π2

m

~3

√
2mε

Whenever the group velocity vanishes on the surface of constant energy the density of
states exhibits a van-Hove singularity. In order to determine the nature of the singularity
one expands around the singularity point ~k0 within the 1BZ.

ε
n~k

= ε
n~k

+
1

2

∂2εnk

∂~ki∂~kj

∣∣∣∣∣
k0

(~k − ~k0)i(~k − ~k0)j

The matrix ∂2εnk
∂~ki∂~kj

describes the curvature of the spectrum and has 3 eigenvalues λ1, λ2, λ3.

The spectrum at ~k0 has

1. a minimum if λi > 0, ∀ i = 1, 2, 3

2. a maximum if λi < 0, ∀ i = 1, 2, 3

3. a saddle point else

Close to the van-Hove singularities in d spatial dimensions with the change of variables
~k = ~k0 +

√
ε− ε

n~k0
~x one obtains

νn(ε) = 2

∫
dd~x

(2π)d
(ε− ε

n~k0
)
d
2 δ

(
(ε− ε

n~k0
)

(
1 +

∂2εnk

∂~ki∂~kj

∣∣∣∣∣
k0

xixj

))

Thus we obtain the relation

ν(ε) ∝ (ε− ε
n~k0

)
d
2
−1

In the following, we will look at the 3 lowest cases:
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Figure 22: d = 1: 1√
ω

divergence at the band edges
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Figure 23: d = 2: jump at band edges and logarithmic singularity at saddle points

ν(")

"

band edge

saddle points

Figure 24: d = 3:
√
ε- singularities

As εnk is a periodic function in ~k a maximum, a minimum and in d > 1 one or more
saddle points have to exist.

Modern interpretation

Van-Hove singularities are topological quantum phase transitions. The topology of the
Fermi surface changes as a function of the chemical potential µ at T = 0.

• at the minimum: new Fermi surface energies

• at the maximum: Fermi surface vanishes
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• at saddle points: Fermi surfaces merge

ν(")

"

1BZ

Figure 25: Fermi surface at different positions in d = 2

4.5 Thermodynamics of non-interacting electrons

Grand canonical partition function of non-interacting electrons:

Z = tr(e−βH) =
∏

n,σ,k∈1BZ

(1 + e−β(εnk−µ))

with H = H − µN , β = 1
kBT

and the chemical potential µ.
The free energy is given by

F (T, µ) = −kBT ln(Z(T, µ)) = −kBT
∑

σ,n,~k∈1BZ

ln(1 + e−β(εnk−µ))

The free energy density f(T, µ) = F
V reads with help of the density of states

f(T, µ) = −kBT
∫ ∞
−∞

dεν(ε) ln(1 + e−β(ε−µ))

The density of electrons n = −∂f
∂µ follows

n(T, µ) =

∫ ∞
−∞

dεν(ε)
e−β(ε−µ)

1 + e−β(ε+µ)
=

∫ ∞
−∞

dεν(ε)nF (ε− µ)

with the Fermi-function

nF (ε) =
1

eβε + 1
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Figure 26: Fermi function (step function broadened by kBT and its derivative (broadened
delta function).

The derivative of the Fermi function is normalized∫ ∞
−∞

dε(−n′F (ε)) = −nF (ε) |∞−∞ = 1

At zero temperature T = 0:

n(0, µ) =

∫ µ

−∞
dεν(ε)

the chemical potential coincides with the Fermi energy:

µ(T = 0) = εF

26.11.19

Sommerfeld expansion

In order to evaluate finite temperature corrections one uses the Sommerfeld expansion.
Consider some smooth function a(ε) with a(ε)→ 0 for |ε| → ∞:∫ ∞

−∞
dεa(ε)nF (ε− µ) =

∫ ∞
−∞

dεA(ε)(−n′F (ε− µ))

where integration by parts has been used, and with

A(ε) =

∫ ε

−∞
dε′a(ε′).

As −n′F (ε− µ) is only finite within a small interval of width kBT around ε− µ ≈ 0 we
can expand the function A(ε) in a Taylor series:

A(ε) = A(µ) +

∞∑
n=1

1

n!

dnA(ε)

dεn

∣∣∣∣∣
ε=µ

(ε− µ)n
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One obtains for the integral the Sommerfeld expansion∫ ∞
−∞

dεa(ε)nF (ε− µ) =

∫ µ

−∞
dεa(ε)︸ ︷︷ ︸
A(µ)

+
∞∑
n=1

dn−1a(ε)

dεn−1

∣∣∣∣∣
ε−µ

∫ ∞
−∞

(ε− µ)n

n!
(−n′F (ε− µ))

The last integral can be evaluated and yields:∫ ∞
−∞

dε
(ε− µ)n

n!
(−n′F (ε− µ)) =

{
(kBT )nCn/2 if n is even

0 else

due to symmetry as (−n′F (ε− µ) is an even function. The coefficient Cn is given by

Cn =

(
2− 1

22(n−1)

)
ζ(2n)

in particular:

C1 = ζ(2) =
π2

6
, C2 =

7π4

360

One finally obtains:

∫ ∞
−∞

dεa(ε)nF (ε− µ) =

∫ µ

−∞
dεa(ε) +

∞∑
m=1

d2m−1a(ε)

dε2m−1

∣∣∣∣∣
ε=µ

(kBT )2mCm

The specific heat per volume (at constant volume) can thus be expressed by

CV = −T ∂
2f

∂T 2
= T

∫ ∞
−∞

dεν(ε)

(
ε− µ
T

)2

(−n′F (ε− µ))

with
ν(ε) ∼= ν(µ) + ν ′(µ)(ε− µ) + . . .

away from fan-Hove singularities.

CV ∼= Tν(µ)2
π2

6
k2
B

For T → 0 the electronic specific heat vanishes linearly with temperature

CV = γT

with the so-called Sommerfeld coefficient

γ =
π2

3
k2
Bν(εF )
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The total specific heat at low temperatures T � TF , θD in a metal has the form

CV = γT +AT 3

where the first term corresponds to electrons and the second to phonons. This formula
is often plotted as CV

T vs. T 2 which gives a linear function

CV

T

γ

T
2

Figure 27: specific heat in Sommerfeld expansion

4.6 Almost localized electrons: tight-binding method

Consider the opposite limit: a strong periodic potential U(~r)

U(~r) =
∑

~R∈Bravais

V (~r − ~R)

where the sum runs over the atomic potentials assuming a mono-atomic Bravais lattice.

~R1
~R2

U(~r)

~r

Figure 28: mono-atomic Bravais lattice potential
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Each atomic potential V decays rapidly with the distance to the ions positions, thus ∆U
is small in between.
Consider now, a Hamiltonian for a single electron:

H =
~p2

2m
+ U(~r) = Hatom, ~R + ∆U(~r)

with

Hatom, ~R =
~p2

2m
+ V (~r − ~R)

and
∆U(~r) =

∑
~R′ 6=~R

V (~r − ~R′)

Starting point: electrons located in atomic orbitals, i.e. eigenstates of Hatom, ~R; assume
that the atomic eigenvalue problem is solved:

Hatom, ~Rφn(~r − ~R) = εnφn(~r − ~R)

where n represents the full set of atomic quantum numbers. With the help of φn we can
construct an Ansatz for a wave function that obeys Bloch’s theorem

ψ~k(~r) =
∑
~R′

ei
~k ~R′
∑
n

anφn(~r − ~R′)

This Ansatz is a linear combination of atomic orbitals (LCAO) with coefficients an.
Now, we can test whether this wave function indeed obeys Bloch’s theorem

ψ~k(~r + ~R) = ei
~k ~Rψ~k(~r)

Full stationary Schrödinger equation

Hψ~k(~r) = E(~k)ψ~k(~r)

projection onto eigenstates of Hatom, ~R using∫
d~rφ∗n(~r)φn′(~r) = δn,n′

Investigate the two terms of the Hamiltonian separately:

1. ∫
d~rφ∗m(~r − ~R)Hatom, ~Rψ~k(~r) = εm

∫
d~rφ∗m(~r − ~R)ψ~k(~r)

= εm

amei
~k ~R +

∑
n

an
∑
~R′ 6=~R

ei
~k ~R′
∫

d~rφ∗m(~r − ~R)φn(~r − ~R′)

︸ ︷︷ ︸
Amn
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Amn is the so-called overlap integral which decays rapidly as function of the dis-
tance. It is only relevant for nearest neighbors as the atomic orbitals are strongly
confined.

~R ~R0

small finite overlap

Figure 29: small finite overlap between two wave functions

2. ∫
d~rφ∗m(~r − ~R)∆U(~r)ψ~k(~r) =

∑
n

an
∑
~R′

ei
~k ~R′
∫

d~rφ∗m(~r − ~R)∆U(~r)φn(~r − ~R′)

︸ ︷︷ ︸
Bmn

The coefficient Bmn is small because either ∆U is small or the product φ∗φ is small

The Schrödinger equation setting ~R = 0 becomes without loss of generality:

(E(~k)− εm)(am +
∑
n

anAmn) =
∑
n

anBmn

this can be written as a matrix equation:

((E(~k)− εm)(δmn +Amn)−Bmn)an = 0

with small coefficients A and B.
In practice, this equation is solved by considering only a restricted number of orbitals,
n,m = 1, 2, 3, . . . , N so that only a N ×N matrix equation is to be solved.

Application: single s-orbital

Consider a single non-degenerate orbital (s-wave). This gives a 1× 1 equation:

(E(~k)− ε)(1 +A)−B = 0

The dispersion of the arising s-band

E(~k) = ε+
B

1 +A

51



with

A =
∑
~R′ 6=0

ei
~k ~R′
∫

d~rφ∗(~r)φ(~r − ~R′)

and

B =
∑
~R′

ei
~k ~R′
∫

d~rφ∗(~r)∆U(~r)φ(~r − ~R′)

this sum rapidly decays with increasing distance ~R′. Thus, the sums can be restricted
to keeping only contributions up to nearest neighbors ~Rn:

B ∼=
∫

d~rφ∗(~r)∆U(~r)φ(~r)︸ ︷︷ ︸
−β

+
∑

nn ~Rn

ei
~k ~Rn

∫
d~rφ∗(~r)∆U(~r)φ(~r − ~Rn)︸ ︷︷ ︸

−γ(~Rn)

and

A ∼=
∑

nn ~Rn

ei
~k ~Rn

∫
d~rφ∗(~r)φ(~r − ~Rn)︸ ︷︷ ︸

α(~Rn)

For an s-orbital wave function α can be chosen to be real: α(~Rn) = α(−~Rn) (substitution 29.11.19
~r → ~r + ~Rn). From the inversion symmetry of the Bravais lattice follows γ(~Rn) =
γ(−~Rn). The dispersion of the s-band then becomes:

E(k) = ε−
β +

∑
nn γ(Rn) cos~k ~Rn

1 +
∑

nn α(Rn) cos~k ~Rn
≈ ε− β −

∑
nn

γ(~Rn) cos~k ~Rn

For example: simple cubic Bravais lattice:

~R1 = a(±1, 0, 0), ~R2 = a(0,±2, 0), ~R3 = a(0, 0,±1)

with
γ(Rn) ≡ γ

Remarks:

• Tight binding bands are narrow bands. The bandwith ie. max(E(k))−min(E(k))
is determined by the small overlap integral γ.
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n = 1

n = 2

n = 3

E

U(r) energy levels

N-fold
degenerate

n/ spacing

each band possesses
N Values of k

bandwidth increases
with n/ spacing

Figure 30: Left: spectrum of non-degenerate s-levels in an atomic potential. Right:
Energy levels of N such atoms forming a lattice as a function of inverse inter-
atomic spacing.

Small 1/ spacing: tight binding limit
large 1/ spacing: limit of weak periodic potential

• interpretation of overlap integral γ: hopping amplitude of electrons from atom to
atom (often denoted as t).

γ γ

Figure 31: Overlap integral γ

• for solids with more atoms per unit cell: generalize the Ansatz to a linear combi-
nation of atomic orbitals centered at Bravais lattice point and basis points

• spin orbit coupling will be important for d- and f- electrons. Those can be included
in the tight-binding method

• For an electron band deriving from well-localized atomic orbitals with small overlap
integral the interaction between electrons is strong. Thus, this has to be included
on top of the tight-binding method. This leads to the Hubbard model.

4.6.1 Wannier functions

The wave function can always be written in the form

ψ
n~k

(~r) = VPUC

∑
~R

ei
~k ~Rwn(~r − ~R)
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that is used in the tight binding method where an Ansatz for wn(~r− ~R) is made in terms
of a LCAO. The function wn is the Wannier function and given by the inverse Fourier
transform:

wn(~r − ~R) =

∫
1BZ

d~k

(2π)3
e−i

~k ~Rψ
n~k

(~r) =

∫
1BZ

d~k

(2π)3
ei
~k(~r−~R)u

n~k
(~r)

where
ψ
n~k

(~r) = ei
~k~ru

n~k
(~r)

Wannier functions are orthogonal :∫
d~rw∗n(~r − ~R)wn′(~r − ~R) =

∫
1BZ

d~k

(2π)3

∫
1BZ

d~k′

(2π)3
ei
~k ~R−i~k′ ~R′

∫
d~rψ∗

n~k
(~r)ψ

n′~k′(~r)︸ ︷︷ ︸
δnn′ (2π)3δ(~k−~k′)

= δnn′

∫
1BZ

d~k

(2π)3
ei
~k(~R−~R′) = δnn′

1

VPUC
δ~R~R′

and form a complete basis.
The choice of a complete set of Wannier functions is not unique. The Bloch function

ψ
n~k

(~r) = ei
~k~ru

n~k
(~r)

is only defined up to a ~k dependent phase.

u
n~k

(~r)→ eiϕ(~k)u
n~k

(~r)

giving rise to a U(1) gauge freedom with ϕ(~k + ~G) = ϕ(~k). (Additional freedom arises
at positions within the 1BZ where different bands cross.) This freedom can be exploited
to ensure that the ~k-dependency of u

n~k
(~r) is as smooth as possible so that the Wannier

functions are maximally localized.

wn(~r − ~R) =

∫
1BZ

d~k

(2π)3
ei
~k(~r−~R)u

n~k
(~r)→ 1

VPUC
δ~r−~R,0un( ~R)

for a ~k-independent u
n~k

(~r) = un(~r), so the Wannier functions would be perfectly local-
ized.
Exceptions: Topological insulators for which a smooth choice of u

n~k
(~r) is not possible.

5 Electronic transport in solids

5.1 Drude theory of metals (1900)

5.1.1 Introduction

• electrons - classical gas of non-interacting particles
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• electrons scatter on ions (immediately)

• scattering time = 0

• the scattering directions are randomly oriented, thermal equilibrium

• relaxation time τ is main parameter of Drude theory which is the average time
interval between two scatterings. This relaxation time generates also the free path
l = |σ|τ

The probability of scattering during dt:

dt

τ

is given by the momentum

~p(t+ dt) =
(
~p(t) + ~f(t)dt

)(
1− dt

τ

)
+

dt

τ
(~p0 + ~f(t)dt)

In average ~p0 is zero. We restrict ourselves to linear terms

~p(t+ dt) = ~p(t)− ~p(t)

τ
dt+ ~f(t)dt

The time derivative of the momentum is

~̇p(t) = ~f(t)− ~p(t)

τ

Now, consider some simple cases, eg. an external electrical field ~E that accelerates the
electrons

~f = −e ~E, ~E > 0

In stationary regime we have
~p(t)

τ
= ~f

We introduce the conductivity of electrons

m

τ
~σ = −e ~E

and the current density
~j = −en~σ

so

−m
τ

~j

en
= −e ~E

and finally

~j =
e2nτ

m
~E = σ0

~E
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with the Drude conductivity

σ0 =
e2nτ

m
Are we able to measure the relaxation time?

l

A

+ −

V

Figure 32: measurement of the relaxation time

here

V = IR

El = jAR

j =
l

AR
E = σ0E

τ =
σ0m

e2n

5.1.2 Hall effect

Ex

jx

~B

Ey

+ + + +

− − − −

Figure 33: Hall effect

~f = −e
(
~E +

1

mc
~p× ~B

)
the first term is the electric force and the second the Lorentz force. So

~̇p = −e

 ~E +
1

mc
~p× ~B︸ ︷︷ ︸

x̂pyB−ŷpxB

− ~p

τ
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and take the current density into account

~j = −e n
m
~p

we can write the equation for ~̇p into matrix form

−m
en
∂t

(
jx
jy

)
=

(
1
τ
m
en

eB
mc

m
en

. . . . . .

)(
jx
jy

)
− e

(
Ex
Ey

)
We set the left part of the equation to zero, so we are left with(

1 ωcτ
−ωcτ 1

)(
jx
jy

)
= σ0

(
Ex
Ey

)
with the cyclotron frequency

ωc =
eB

mc

!cτ ≫ 1 !cτ ≪ 1

Figure 34: low and high limit of cyclotron frequency

Now look at the case jy = 0. The matrix equation gives two equations:

jx = σ0Ex, −ωcτjx = σ0Ey

inserting ωc and σ0 explicitly

−eB
mc

τjx =
e2nτ

m
Ey

gives equations for the Hall resistance RH

RH =
Ey
Bjx

= − 1

enc

and the time variable τ

τ = −mc
e

Ey
Ex

1

B
.

Now we want to determine the electric field ~E(t) in the case λ� L. The impulse ~p can
be represented in time space

~p(t) =

∫
dω~p(ω)e−iωt
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and as its Fourier transformed version

~p(ω) =

∫
dt

2π
~p(t)eiωt

from before we know

~̇p = −e
(
~E +

1

mc
~p× ~B

)
− ~p

τ

so it follows

−iω~p(ω) = −e ~E(ω)− 1

τ
~p(ω)

now we insert
~j = −e n

m
~p

which gives

−m
en
~j(ω)

(
−iω +

1

τ

)
= −e ~E(ω)

finally this gives

j(ω) =
e2nτ

m︸ ︷︷ ︸
σ0

1

1− iωτ︸ ︷︷ ︸
σ(ω)

~E(ω)

So we obtain

σ(ω) =
σ0

1− iωτ

σ0

!

(σ(!))Re

σ0

1+(!D)2

Figure 35: real part of the frequency

Using
E = E0e

−iωt

We get

j(t) =
E0σ0√

1 + (ωτ)2
e−i(ωt+arctan(ωτ))
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5.1.3 Maxwell equations

Now we take a look at the Maxwell equations

∇× ~E = −1

c
∂t ~B

∇× ~H =
4π

c
~j +

1

c
∂t ~D

∇ ~D = 4πρ

∇ ~B = 0

With the electric displacement field ~D and electric permittivity ε

~D = ε ~E

and magnetic permittivity µ and magnetic induct

~B = µ ~H

We use the relation
∆~F = ∇(∇~F )−∇× (∇× ~F )

In the case of ρ = 0 (∇ ~E = 0) we get

∇× (∇× E) = ∇ (∇E)︸ ︷︷ ︸
=0

−∆E = −∆E = −µ
c
∂t

(
4π

c
~j +

ε

c
∂t ~E

)

Using the Fourier transformation of ~E

~E(~r, t) =

∫
~E(ω,~k)ei(

~k~r−ωt)dωd~k

we get

k2 ~E(ω,~k) = −µ
c

4π

c
(−iω)~j(ω,~k)︸ ︷︷ ︸

=σ ~E

− ε
c
ω2 ~E(ω,~k)


=
ω2

c2
µ

(
4πi

ω
σ(ω) + ε

)
︸ ︷︷ ︸

:=ε(ω)

~E(ω,~k)

=
ω2

c2
µε(ω) ~E(ω,~k)

with

ε(ω) :=
4πi

ω
σ(ω) + εS
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We get a dispersion relation for k

k =
1

c
ω
√
µε(ω) =

1

c
ωñ(ω)

With the frequency dependent refractive index

ñ(ω) = n(ω) + iχ(ω)

Now, we take a look at the limits:
ωτ � 1:

ε(ω) ≈ εS︸︷︷︸
≈1�

+4πi
σ0

ω︸︷︷︸
� for metals

≈ i4πσ0

ω

The result is totally imaginary. The refractive index follows to be

n(ω) =

√
4πσ0

ω
·
√
i =

√
4πσ0

ω

1 + i√
2
, χ(ω) =

√
2πσ0

ω

The current density becomes

j ≈ j0ei(kz−ωt) = j0e
i(...)te−αt)

with

α =
ω

c

√
2πσ0

ω
∼
√
ω

finally

j =
1

α
∼ 1√

ω

In the case ωτ � 1:

ε(ω) = εS −
ω2
p

ω2

with the plasma frequency

ω2
p =

4πne2

m
6.12.19

5.1.4 Plasma oscillations

The electron gas can sustain charge density oscillations with the frequency ωp known as
plasma oscillations which is a collective oscillation of all electrons.
The continuity equation for charge density is given by

δtρ+∇~j = 0

Thus
−iωρ(~k, ω) + i~k (σ(ω) ~E(~k, ω))︸ ︷︷ ︸

=~j(~k,ω)

= 0
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ǫ(!)

1

!

!p

Figure 36: Energy ε(ω)

with Gauß’ law:
∇ ~E = 4πρ ⇔ i~k ~E = 4πρ

we obtain a solution if
−iω + 4πσ(ω) = 0

so

ε(ω) = 1 + i
4π

ω
σ(ω) = 0

and finally
ω = ωp for ωpτ � 1

.

5.2 Semi-classical model for electron dynamics

Consider a wave packet consisting of Bloch wave functions. Semi-classical model: effec-
tive equations of motion for the center of mass ~r of the wave packet and its momentum
~k. The first equation corresponds to the sound velocity.

~̇r = ~vn(~k) =
1

~
∂εn(~k)

∂~k

~~̇k = −e( ~E(~r, t) +
1

c
~vn(~k)× ~B(~r, t))

Remarks:

• band index n is constant of motion. Inter-band transitions are neglected
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• ~~k is the crystal momentum which is defined up to additive reciprocal lattice
vectors ~G.

• in order to have a well-defined ~k located within the first Brillouin zone the spatial
width of the wave packet must be much larger than the size of a primitive unit cell

• in order to treat the fields ~E and ~B classically their wavelength must be much
larger than the width of the wave packet

• to neglect inter-band transitions the amplitude of the fields must be sufficiently
small, otherwise electric or magnetic breakdown.

• anomalous velocity : the velocity ~vn(~k) can obtain a correction from the Berry
curvature of Bloch function ~Ω

~vn(~k) =
1

~
∂εn(~k)

∂~k
− ~~̇k × ~Ω

where
~Ω = ∇k × ~A(~k) with ~A(~k) = −i 〈u

n~k
|∇k|un~k〉

effective vector potential in ~k-space. This plays a big role in the topology of
oscillators because there the Berry curvature is important. This is analogous to
electrodynamics in the ~k-space. This correction is important in ferro-magnets
where it contributes to the anomalous Hall effect.

5.2.1 Effective charge and heat carriers

The charge density of the nth band at T = 0 is given by

~jn = 2(−e)
∫

1BZ,occ. st.

d~k

(2π)3
~vn(~k) = 2(−e)

∫
1BZ,occ. st.

d~k

(2π)3

1

~
∂εn(~k)

∂~k

where the factor 2 corresponds to the spin degree of freedom and it is only integrated
above occupied states.
The energy current density at T = 0 is given by

~jnε = 2

∫
1BZ,occ. st.

d~k

(2π3)
εn(~k)~vn(~k) = 2

∫
1BZ,occ. st.

d~k

(2π)3

1

2~
∂εn(~k)

∂~k

Completely occupied (filled) bands are inert, so, they do not contribute to the current
densities, as the integrand in both cases is a total derivative of a periodic function
εn(~k) = ε(~k+ ~G), only surface terms contribute, so in this case, both integrals vanish. It
follows that, conduction is only due to electrons within partially filled bands. If all bands
are either completely filled or empty we have an electrical and thermal band insulator.
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Holes

As a completely filled band does not contribute to the charge current density, we have

~jn = 2(−e)
∫

1BZ,occ. st.

d~k

(2π)3
~vn(~k)

= 2(−e)
∫

1BZ

d~k

(2π)3
~vn(~k)︸ ︷︷ ︸

=0

−2(−e)
∫

1BZ,unocc. st.

d~k

(2π)3
~vn(~k)

= 2e

∫
1BZ,unocc. st.

d~k

(2π)3
~vn(~k)

The current produced by occupied states with electrons of charge −e is equal to that of
fictitious particles, holes, with charge +e filling all those states left unoccupied by the
electrons.
The temporal evolution of states under influence of applied fields is fixed by the equations
of motion irrespective whether they are occupied or not. When is it convenient to
consider the current to be carried by holes?
Consider states close to the band maximum at ~k0.

ǫn(~k)

~k

k0

negative curvature

Figure 37: Energy ε(~k) near band maximum

Expanding gives

εn(~k) = εn(~k0)− ~2(~k − ~k0)2

2m∗

with a negative effective mass −m∗ < 0. The equation of motion is now

~̈r =
d

dt
~vn(~k) = − ~~̇k

m∗
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The acceleration is anti-parallel to ~k. In the ~E-field it is

~̈r =

(
− 1

m∗

)
(−e) ~E =

e

m∗
~E

The equation of motion for states close to the band maxima can be viewed as those of
negatively charged particles with negative mass (−e < 0, −m∗ < 0) or, more intuitively,
as those of positively charged particles with positive mass (e > 0, m∗ > 0). If the
Fermi energy is close to a band maximum, in this case, it is conveniently to describe the
transport in terms of holes with positive mass m∗ > 0 and positive charge e > 0.

"n(~k)

~k

k0

"F

unoccupied

occupied

Figure 38: Fermi energy near the band maximum

More generally, we can introduce the effective mass tensor

1

~2

∂2εn(~k)

∂ki∂kj

which describes the curvature of the band. One of the applications are semiconductors
that are at T = 0 band insulators with empty conduction band and completely filled
valence band.
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"n(~k)

~k

k0

"F

band gapEg

valence band

conduction band

Figure 39: bands of a semiconductor

At T > 0 the intrinsic electronic properties determined by electrons are thermally ex-
cited from the valence band to the conduction band with exponentially small density
∝ exp(− Eg

kBT
) and for Eg � kBT typical band gaps are at T = 300 K:

Si: Eg = 1.12 eV,
Eg
kBT
≈ 43

Ge: Eg = 0.67 eV,
Eg
kBT
≈ 26

A parabolic approximation is applied. In the case of the valence band this gives 10.12.19

εv(~k) ∼= εv(0) +
1

2

∂2εv
∂ki∂kj

|~k=0
kikj

= εv(0)− ~2

2

(
k2

1

m1h
+

k2
2

m2h
+

k2
3

m3h

)
and for the conduction band

εv(~k) ∼= εv(0) +
1

2

∂2εc
∂ki∂kj

|~k=0
kikj

= εv(0) +
~2

2

(
k2

1

m1c
+

k2
2

m2c
+

k2
3

m3c

)
Diagonalizing the curvature tensor yields eigenvalues that correspond to inverse masses
along three principal axes. They are negative for the valence band and positive for the
conduction band. Thus, the transport within the valence and conduction band are de-
scribed in terms of holes and electrons, respectively. Warning: For each band one can
choose whether to describe the transport in terms of electrons or holes, but never mix
the two pictures within a single band!
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5.2.2 Bloch oscillations in electrical fields

Consider a uniform electric field ~E:

~~̇k = −e ~E ⇒ ~k(t) = ~k(0)− e ~Et

~

this we can insert into the velocity term

~̇r = ~vn(~k(t)) = ~vn

(
~k(0)− e ~Et

~

)

The wavevector changes linearly in time and as the velocity

~vn(~k) =
1

~
∂ε(~k)

∂~k

We know that ε is a periodic function in ~k, thus, also its derivative is periodic in ~k.
As ~k is linear in time, ε and ~vn become periodic functions of time (for ~E parallel to a
reciprocal lattice vector). These are called Bloch oscillations.
For example 1D:

ε(k) = −w
2

cos ka, v(k) =
wa

2~
sin(ka)

it follows that

r(t) = r(0) +

∫ t

0
dt′v

(
k(0)− eEt

~

)
= r(0) +

wa

2~
~
eEa

(
cos

(
k(0)a− eEta

~

)
− cos (k(0)a)

)
= r0 +

w

2eE
cos

(
k0 −

eEta

~

)
The Bloch electron oscillates in space with an amplitude given by

∆r =
w

eE

and a frequency

ω =
eEa

~
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Figure 40: Bloch oscillation

This oscillation is difficult to observe in solids. An estimate of the amplitude can be
made, e.g. E ∼ 10 V

mm , w ∼ 1 eV:

∆r ∼ 0.1 mm ≈ 10× 106 Å

The problem is, that electrons scatter from lattice defects before completing an oscillation
ωτ � 1.
Bloch oscillations were observed in

• superlattices in semiconductores (artificially large a)

• optical lattices

But why do the Bloch electrons oscillate?
Consider the energy

ε = εn(~k(t)) + eEr(t)

where the first term is the kinetic energy of the Bloch electrons and the second term is
the potential energy of the field.

ε = −w
2

cos

(
k0a−

eEta

~

)
+ eE

(
r0 + cos

(
k0a−

eEta

~

))
= eEr0 = const.

The oscillating terms cancel out and the resulting total energy is constant. In order to
conserve the energy, electrons can not escape to ±∞.
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r

eEr

potential due to electric field

"−
w

2

"+ w

2

"

r0 −
∆r

2
r0 +

∆r

2
r0

next band

Zener tunneling

energetically allowed

energy band

Figure 41: Energy as function of r with energy bands and Zener tunneling

For a single band the electron is electrically confined to a region in space. It can, however,
escape via an inter-band transition i.e. Zener tunneling.

5.2.3 Semi-classical motion in a magnetic field

The semi-classical equation of motion in the presence of a ~B field is given by

~̇r = ~vn(~k), ~~̇k = −e
c
~vn(~k)× ~B

The component of ~k parallel to ~B is conserved

k̇‖ = 0

and also the electronic energy εn(~k) is conserved

ε̇n(~k) =
∂εn

∂~k
· ~k = ~vn(~k)~~̇k = 0

because ~̇k is perpendicular to ~vn(~k) and ~B.
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~B k kk

"n(~k) = const

orbit
~k(t)

~B k kk

hole-orbit electron-orbit

Figure 42: We can define a orbit in ~k-space that is an intersection of a constant en-

ergy surface (e.g. sphere) with planes perpendicular to ~B. The sense of the
orientation depends on the sign of ~v. We obtain electron/hole-like orbits.

One distinguishes between closed and open orbits similar to the discussion of fermi
surfaces.

Closed orbits

Orbits closed in ~k-space with a period

T =

∫ T

0
dt =

∮
closed orbit

d~k

|~̇k|

and

|~̇k| = e

~c
|~vn,⊥(~k)|| ~B| = eB

~2c

∣∣∣∣∣
(
∂εn(~k)

∂~k

)
⊥

∣∣∣∣∣
where we use the component perpendicular to ~B.

T =
~2c

eB

∮
dk∣∣∣(∂εn(~k)

∂~k

)
⊥

∣∣∣ =
~2c

eB

∂A

∂εn

There is a geometrical interpretation: We have an area A on the plane perpendicular to
~B that is enclosed by the orbit
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area
orbit in k-space

~B

A

Figure 43: geometrical interpretation: We have an area A on the plane perpendicular to
~B that is enclosed by the orbit

A =

∫
dk⊥

∮
dk =

∮
dk

∣∣∣∣dk⊥dE

∣∣∣∣dE
where the closed integral is a closed orbit for a given k⊥.
A change in the area upon changing the energy is given by E: dA

dE . Consider a cyclotron
frequency

ωc =
2π

T
=

eB

cm∗

with the cyclotron mass

m∗(ε) =
~2

2m

∂A

∂ε

that is determined by a property of constant energy surfaces.

Open orbits

Open orbits in ~k-space are possible for open constant energy surfaces.

~B

constant energy surface

Figure 44: Extended zone scheme (3 Brillouin zones): constant energy surfaces con-
nected, this leads to open orbits

13.12.19
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5.2.4 Quantized levels of Bloch electrons in a magnetic field

Reminder: free electron in a magnetic field: quantized Landau levels En = ~ωc
(
n+ 1

2

)
with ωc = eB

mc .
Consider closed orbits, according to Bohr’s correspondence principle:

En+1 − En = ~ωc =
2πeB

~c
∂ε

∂A
≈ 2πeB

~c
∆E

∆A

with the identification En+1 − En ∼= ∂E follows

∆A =
2πeB

~c
.

The are of orbits in k-space adjacent in energy differ by a fixed amount ∆A, so we get
an area on which an electron travels in k-space that is also quantized:

A(En) = (n+ const)
2πeB

~c

for n� 1 (semi-classical limit).
Particular important are extremal orbits on the Fermi surface

B

kk

extremal orbits

Fermi surface

Figure 45: The area at fixed energy EF varies as a function of longitudinal momentum
k‖

A(EF , k‖) = (n+ const)
2πeB

~c
with k‖ = k‖(n) for an extremal orbit at k‖,e:

∂A

∂k‖

∣∣∣∣
k‖,e

= 0
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with
Ae = A(EF , k‖,e).

There will be a singular contribution to the density of states whenever the value of the
magnetic field B causes an extremal orbit on the Fermi surface to satisfy the quantization
condition

Ae = (n+ const)
2πeB

~c
= (n+ const)∆A

It follows that the density of states ν(EF ) is singular at regular spaced intervals of the
inverse field 1

B .

∆

(
1

B

)
=

2πe

~c
1

Ae

This suggests oscillatory behavior of many observables as a function of 1
B :

• deHaas-van Alpen effect: periodic oscillation in magnetization M(B)

• Stubnikov-deHaas effect: periodic oscillation in electrical resistance ρ(B)

M(B)

1

B

∆1=B

Figure 46: quantitative measurement of the shape of the Fermi surface is possible!

5.3 Boltzmann equation

We combine the semi-classical dynamic with a statistical approach. Consider an average
number of electrons at position ~r with crystalline momentum ~~k in the band n at time
t:

f
n~k

(~r, t)

This is semi-classical as both, position and impulse are fixed and do not obey Heisen-
berg’s uncertainty principle. In equilibrium the average occupation is given by the Fermi
function

f
(0)

n~k
(~r, t) =

1

e
ε
n~k
−µ

kBT + 1
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out of equilibrium f becomes time dependent:

df
n~k

(~r, t)

dt
=
∂f

n~k
(t)

∂~r
~̇r +

∂f
n~k

(~r, t)

∂~k
~̇k +

∂f
n~k

(~r, t)

∂t

Usage of the semi-classical equations of motion leads to

df
n~k

(~r, t)

dt
=
∂f

n~k
(t)

∂~r
~v
n~k

+
∂f

n~k
(~r, t)

∂~k

1

~
~F +

∂f
n~k

(~r, t)

∂t
.

The first term corresponds to a flow of particles and the second term to external forces
~F . The time dependence is balanced by collisions of the electrons e.g. with defects,
phonons, other electrons, etc. which eventually leads to a relaxation to equilibrium:

df
n~k

(~r, t)

dt
=
∂f

n~k
(~r, t)

∂t

∣∣∣∣
collisions

.

This leads to the Boltzmann equation

∂f
n~k

(t)

∂~r
~v
n~k

+
∂f

n~k
(~r, t)

∂~k

1

~
~F +

∂f
n~k

(~r, t)

∂t
=
∂f

n~k
(~r, t)

∂t

∣∣∣∣
collisions

We have discussed the left hand side of the Boltzmann equation as partial derivatives.
In the following, the right hand side will be discussed.

5.3.1 Collision terms

Consider various sources for the collision term

I. Disorder

transition from ~k → ~k′ with a scattering rate Wk′k (read from right to left) due to
impurities of the crystal

~k

~k
0

Figure 47: This transition is only possible if ~k is occupied and ~k′ empty in the beginning

∂f
n~k

(~r, t)

∂t

∣∣∣∣
collisions

= −
∑
~k′

( Wk′kfk(1− fk′)︸ ︷︷ ︸
scattering out of ~k-state

− Wkk′fk′(1− fk)︸ ︷︷ ︸
scattering into ~k-state

)
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We want to determine the scattering rate Wk′k for weak impurity potentials at impurity
positions ~Ri

Himp =
∑
Ri

Vimp(~r − ~Ri).

Therefore, we use Fermi’s Golden rule

Wk′k =
2π

~
| 〈~k′|Himp|~k〉 |2δ(ε~k − ε~k′)

The elastic impurity scattering conserves the energy ε~k. Insert the Hamiltonian:

Wk′k
∼=

2π

~
nimp| 〈~k′|Vimp|~k〉 |2δ(ε~k − ε~k′)

where we only used the diagonal terms of the double sum and introduced the density of
impurities nimp. We can express the matrix element by an integral

〈~k′|Vimp|~k〉 =

∫
d~rψ∗

n~k′
(~r)Vimpψn~k(~r)

The position of the impurities is constant, so it does not make any difference in which
direction the time-evolution is performed. From the unitarity of the time-evolution
follows that the scattering rate is symmetrical in k and k′

Wk′k = Wkk′

This symmetry is valid beyond perturbation theory. So, we can simplify the collision
integral

∂fk
∂t

∣∣∣∣
collision

= −
∑
k′

Wk′k(fk − fk′)

Sometimes the transition rates Wkk′ are treated as phenomenological parameters and 17.12.19
(or the dependencies on k and k′ are neglected (s-wave)).

II. Electron-electron scattering

k1ǫk1

k2ǫk2

k3ǫk3

k4ǫk4

Figure 48: Scattering of two elements. Left momenta and energies before the collision
and right after the collision
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The scattering rate of this process is given by

Wk3k4;k1k2 =
∑
~G

ΓGk3k4;k1k2δk1+k2,k3+k4+Gδ(εk1 + εk2 − εk3 − εk4)

Both, the energy and the momentum are conserved up to a reciprocal lattice vector ~G.
We get

∂fk
∂t

∣∣∣∣
collision

= −
∑
k2k3k4

[Wk3k4;kk2fkfk2(1− fk3)(1− fk4)−Wkk2;k3k4fk3fk4(1− fk)(1− fk2)]

From time-reversal symmetry follows, that the transition rates are symmetricWk3k4;kk2 =
Wkk2;k3k4 .

III. Electron-phonon scattering

~q

~k ~k0

~q

~k ~k0

absorption of a phonon emission of a phonon

Figure 49: Emission and absorption by electron-phonon scattering

∂fk
∂t

∣∣∣∣
collision

= −
∑
~k′~q

[WA
k′k;qfk(1− fk′)nq −WA

kk′;qfk′(1− fk)nq

+WE
k′k;qfk(1− fk′)(1 + nq)−WE

kk′;qfk′(1− fk)(1 + nq)]

The first two terms corresponds to absorption and the second two terms to emission of
a phonon. nq is the phonon distribution function, where 1 corresponds to spontaneous
and nq to stimulated emission in the emission term.

5.3.2 Linearized Boltzmann equation and relaxation time approximatino

Collisions result in relaxation to a (local) equilibrium. The collision terms for disorder
scattering and electron-electron scattering vanish for a local Fermi distribution

f
(0)
k (~r, t) =

1

e
εk−µ(~r,t)
kBT (~r,T ) + 1

with time and space dependent chemical potential µ = µ(~r, t) and temperature T =
T (~r, t). Check for electron-electron scattering:

f
(0)
k f

(0)
k2

(1− f (0)
k3

)(1− f (0)
k4

)− f (0)
k3
f

(0)
k4

(1− f (0)
k )(1− f (0)

k2
)
∣∣∣
εk+εk2=εk3+εk4

= 0
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The collision terms are only finite for a finite deviation from the local Fermi distribution:

δfk(~r, t) = fk(~r, t)− f
(0)
k (~r, t)

We consider a simple, heuristic approximation of the collision term

∂fk
∂t
|collision ≈ −

δfk
τk

the so-called relaxation-time approximation with k-dependent relaxation time τk. This
allows for a simple solution of the Boltzmann equation. However, this approximation
violates certain conservation laws. Furthermore, for small deviations from equilibrium
linearization of the left-hand side of the Boltzmann equation in gradients ∇T , ∇µ, the
forces ~F and δf is possible. For δtT = δtµ = 0 one then obtains

∂fk
∂~r

~vk +
∂fk

∂~k

1

~
~F +

∂fk
∂t
∼=
∂f

(0)
k

∂~r
~vk +

∂f
(0)
k

∂~k

1

~
~F +

∂δfk
∂~r

~vk +
∂δfk
∂t

= −
∂f

(0)
k (~r)

∂εk

[
εk − µ(~r)

T (~r)

∂T

∂~r
+
∂µ

∂~r
− ~F

]
~vk +

∂δfk
∂~r

~vk +
∂δfk
∂t

= −∂fk
τk

This is called the linearized Boltzmann equation in the relaxation-time approximation.
The best approximation for 1

τk
depends on the problem and the quantity of interest

(heat/ charge transport etc.). One distinguishes in particular between a single-particle
relaxation-time that is the typical time between two scattering events and the transport
relaxation-time that is the typical time between two scattering events which relax a
transport current.

5.3.3 Conductivity and transport relaxation time

For a homogeneous electrical field ~F (t) = −e ~E(t) we can set ∇T = ∇µ = 0 as the field
is homogeneous and we obtain

−
∂f

(0)
k

∂εk
e ~E(t)~vk +

∂δfk
∂t

= −δfk
τk

We perform a Fourier transform:

δfk(t) =

∫
dω

2π
e−iωt∂fk(ω)

and obtain

δfk(ω) =
−∂f

(0)
k

∂εk
e ~E(ω)~vk

− 1
τk

+ iω

The charge current density is given by

~j = −2e

∫
d~k

(2π)3
fk~vk = −2e

∫
d~k

(2π)3
δfk ~vk
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with the factor of 2 corresponding to the particle spin and no contribution in equilibrium.
The conductivity tensor is given by

ji(ω) = σij(ω)Ej(ω)

with

σij(ω) = 2e2

∫
d~k

(2π)3
vikv

j
k

(
−∂f

(0)
k

∂εk

)
τk

1− iωτk

As
∂f

(0)
k

∂εk
is sharply peaked only states close to the Fermi energy contribute for T → 0:

−
∂f

(0)
k

∂εk
≈ δ(εk − µ)

−

@f
(0)

k

@"k

T

1

τ

µ
"

Figure 50: delta peak of−∂f
(0)
k

∂εk

Comparison with Drude formula

σ(ω) =
e2nτ
m

1− iωτ
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approximate τk ≈ τ :

σij =
e2τ

1− iωτ
2

∫
d~k

(2π)3
vik v

j
k

(
−
∂f

(0)
k

∂εk

)
︸ ︷︷ ︸

=− 1
~
∂f

(0)
k
∂kj

=
e2τ

1− iωτ
2

∫
d~k

(2π)3

1

~2

∂εk
∂ki∂kj︸ ︷︷ ︸
m−1
ij

f
(0)
k

where we performed integration by parts and introduced the effective mass tensor m−1
ij .

Finally, we obtain

σij(ω) =
e2nτ

1− iωτ
〈m−1

ij 〉

with the density

n = 2

∫
d~k

(2π)3
f

(0)
k

and the inverse effective mass averaged over the Fermi volume:

〈m−1
ij 〉 =

2
∫

d~k
(2π)3

1
~2

∂2εk
∂ki∂kj

f
(0)
k

2
∫

d~k
(2π)3

f
(0)
k

For an isotropic system with εk = ~2k2
2m we obtain the classical solution:

〈m−1
ij 〉 =

1

m
δij

20.12.19
Interpretation of the relaxation time τk entering the conductivity as a transport scattering
time:
For impurity scattering:

−δfk
τk

= −
∫

d~k′

(2π)3
Wk′k(fk − fk′) = −

∫
d~k′

(2π)3
Wk′k(δfk − δfk′)

An analytical solution is possible if

• we have a isotropic system

εk = ε(|~k|) ⇒ ~vk = vkk̂

• scattering only depends on the angle between ~k and ~k′:

Wk′k = Γ(k̂k̂′)δ(εk − εk′)
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We use the ansatz:
δfk = k̂ ~Eφ(εk)

with

φ(εk) =
∂f

∂εk

3vk
vkτk − iω

and taking into account that τk = τ(εk) this leads to

k̂ ~E

τk
φ(εk) = φ(εk) ~E

∫
d~k′

(2π)3
Wk′k(k̂ − k̂′)︸ ︷︷ ︸

‖ k̂ by symmetry

It follows the transport relaxation rate

1

τk
=

∫
dk′

(2π)3
Wk′k(1− k̂′k̂)

=

∫
d~k

(2π)3
δ(εk − εk′)Γ(k̂k̂′)(1− k̂k̂′)

=
ν(εk)

2

1

2

∫ 1

−1
d cos θΓ(cos θ)(1− cos θ)

with the density of states per spin

ν(εk) = 2

∫
d~k

(2π)3
δ(εk − εk′)

Now, we want to interpret the extra factor (1 − k̂k̂′) = 1 − cos θ: for small angle scat-
tering (θ � 1) there is little change in the current velocity and thus only little current
relaxation! Only scattering events with large angle do substantially relax the current.

θ

~k

~k
0

Figure 51: Scattering angle θ

Adding scattering events: Matthiessen’s rule: Apart from impurity scattering, also
electron-electron and electron-phonon scattering leads to relaxation. Within the re-
laxation time approximation: add scattering rates:

1

τk
=

1

τdisorder,k
+

1

τinteraction,k
+

1

τphonons,k
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If the ~k dependency can be neglected, contribution to resistivity ρ = 1
σ ∝

1
τ are additive.

ρ ≈ ρdisorder + ρinteraction + ρphonons

which is called Matthiessen’s rule.
This rule is frequently used to interpret experiments, but it is not valid for ~k- dependent
scattering and for strong disorders or interactions. Typically for metal at T � TF :

ρdis = const, ρint = AT 2, ρphon ∝

{
T 5, low T (T � θD)

T, high T (T � θD)

5.3.4 Thermal conductivity and thermopower

Thermal current carries heat Q. Thermodynamic definition

δQ = TdS + dU − µdN

In terms of currents:
~jQ = ~jε − µ~jN

where the first current corresponds to the heat, the second to energy and the last to
particle current. If one neglects interaction effects and contributions from phonons etc.
we can define the heat current density by

~jQ = 2

∫
d~k

(2π)3
(εk − µ)~vkfk

A finite electrical field and a thermal gradient ∇T will in general induce a thermal as
well as an electrical current density

~jc = 2(−e)
∫

d~k

(2π)3
~vkfk = (−e)~jk

For weak ~E and ∇T there will be a linear response

~jc = L11
~E + L12(−∇T ), ~jQ = L21

~E + L22(−∇T )

where Lαβ with α, β = 1, 2 are linear response matrices. They are related to transport
coefficients under various experimental conditions:

• conductivity σ:
for ∇T = 0: jc = σijEj with σ = L11

• thermal conductivity k:
heat current measured under the condition of a vanishing charge current
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~jQ

heater

hot cold

Figure 52: heat current measurement

~jc = 0 ⇔ ~E = −L−1
11 L12(−∇T )

Hence,
~jQ = (L22 − L21L−1

11 L12)(−∇T ) = κ(−∇T )

with thermal conductivity k

• Thermopower Q (Seebeck coefficient)
Electrical field induced by the thermal gradient (thermoelectric effect)

~E = −L−1
11 L12(−∇T ) = Q∇T

with Q = L−1
11 L12

• Peltier effect:
Imposed electric current is accompanied by thermal current

~jQ = π~jc

with π = L21L−1
11 . The Peltier coefficient π is related to the thermopower Q:

π = TQ

(Onsager relation)

Evaluation of Lαβ with the help of the linearized Boltzmann equation

−∂f
(0)

∂εk

(
εk − µ
T
∇T + e ~E

)
~vk = −δfk

τk

gives

δfk = −τk

(
−∂f

(0)

∂εk

)(
εk − µ
T
∇T + e ~E

)
~vk

from which follows for the currents(
~jic
~jiQ

)
= 2

∫
d~k

(2π)3

(
−e

εk − µ

)
~vikδfk

= 2

∫
d~k

(2π)3

(
−e

εk − µ

)
~vik~v

j
kτk

(
−∂f

(0)

∂εk

)(
−e, εk − µ

T

)(
Ej

−∇jT

)
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and thus for the linear response coefficients

(Lijαβ) = 2

∫
d~k

(2π)3

(
−∂f

(0)

∂εk

)
εkv

i
kv
j
k

(
e2 −e εk−µT

−e(εk − µ) (εk−µ)2

T

)

One finds the Onsager relation:
L21 = TL12

The expression simplifies for an isotropic system:

vikv
j
k → vikv

j
kδij →

1

3
~v2δij

and, hence, the matrix is diagonalized

Lijαβ = Lαβδij

with

(Lαβ) =

∫
dεν(ε)

(
−∂f

(0)

∂ε

)
τ(ε)

1

3
~ν2
ε

(
e2 −e εk−µT

−e(εk − µ) (εk−µ)2

T

)
where we used that for an isotropic system the relaxation time and the square of the
velocity ~v2 will only depend on the energy ε. This expression can be evaluated for small 7.1.20
T using the Sommerfeld expansion. We need the following expressions∫

dεg(ε)

(
−∂f
∂ε

)
(ε− µ) ∼= g′(µ)

∫
dε

(
−∂f
∂ε

)
(ε− µ)2 = g′(µ)

π2

3
(kBT )2

where we used that g(ε) ∼= g(µ) + g′(µ)(ε − µ). The first term vanishes because of
multiplication of a symmetric with an anti-symmetric term in the integral. Furthermore,
we need to know the following integral∫

dεg(ε)

(
−∂f
∂ε

)
(ε− µ)2 ∼= g(µ)

π2

3
(kBT )2

One obtains for low temperatures T → 0 (µ = εF ) with g(ε) = ν(ε)τ(ε)1
3 ~vε

2

(Lαβ)
∼=

(
e2g(εF ) −g′(εF )π

2

3 k
2
BT

−eg′(εF )π
2

3 (kBT )2 g(εF )π
2

3 k
2
BT

)

For the transport coefficients one obtains:
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thermal conductivity

κ = L22 − L21L
−1
11 L12 = L22 + σ(T 3) ∼= g(εF )

π2

3
k2
BT

comparing this with the electrical conductivity σ = e2g(εF ) one finds the the Wiedemann-
Franz law

κ

σT
=
π2

3

k2
B

e2

Thus, the ratio between thermal and electrical conductivity is predicted to be constant
and only to dependent on nature constants for low temperatures. It is equal to the
Lorenz number

L0 =
π2

3

k2
B

e2

The physical interpretation is that the typical excitation has charge |e| and energy kBT .
This leads to charge and heat transport. The Wiedemann-Franz law is exact for purely
elastic scattering. Inelastic processes might relax energy but not charge current, hence,
this law might be violated.

thermopower Q

Q = L−1
11 L12 =

π2

3

k2
BT

−e
g′(εF )

g(εF )
=
π2

3

k2
BT

−e
∂

∂ε
ln g(ε) |εF =

π2

3

k2
BT

−e
∂

∂ε
lnσ(ε) |εF

This is the so-called Mott formula with energy dependent conductivity σ(ε) = e2g(ε)
and its derivative (remember: g(ε) = ν(ε)τ(ε)1

3 ~vε
2)

σ′(εF ) =
∂

∂εF

(
e2τ(ε)ν(ε)

1

3
~v2
ε

)
εF

= e2τ ′(εF )ν(εF )
1

3
~v2
εF

+ e2τ(εF )
∂

∂εF
2

∫
d~k

(2π)3
δ(εF − εk)

1

3
~v2
k︸ ︷︷ ︸

=ν(εF ) 1
3
~v2εF

=
τ ′(εF )

τ(εF )
σ(εF ) + 2e2τ(εF )

∫
dk3

(2π)3

∂

∂εF
δ(εF − εk)~vε︸ ︷︷ ︸

=
(
− ∂
∂εk

δ(εF−εk)
)

1
~
∂εk
∂~k

=− 1
~
∂

∂~k
δ(εF−εk)

~vk
1

3

=
τ ′(εF )

τ(εF )
σ(εF ) + 2e2τ(εF )

∫
d~k

(2π)3
δ(εF − εk)

1

3~2

∂2εk

∂~k∂~k

The effective mass tensor ∂2εk
∂~k∂~k

does only act on the Fermi surface. If the energy de-

pendence of the relaxation time can be neglected τ ′(εF ) ≈ 0, then the sign of the
thermopower Q is determined by the sign of the effective mass averaged over the Fermi
surface.
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6 Beyond the independent electron approximation

In step I of the adiabatic approximation of chapter 2.1 one has to solve the eigenvalue
equation for electrons Hψ = Eψ with ψ = ψ(~r1σ1, ~r2σ2, ..., ~rNσN ) where ~ri and σi are
position and spin (σi =↑, ↓) of the i-th electron, respectively. The Hamiltonian reads

H =
∑
i

p2
i

2m︸ ︷︷ ︸
cinetic energy

−
∑
i,n

Ze2

|~ri − ~Rn|︸ ︷︷ ︸
ionic potential

+
∑
i<j

e2

|~ri − ~rj |︸ ︷︷ ︸
e-e interaction

+ spin-orbit coupling corrections

In chapter 4 the e-e interaction was neglected and the eigenvalue problem was treated
in the independent electron approximation.

6.1 Hartree-Fock approximation

For non-interacting electrons Hnon-int =
∑

iH0(~ri, σi) the many-particle wavefunction is
totally anti-symmetric and given by a slater determinant

ψslater(~r1σ1, ..., ~rNσN ) =
1√
N !

det


φ1(~r1σ1) φ2(~r1σ1) . . . φN (~r1σ1)

φ1(~r2σ2)
. . .

...
...

. . .
...

φ1(~rNσN ) . . . . . . φN (~rNσN )


where {φ1, φ2, ..., φN} is a set of N orthonormal one-electron eigenfunctions of H0. The
anti-symmetry of the wavefunction is required by the Pauli principle that demands

ψ(~r1σ1, ..., ~riσi, ..., ~rjσj , ..., ~rNσN ) = −ψ(~r1σ1, ..., ~rjσj , ..., ~riσi, ..., ~rNσN )

a sign change upon interchanging arguments.
Strategy: use ψslater as a variational Ansatz for the interacting problem by minimizing
the energy

E0 ≤ min
〈ψslater|H|ψslater〉
〈ψslater|ψslater〉

= EHF
0

This is the Hartree-Fock approximation, where EHF
0 is the ground state energy within

this HF approximation. The expectation value reads explicitly:

〈ψslater|H|ψslater〉
〈ψslater|ψslater〉

= 〈H〉slater

=

N∑
i=1

∑
σ=↑,↓

∫
d~rφ∗i (~r, σ)

(
p2

2m
+ Vion(~r)

)
φi(~r, σ)

+
1

2

N∑
i,i′

∑
σσ′

∫
d~rd~r′

e2

|~r − ~r′|
(|φi(~r, σ)|2|φi′(~r′σ′)|2 − δσσ′φ∗i (~rσ)φ∗i′(~r

′σ′)φi(~r
′σ′)φi′(~rσ))
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The energy is minimized under the condition of normalized single particle functions
〈φi|φj〉 = δij . So one considers the functional

F [φi] = 〈H〉slater −
∑
i

εi(〈φi|φi〉 − 1)

where εi are Lagrange multipliers. Minimization

δ

δφ∗i (~r, σ)
F [φ] = 0

yields the Hartree-Fock equations:(
−~2∇2

2m
Vion(~r)

)
φi(~r, σ)− e

∫
d~r′

%H(~r′)− %iσF
|~r − ~r′|

φi(~r, σ) = εiφi(~r, σ)

This is a modified Schrödinger equation for a single particle plus an additional non-linear
interaction potential term. 10.1.20
The Hartree density

%H(~r) = −e
∑
jσ′

|φj(~r, σ′)|2

gives rise to an effective Coulomb potential generated by the electron and is the so-called
direct term.
The Fock density

%Fiσ(~r, ~r′) = −e
∑
j

φ∗j (~r
′σ)φi(~r

′σ)φj(~rσ)

φi(~rσ)

arises from the indistinguishability of electrons and is also called the exchange term.
Now, the task is to solve the Hartree-Fock equations, which is difficult, because the
exchange term gives rise to an integral operator and the equation is strongly non-linear.
A numerical solution is practically impossible for solids and large molecules.
So, we need a further approximation: we replace %Fiσ by its average over i, which is
independent of the index i:

%Fiσ(~r, ~r′) ∼= %Fσ (~r, ~r′) =

∑
i φ
∗
i (rσ)φi(rσ)%Fiσ(r, r′)∑
i φ
∗
i (rσ)φi(rσ)

In this case one can find a solution by applying an iterative algorithm:

1. Find an Ansatz for φi(~rσ) (e.g. plane waves, Bloch functions,...)

2. Evaluate the potential Uσ(~r) = Vion(~r)− e
∫

d~r′ %
H(~r′)−%Fσ (~r,~r′)
|~r−~r′|

3. Solve the Schrödinger equation with potential Uσ(~r) and obtain the eigenfunctions
φi(~r, σ). Go back to 2.
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6.1.1 Hartree-Fock approximation for free electrons

Progress can be made by neglecting the periodic potential of the ions. More precisely:
we represent the ions by a uniform distribution of positive charge in order to maintain
charge neutrality.
For free electrons:

φi(~rσ) =
ei
~ki~r

√
V
× spin wavefunction

The Hartree density is then uniform and is exactly canceled by the uniform positive
charge density due to the ions. The Hartree-Fock equations then reduce to the following[

−~2∇2

2m
+ e

∫
d~r′

%Fiσ(~r, ~r′)

|~r − ~r′|

]
φi(~r, σ) = εiφi(~r, σ)

For plane waves

εi =
~2k2

i

2m
+ εex

i

where the exchange correction is given by

εex
i = −e2

∑
j

∫
d~r′

1

|~r − ~r′|
1

V
e−i

~kj~r
′+i~ki~r′+i~kj~r−i~ki~r

with the Fourier transformation

1

|~r − ~r′|
= 4π

1

V

∑
~q

1

q2
ei~q(~r−~r

′)

This gives

εex
i = −4πe2 1

V 2

∑
j

∑
q

1

q2

∫
d~r′ei(~q+

~kj−~ki)(~r−~r′)︸ ︷︷ ︸
=V δ

~q+~kj,
~ki

= −4πe2 1

V

∑
j

1

|~ki − ~kj |2

where we used that the integral can be substituted by a Dirac delta in the case of an
infinite volume V , thus we get a independence of ~r. The summation extends over all
occupied states: |kj | ≤ kF

εex(~k) = −4πe2

∫
|~k|≤kF

d~k′

(2π)3

1

|~k − ~k′|2

= − 4πe2

(2π)3

∫ kF

0
dk′k′22π

∫ 1

−1
d cos θ

1

k2 + k′2 − 2kk′ cos θ

= −e
2

π

∫ kF

0
dk′k′2 ln

(
k2 + k′2 − 2kk′

k2 + k′2 + 2kk′

)
1

(−2kk′)

= −2e2

π
kFF

(
k

kF

)
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where we defined the function

F (x) :=
1

2

∫ 1

0
dy

y

2x
ln

(
(x+ y)2

(x− y)2

)
=

1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣
Using this result one can calculate the total energy of the electron system in the Hartree-
Fock approximation

EHF = 2
∑
|~k|≤kF

(
~2k2

2m
+ εex(~k)

)
= 2V

∫ kF

0

dkk2

(2π)3
4π

(
~2k2

2m
+ εex(k)

)

with the Fermi energy

EF =
~2k2

F

2m

and the number of electrons

N = 2
∑
|~k|≤kF

=
k3
FV

3π2

we obtain the total energy of the electron system per number of electrons

EHF

N
=

3

5
EF −

3

4

e2kF
π

The first term is the a non-interacting term and the second the exchange correction.
This can also be expressed in terms of the Rydberg energy e2

2a = 1 Ry = 13.6 eV and the

Bohr radius a = ~2
me :

EHF

N
=
e2

2a

[
3

5
(kFa

2 − 3

2π
kFa

]
The Hartree-Fock correction is the leading correction in the high density limit, ie, in
the small parameter 1

kF a
which is dimensionless due to the introduction of the Rydberg

energy. One can show that the next-to-leading correction is of order ln(kFa), ie, the
energy per particle is given by

E

N
=
e2

2a

[
3

5
(kFa)2 − 3

2π
kFa+O(ln kFa)

]
The parameter 1

kF a
is also often discussed in terms of the rs radius of a sphere defined

by the volume 1
n

1

n
=
V

N
=

3π2

k3
F

=
4π

3
r3
s

Now, we can alternatively express the small parameter kFa by the radius

1

kFa
=

3

√
4

9π

rs
a
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6.2 Density functional theory (DFT)

For this theory the nobel prize in Chemistry was given to W.Kohn in 1998. It is based
on the Hohenberg-Kohn theorem (1964):
The grand state energy E0 of electrons in an arbitrary potential V (~r) is a functional of
the local particle density n(~r):

E0 = E0[n(~r)] = T [n(~r)]︸ ︷︷ ︸
kinetic energy

+

∫
d~rV (~r)n(~r)︸ ︷︷ ︸

potential energy

+ U [n(~r)]︸ ︷︷ ︸
interaction energy

where the functionals T and U are independent of the potential V .
Remarks

• idea of proof: E0 = E0[V (~r)] is a functional of the potential V . So, it is possible
to use Legendre transformation to show that E0[n(~r)]

• the functionals T and U are not known and likely to be highly non-local and
non-linear.

• the interaction energy possesses a long-range (non-local, can be seen by the integral
over r and r′) Hartree term

U [n(~r)] =
e2

2

∫
d~rd~r′

n(~r)n(~r′)

|~r − ~r′|︸ ︷︷ ︸
Hartree term

+Eex[n(~r)]︸ ︷︷ ︸
rest

14.1.20
Approximation of the kinetic term:

T [n(~r)] = 2

∫
d~r
∑
i

ϕ∗i (~r)

(
−~2∇2

2m

)
ϕi(~r)

where ϕi(~r) are complex systems but can be interpreted as hypothetical single-particle
wavefunctions.They have to obey

n(~r) =
∑
i,occ

|ϕi(~r)|2

Minimizing the energy functional E0 with the constraint∫
d~r|ϕi(~r)|2 = 1

for each i by introducing Lagrange multipliers εi then yields(
−~2∇2

2m
+ Veff(~r)

)
ϕi(~r) = εiϕi(~r)
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with effective potential

Veff(~r) = V (~r) +

∫
d~r′

e2n(~r′)

|~r − ~r′|
+
∂Eex[n(~r)]

δn(~r)

Those equations are called Kohn-Sham equations.
remarks

• the problem is reduced to solve an effective single-particle Schrödinger equation
self-consistently as functional Veff = Veff[n]

• the approximation allows to determine the groundstate energy E0 which is useful
to determine positions of atoms in molecules/ crystals by minimizing E0({Rn})
(step II of adiabatic approximation)

• strictly speaking: there is no direct physical meaning of εi and ϕi(~r). However
both are often interpreted as energies and wavefunctions of electrons

• Now, we also need an approximation for the exchange term Eex[n]

Local density approximation (LDA)

We neglect all non-local contributions and replace the functional with a function:

ELDA
ex [n(~r)] =

∫
d~rεex(n(~r))

so also the derivative reduces to

δELDA
ex

δn(~r)
=

∂εex

∂n(~r)

The function εex is often approximated by the free-electron expression:

ELDA
ex = −N 3

4

e2kF
π

= V εex

with exchange density

εex = −n3

4

e2kF
π

= − 3

4π
e2n(3π2n)

1
3

It follows
∂εex

∂n
= −e

2

π
(3π2n)

1
3

remarks:

• improvements to LDA by including also dependencies on gradients ∇b. This ap-
proximation is known as generalized gradient approximation (GGA)

• implementation of LDA etc. available in the form of (commercial) ready-to-use
software packages

• LDA fails sometimes completely if interactions are strong. Modern development,
combination with field theoretic methods (LDA+U, LDA+DMFT, etc.)
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6.3 Screening

In chapter 6.1 und 6.2 we have focused on an effective ionic potential modified by
electron-electron interaction. Now, consider a positively charged particle rigidly fixed at
a certain position. Mobile electrons get attracted creating surplus of negative charge in
its vicinity reducing its field. This effect is called screening. If %ext is the positive charge
density of the particle we have

−∇2φext = 3π%ext

which is the Poisson equation for the associated potential φext.
For the full potential

−∇2φ = 4π%

with
% = %ext + %ind

where %ind is the charge density induced in the electron gas. We define the dielectric
function ε

φext(~r) =

∫
d~r′ε(~r, ~r′)φ(~r′)

For a translationary invariant system (for simplicity) is is only dependent on the space
difference

ε(~r, ~r′) = ε(~r − ~r′)

With the Fourier transform

ε(~q) =

∫
dV re−i~q~rε(~r)

we finally get

φ(~q) =
1

ε(~q)
φext(~q)

How does the induced charge density %ind depend on φ? For weak φ we expect a linear
relation.
Definition:

%ind(~q) := χ0(~q)φ(~q)

with suszeptibility χ0. We relate ε and χ via the Poisson equations

φ(~q) =
4π%(~q)

4π2
=

4π%ext(~q)

q2
+

4πχ0(~q)φ(~q)

q2
= φext(~q) +

4πχ0(~q)φ(~q)

q2

This gives

ε(~q) = 1− 4π

q2
χ0(~q)

For the evaluation of χ0 and ε one needs to employ approximations.
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6.3.1 Thomas-Fermi theory of screening

We consider the Schrödinger equation of free electrons in the Hartree approximation(
−~2∇2

2m
− eφ(~r)

)
ψi = εiψi

where the potential φ(~r) is due to positive charge and induced by rearrangement in the
electron system.The potential modifies locally the chemical potential µ. For a function
φ(~r) that is slowly varying on the scale of inverse Fermi wavevector 1

kF
, one can employ

the semi-classical approximation and define a local density of electrons

n(~r) = n(µ+ eφ(~r)

This leads to a locally induced charge density

%ind(~r) = −e(n(~r)− n0) = −e(n(µ+ eφ(~r))− n(µ)) = −e2∂n0

∂µ
φ(~r) +O(φ2)

From which follows

χ0(~q) = −e2∂n

∂µ

which is independent of ~q that gives ε(~q) in the Thomas-Fermi approximation

ε(~q) = 1 +
k2

TF

q2

with the Thomas-Fermi wavevector

k2
TF = 4πe2∂n0

∂µ

From the expression for the density

n0 = 2

∫
d~k

(2π)3
f(εk − µ) =

∫
dεν(ε)f(ε− µ)

follows for low temperatures T � TF .

∂n0

∂µ
=

∫
dεν(ε)(−f ′(ε− µ)) ∼= ν(εF )

where ν(εF ) is the density of states of the Fermi level. For free electrons

εk =
~2k2

2m
, ν(εF ) =

mkF
~2π2

we get

k2
TF = 4πe2mkF

~2π2
=

4

T

kF
a
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with Bohr radius a = ~2
me2

. Usually for metals kFa ∼ O(1), hence, kTF ∼ kF and
1
kF
∼ O(1 Å).

Illustration of the significance of kTF: Consider a point charge

φext(~r) =
Q

|~r|
⇒ φext(~q) =

4πQ

q2

The total potential is given by

φ(~q) =
1

ε(~q)
φext(~q) =

4πQ

q2 + k2
TF

In real space we get the screened Coulomb potential

φ(~r) =

∫
d~q

(2π)3
ei~q~rφ(~q) =

Q

|~r|
e−kTF|~r|

that decays exponentially on the length scale of the inverse Thomas-Fermi wavevectors
1
ktF

. Hence, electrons are highly effective in screening the external charge! 17.1.20
21.1.20

ω2
ion(q) =

Ω2
p

εel

with ionic plasma frequency Ω2
p = Zm

M ω2
p. With the Thomas Fermi result εel(~q) = 1+

k2TF
q2

one obtains

ω2
ion(~q)2 =

Ω2
p

q2 + k2
TF

q2 |~q|→0
≈

Ω2
p

k2
TF

q2

with the sound velocity e2 =
Ω2
p

k2TF
. Using the free electron

k2
TF = 4πe2mkF

π2~2

we get

c2 =
Zm

M

ω2
p

k2
TF

=
Zm

M

4πn0e
2

m

π2~2

4πe2mkF
=
Zm

M

n0

m

π2~2

mkF

We can simplify this further by using the electron density n0 =
k3F
3π2 and the Fermi

velocity vF = ~kF
m :

c2 =
1

3

Zm

M
v2
F

this is the so-called Bohm-Staver relation. This predicts in particular c
vF
∼
√

m
M ∼

1
100

in agreement with values observed in many materials (note that c
vF
∼ θD

TF
).

Using the Lindhord result for εel(~q) the above considerations also predict (weak) singu-
larities at |~q| = 2kF in the phonon spectrum. These are known as Vohn anomalies. Thus,
the positions of Kohn anomalies reflect the geometry of the Fermi surface (obtained eg.
from de Haas-van-Alphen oscillations).
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6.4 6.5. Dieletric function of a metal and effective electron-electron
interaction

In a metal screening occurs by all charged particles, electrons and ions. Consider now an
additional ionic source for screening. An external potential φext induces a total potential
φ via the dielectric function:

εφ = φext

The total potential consists of:

φ = φext + φion + φel

with the potential due to the positively charged ions, φion, and the negatively charged
electrons, φel. We can define a dielectric function describing the response of the electronic
and ionic subsystem alone, εel and εion, respectively.
The electronic system responds to the sum of potentials

φext + φion

so that
εelφ = εext + φion.

The ionic system responds to φext + φel:

εionφ = φext + φel

Summing the two equations:

(εel + εion)φ = φext + (φext + φion + φel)︸ ︷︷ ︸
=φ

So we obtain
ε = εel + εion − 1

We use the simplest expression for εel and εion:

• treat the electrons in the Thomas-Fermi approximation

εel(~q) = 1 +
k2

TF

q2

• treat the ions as a gas of charged particles:

εion(ω) = 1−
Ω2
p

ω2

with the Plasma frequency Ω2
p = 4πnion(Ze)2

M (see chap. 5)

The frequency and momentum are dependent on the dielectric function

ε(~q, ω) = 1 +
k2

TF

q2
−

Ω2
p

ω2
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Alternative interpretation

The potential after screening by the electrons is given by

φel, screend =
1

εel
φext

the full potential is then obtained when φel, screened is in addition shielded by the ions
which are themselves screened i.e. dressed by the electrons

φ =
1

εion
dressed

φel, screend =
1

εion
dressed

1

εel
φext

"
el

+
+

+
+

+ +

"
ion

+

+

+

"
ion
dressed

Figure 53: Ions dressed by electrons

Identification with ε yields 1
ε = 1

εiondressed

1
ε el gives

εion
dressed =

ε

εel
= 1 +

εion − 1

εel

Finally we obtain

εion
dressed(~q, ω) = 1−

Ω2
p

εel(~q)

ω2
= 1− ω2

ion(~q)

ω2

The screening has consequences for the effective electron-electron interaction. The bare
electrons interact via the Coulomb potential in momentum space

V (~q) =
4πe2

q2

The screening by electrons and ions yields the effective interaction

Veff(~q, ω) =
4πe2

q2ε(~q, ω)
=

4πe2

q2 + k2
TF︸ ︷︷ ︸

screened by el.

· 1

1− ω2
ion(~q)

ω2︸ ︷︷ ︸
add. screened by dr. ions
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Figure 54: Exchange of energy ~ω and momentum ~q

Remarks:

• phonon frequencies are bounded by the Debye frequency: ωion(~q) . ωD. The
interaction possesses a substantial ω-dependence only for frequencies ω . ωD. As
the Fermi energy EF � ~ωD only electrons close to the Fermi energy are affected.

• for small energy transfer the effective interaction for ωion(~q)
ω > 1 changes sign and

becomes attractive (overscreening)! This is important for the theory of supercon-
ductivity.

• rigorous theory for the effective interaction Veff requires advanced field theoretical
methods.

6.5 Cooper instability

Due to overscreening by phonons the interaction between electrons becomes attractive.
Do electrons form bound pairs? Consider the scattering of two electrons with a constant
attractive interaction

Veff(~q, ω) = −g

with g > 0. It is characterized by the scattering T -matrix which is obtained by summing
up repeated scattering events.

q

2
; "

2

−

q

2
; "

2

T (")

q

2
; "

2

−

q

2
; "

2

Figure 55: We consider two electrons with opposite sign configurations, vanishing total
momentum and total energy ε measured with respect to εF

. The energy-dependent T-matrix is given by the summation of repeated scattering 24.1.20
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events:

T

T

+ + +:::

=

=

+

−g −g −g

single double

Figure 56: Summation of repeated scattering events

From scattering theory follows

T (ε) = −g + (−g)
1

ν

∑
q

T (ε)

ε− (ξ q
2

+ ξ− q
2

((1− f q
2
)(1− f−q

2
)− f q

2
f−q

2
)

Here, ε is the energy of the intermediate state, ξ q
2

+ ξ− q
2

is the dispersion. The interme-

diate state needs to be unoccupied in case of particles ((1− f q
2
)(1− f−q

2
)) and the last

term is needed in case of holes. For ξ−k = ξk we get

T (ε) = (−g) + (−g)T (ε)
1

ν

∑
q

1− 2f q
2

ε− 2ξ q
2

In the absence of a Fermi sea:

• The problem reduces to a two-particle scattering problem that can be solved by
elementary methods

• effective single-particle problem for wavefunction dependent on relative coordinate

• The T-matrix is obtained by setting f q
2

= 0, no other particles are present and
EF = 0

T (ε) = (−g) + (−g)T (ε)

∫
d~q

(2π)3

1

ε− 2ξ q
2︸ ︷︷ ︸

∝
√
ε

The approximation is valid for quadratic dispersion

• in order to obtain a bound state the attractive interaction must be sufficiently
strong
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However in the presence of a Fermi sea

T (ε) = (−g) + (−g)T (ε)ν

∫
dξ

1

ε− 2ξ
(1− 2f(ξ))︸ ︷︷ ︸
=sgnξ at T=0

= (−g) + (−g)T (ε)ν

∫ ~ωD

−~ωD

sgnξ

ε− 2ξ︸ ︷︷ ︸
∼=− ln

2~ωD
ε

for ε�~ωD

It follows that

T (ε) =
−g

1 + (−gν) ln 2~ωD
ε

possesses a bound state ie. a pole at

1− gr ln
2~ωD
ε

= 0

Thus,

ε = 2~ωD exp

(
− 1

gν

)
Remarks:

• the bound state energy is non-perturbative in gr and present even for infinitesimal
attractive interaction!

• in the presence of a Fermi sea electrons form a bound state and lower the total
energy. Hence, the Fermi sea becomes unstable: Cooper instability

7 Superconductivity

The cooper instability indicated that the Fermi sea in the presence of an attractive e-e
interaction is unstable with respect to the formation of bound e-e pairs. The resulting
state is a so-called superconductor characterized by perfect conductivity and perfect
diamagnetism (Meissner effect).

7.1 BCS theory of superconductivity

J. Bordeen, L. Cooper and R. Schrieffer (BCS) proposed 1957 a theory of superconduc-
tivity (nobel prize 1972).
Consider the BCS Hamiltonian

HBCS =
∑
kσ

ξkc
†
kσckσ − g

1

V

∑
kk′

c†k↑c
†
−k↓c−k′↓ck′↑
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It is implicitly assumed that the attractive interaction g > 0 is only active for electron
energies ξk = εk − µ within an energy shell |ξk| . ~ωD.
The formation of bound states is reflected in finite expectation values

〈c†k↑c
†
−k↓〉 6= 0

and
〈c−k′↓ck′↑〉 6= 0

In order to find a mean-field description of the superconducting state, a mean-field
decoupling of the interaction according to

AB = (A− 〈A〉)(B − 〈B〉)︸ ︷︷ ︸
fluctuations are neglected

+ 〈A〉B +A 〈B〉 − 〈A〉 〈B〉
MF
≈ 〈A〉B +A 〈B〉 − 〈A〉 〈B〉

This yields the mean-field BCS Hamiltonian

HMF
BCS =

∑
k,σ

ξkc
†
kσckσ−

g

ν

∑
kk′

(〈c†k↑c
†
k↓〉 c−k′↓ck′↑+c

†
k↑c
†
−k↓ 〈c−k′↓ck′↑〉−〈c

†
k↑c
†
−k↓〉 〈c−k′↓ck′↑〉)

Introducing the abbreviation for |ξk| . ~ωD

∆ =
g

ν

∑
k

〈c−k↓ck↑〉

and
∆∗ =

g

ν

∑
k

〈c†k↑c
†
−k↓〉

we finally get

HMF
BCS =

∑
kσ

ξkc
†
kσckσ −

∑
k

(∆∗c−k↓ck↑ + c†k↑c
†
−k↓∆) + ν

|∆2|
g

It is convenient to introduce the two-component Nambu spinor operators

~ψk =

(
ck↑
c†−k↓

)
, ~ψ†k =

(
c†k↑ c−k↓

)
Using that c†k↓ck↓ = 1− ck↓c†k↓ we can rewrite

HMF
BCS =

∑
k

~ψ†khk
~ψk +

∑
k

ξk + ν
|∆|2

g

with the matrix

hk =

(
ξk −∆
−∆∗ −ξ−k

)
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where we will assume ξ−k = ξk in the following. The eigenvalues of hk come in pairs

±Ek with Ek =
√
ξ2
k + |∆|2 due to the particle-hole symmetry

τyh∗kτ
y = −hk

with

τy =

(
0 −i
i 0

)
The eigenvectors can be chosen to be of the form

hk

(
uk
vk

)
= Ek

(
uk
vk

)
and

hk

(
−v∗k
u∗k

)
= −Ek

(
−v∗k
u∗k

)
In order to diagonalize the Hamiltonian we perform a Bololinbor transformation and
introduce new fermionic operators akσ

~ψk = Uk

(
ak↑
a†−k↓

)

with

Uk =

(
uk −v∗k
vk u∗k

)
or explicitely

ck↑ = ukak↑ − v∗ka
†
−k↓

c†−k↓ = vkak↑ + u∗ka
†
−k↓

For the fermionic anticommutation relations follows

{ck↑, c†k↑} = |uk|2 {ak↑, a†k↑}︸ ︷︷ ︸
=1

+|vk|2 {a†−k↓, a−k↓}︸ ︷︷ ︸
=1

= |uk|2 + |v2
k| = 1

and analogue
{ck↑, c−k↓} = ... = ukv

∗
k − v∗kuk = 0

which is equivalent to
UkU

†
k = Uk † Uk = 1

, ie. the matrix Uk is unitary. As the matrix Uk is unitary this yields the conditions 28.1.20

|uk|2 + |vk|2 = 1 nkv
∗
k − v∗kuk = 0
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An explicit calculation yields for the coefficients:

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, |vk|2 =

1

2

(
1− ξ

Ek

)
and

ukv
∗
k = − ∆

2Ek

For the Hamiltonian we obtain

HMF
BCS =

∑
k

(
a†k↑ a−k↓

)(Ek 0
0 −Ek

)(
ak↑
a†−k↓

)
+
∑
k

ξk + V
|∆|2

g
=
∑
kσ

Eka
†
kσakσ + ε0V

where we used E−k = Ek. The ground state energy density is obtained as

ε0 =
1

V

∑
k

(ξk − Ek) +
|∆|2

g

=

∫
d~k

(2π)3
(ξk −

√
|∆|2 + ξ2

k +
|∆|2

g

∼= ν

∫ ~ωD

−~ωD
dξ(ξ −

√
|∆|2 + ξ2) +

|∆|2

g

= −ν
[

1

2

√
|∆|2 + ξ2 +

|∆|2

2
ln(ξ +

√
|∆|2 + ξ2

]√
−~ωD

~ωD
+
|∆|2

g

= −ν~ωD
√
|∆|2 + (~ωD)2 − ν |∆|

2

2
ln

(
~ωD +

√
|∆|2 + (~ωD)2

−~ωD +
√
|∆|2 + (~ωD)2

)
+
|∆|2

g

in the limit |∆|2 � ~ωD using

√
|∆|2 + (~ωD)2 ≈ ~ωD

(
1 +

1

2

|∆|2

(~ωD)2

)
it follows

ε0
∼= const. − ν |∆|

2

2
− ν|∆|2 ln

2~ωD
|∆|

+
|∆|2

g

Minimizing the ground state energy with respect to |∆|:

∂ε0

∂|∆|
= −ν|∆| − 2ν|∆| ln 2~ωD

|∆|
+ ν|∆|+ 2|∆|

g

!
= 0

trivial solution: |∆| = 0 with energy ε0 = const = ε0(|∆| = 0)
non-trivial solution: ∆ 6= 0:

−ν ln
2~ωD
|∆|

+
1

g
= 0
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Thus

|∆| = 2~ωDe−
1
gν

possesses the lower energy

ε0 = ε0(|∆| = 0)− ν

2
(2~ωD)2e

− 2
gν

So, if we have an attractive interaction, the supra state is energetic preferable.

7.1.1 BCS groundstate wavefunction

The Bogolinbov annihilation operator akσ acting on the BCS groundstate wavefunction
|BCS〉 gives:

akσ |BCS〉 = 0 ∀ k, σ
where the transformation

ak↑ = u∗kck↑ + v∗kc
†
−k↓, a−k↓ = u∗kc−k↓ − v∗kc

†
k↑

relates akσ to the original creation/annihilation operators. This can be solved with an
Ansatz involving the superposition of states with different number of particles

|BCS〉 =
∏
k

(uk − vkc†k↑c
†
−k↓) |0〉

where the product runs over wavevectors within a finite shell close to |~k| ≈ kF .
The equation akσ |BCS〉 = 0 follows from certain terms of the product yielding:

ak↑(uk − vkc†k↑c
†
−k↓) |0〉 = (u∗kck↑ + v∗kc

†
−k↓)(uk − vkc

†
k↑c
†
−k↓) |0〉

= (|uk|2ck↑ + v∗kukc
†
−k↓ − u

∗
kvk ck↑c

†
k↑︸ ︷︷ ︸

=1−c†k↑ck↑

c†−k↓ − |vk|
2c†−k↓c

†
k↑c
†
−k↓) |0〉

= (v∗kukc
†
−k↓ − u

∗
kvkc

†
−k↓) |0〉 = 0

Where we used that all annihilation operators ck↑ acting on the groundstate |0〉 vanish
and the result is 0 because of the unitarity condition. We get as well in a similar way

a−k↓(uk − vkc†k↑c
†
−k↓) |0〉 = . . . = 0

7.1.2 Gap equation at finite temperature

The gap is defined as (with condition |ξk| ≤ ~ωD

∆ :=
g

V

∑
k

〈c−k↓ck↑〉 =
g

V

∑
k

〈(v∗ka
†
k↑ + uka−k↓)(ukaK↑ − v∗ka

†
−k↓)〉

=
g

V

∑
k

[ukv
∗
k 〈a

†
k↑ak↑〉 − ukv

∗
k 〈a−k↓a

†
−k↓〉 − v

∗2
k 〈a

†
k↑a
†
−k↓〉︸ ︷︷ ︸

=0

+u2
k 〈a−k↓ak↑〉︸ ︷︷ ︸

=0

]

101



When the expectation values are evaluated with respect to HMF
BCS this simplifies to

∆ =
g

V

∑
k

ukv
∗
k(〈a

†
k↑ak↑〉 − 1 + 〈a†−k↓a−k↓〉)

Under the assumption of symmetry we get

∆ =
g

V

∑
k

ukv
∗
k(2f(Ek)− 1)

with the Fermi function

f(x) =
1

e
x

kBT + 1

and

Ek =
√
|∆|2 + ξ2

k

Using that ukv
∗
k = − ∆

2Ek
this simplifies for |∆| 6= 0 to

1 =
g

V

∑
k

1− 2f(Ek)

2Ek
|ξk| ≤ ~ωD

At zero temperature T = 0 this just recovers

|∆| = 2~ωDe−
1
gν

At finite T we obtain

1 = gν

∫ ~ωD

−~ωD
dξ

tanh

(√
ξ2+|∆|2
2kBT

)
2
√
ξ2 + |∆|2

T

j∆(T )j

j∆(O)j

T2

Figure 57: Temperature dependence of the gap ∆(T )
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This yields the temperature dependence of the gap ∆(T ). Above the critical temperature
T ≥ Tc, the gap vanishes ∆ = 0 and the normal conductore is recovered. To determine
Tc we take the limit |∆| → 0+:

1 = gν

∫ ~ωD

−~ωD
dξ

tanh |ξ|
2kBTc

2|ξ|
= gν

∫ ~ωD

0
dξ

tanh ξ
2kBTc

ξ

x= ξ
kBTc= gν

∫ ~ωD
kBTc

0
dx

tanh x
2

x

In order to obtain the asymptotic behavior for ~ωD
kBTc

� 1 we integrate by parts

1 = gν
[
lnx tanh

x

2

] ~ωD
kBTc

0
− gV

∫ ~ωD
kBTc

0
dx lnx

(
tanh

x

2

)
~ωD�kBTc≈ gν

[
ln

~ωD
kBTc

−
(
−γ + ln

π

2

)]
with the Euler’s constant γ ∼= 0.0577. This yields

kBTc =
2eγ

π
~ωDe−

1
gν

Comparing this with the gap at T = 0, ∆(0) = 2~ωDe−
1
gν gives

2∆(0)

kBTc
=

2π

eγ
≈ 3.528

This result is well-obeyed by simple BCS superconductors. 31.1.20

7.1.3 Heat capacity of BCS superconductors

The heat capacity is given by

CV = 2
∑
k

Ek
∂f(Ek)

∂T

with energy

Ek =
√
ξ2
k + |∆|2

where ξk = εk − µ.

103



T

CV

∆CV
∼ exp( ∆

kBT
)

αT + βT 3

(normal metal)

super conductor

Figure 58: Temperature dependence of the heat capacity CV

∆CV
CV (TC)

=
12

7ρ(3)
≈ 1.43

7.1.4 Isotope effect (1950)

TC
√
M = const.

Thus

TC ∝
1√
M

and

ωD ∝
1√
M

So
TC ∼ ∆ ∼ ~ωD

7.1.5 Density of states of superconductors

ωtot =
1

V

∑
k

(δ(ε− Ek) + δ(ε+ Ek))

=

∫
d3k

(2π)3
(δ(ε−

√
|∆|2 + (ε− µ)2) + δ(ε+

√
|∆|2 + (ε− µ)2)

Now, we perform a substitution with ξ = (εk − µ) and dξ = ∂kεkdk and introduce

v =
4πk2F

(2π)3∂kεk|kF

ωtot ≈ v
∫ ξ≈~ωD

−ξ0
(δ(ε−

√
|∆|2 + ξ2) + δ(ε+

√
|∆|2 + ξ2))dξ

= 2v

∫ ε0

0
(δ(ε−

√
|∆|2 + ξ2) + δ(ε+

√
|∆|2 + ξ2)))dξ
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Using another substitution of the form ε′ =
√
|∆|2 + ξ2 ⇒ ε′ > |∆| and ξ =

√
ε′2 − |∆|2 ⇒

dξ = ε′dε′√
ε′2−|∆|2

we get

ωtot = 2v

∫
|
∆|ε0(δ(ε− ε′) + δ(ε+ ε′))

ε′dε′√
ε′2 − |∆|2

= 2v

(
ε√

ε2 − |∆|2
θ(ε− |∆|)θ(ε0 − ε) +

−ε√
ε2 + |∆|2

θ(−ε+ |∆|)θ(ε0 + ε)

)

= 2v
|ε|√

ε2 − |∆|2
θ(ε2 − |∆|2)

2v

!tot(")

"
"0

−j∆j 0 j∆j

Figure 59: Density of states of superconductors

7.2 Ginzburg-Landau-Theory

L =
1

2m∗
|(−i∇− e∗ ~A)∆|2 + r|∆|2 +

u

2
|∆|4 +

(∇× ~A)2

2µ0

for |T − Tc| � Tc, ∆ ∈ C, e∗ = 2e, u > 0, r ∝ T − Tc, ~A = 0 and the potential

U = r|∆|2 +
U

2
|∆|4

with |∆∞| = − r
u and V∞ = − r2

2u .
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0

U

Re(∆)
0

r < 0

r > 0

j∆1j

jV1j

Figure 60: Ginzburg-Landau potential

The corresponding action is given by

S =

∫
dtd
√
sL

and
∂S

∂∆∗
=
∂S

∂∆
= 0

Therefore, we have (∆ = ∆(r))

r∆− ∇
2

2m∗
∆ + u|∆|2∆ = 0.

And obtain for the wave function ψ(~r) = ∂(~r)
∂∞

:

−ψ − ξ2∇2ψ + |ψ|2ψ = 0

with the Ginzburg-Landau coherence length

ξ2 =
1

2m∗|∆|

and

ξ(T ) ∼ 1√
Tc − T

.

The Lagrangian has U(1) symmetry for ∆→ ∆eiθ and

~J = e∗
(
−i 1

2m∗
(∆∗∇∆−∆∇∆∗)− e∗

m∗
|∆|2 ~A

)
is the conserved Noether current for this symmetry where the conserved Noether charge
is the total number of Cooper pairs. Comparing this with Amperes law

~J =
1

4π
∇× ~B =

1

4π
∇× (∇× ~A)
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this gives the same as above with an alternative derivation where ~A is found with ∂S
∂ ~A

= 0.

~J = − e∗

m∗
ns ~A, ns = |∆|2

with concentration of Cooper pairs ns.
∂t..., ~E = −∂ ~A leads to

∂t ~J =
e∗

m∗
ns ~E

the 1. Londons equation (1935)
and ∇× ..., ~B = ∇× ~A to

~B = − m∗

nse∗2
∇× ~J

the 2. Londons equation (1935).
Drude model

d(m~v)

dt
= e ~E − m~v

τ

and τ →∞ for a perfect conductor. ~j = en~v hence

∂t~j =
e2

m
n~E

With ∇× ~H = ~j:

∇× (∇× ~A) = −∇2 ~H = ∇×~j 2.
= −nse

2∗

m∗
µ0
~H

or short

∇2 ~H =
1

λ2
~H

with London penetration depth

λ =

√
m∗

nse∗2µ0

λ

∆ = 0 j∆j > 0

Figure 61: London penetration depth
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SC

T < TC
T > TC

~H

Figure 62: Magnetic field in super conductor at above and below the critical temperature

We get the energy of the magnetic field that is pushed out

εH = V
1

2
µ0H

2

and the energy gain of the superconducting state

ε∆ = −r(T )2

2u
V

with εH + ε∆ = 0 4.2.20

Hc(T )

H

T

∆ 6= 0

Meissner phase normal metal

Figure 63: Type 1 superconductor

7.3 Type II superconductors

Consider the limit of large fields H. How does the superconductor order nucleate upon
decreasing H? The Euler Lagrange equation in this rescaled form (for r < 0) is

−ψ + ξ2(−i∇− e∗ ~A)2ψ + |ψ|2ψ = 0

For small values of ψ the last term can be neglected. Choose ~A = B×

0
1
0

→ ~B = Bẑ.

The magnetic field is along the z axis. Hence,
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−i∇− e∗B ×
0

1
0

2

=
1

ξ2
ψ

(−∇2 + 2ie∗Bx∂y + e∗2B2x2)ψ =
1

ξ2
ψ

We choose the following ansatz:

ψ(~r) = eikyy+ikzzf(x)

and insert it

(−∂2
x + k2

y + k2
z − 2e∗Bxky + e∗2B2x2)f(x) =

1

ξ2
f(x)

We can rescale this with x0 =
ky
e∗B and by multiplying by 1

2m∗

− 1

2m∗
f ′′(x) +

m∗ω2
c

2
(x− x0)2f(x) =

1

2m∗

(
1

ξ2
− k2

z

)
f(x)

with the cyclotron frequency ωc = e∗B
m∗ . This Schrödinger equation describes a particle

in a harmonic oscillator potential. We get an energy equation(
n+

1

2

)
ωc

!
=

1

2m∗

(
1

ξ2
− k2

z

)
for the harmonic oscillator quantum number n = 0, 1, 2, .... Especially, this yields

B(n, kh) =

1
ξ2
− k2

z

2e∗
(
n+ 1

2

)
The field is maximal for kz = 0 and the ground state n = 0: µ0Hc2 = B(0, 0). We get
the critical field for a non-trivial solution f(x) 6= 0:

Hc2 =
1

µ0e∗
1

ξ2

Comparison with Hc =
√

r2

2u
2
µ0

(ξ = 1√
2m∗|r|

):

Hc2

Hc
=

1√
r2

uµ0
µ0e∗ξ2

=

√
2m∗|r|
r2

uµ0
µ2

0e
∗2

1

ξ
=
√

2

√
m∗

msµ0e∗2
1

ξ

With the penetration depth λ we get the following result

Hc2

Hc
=
√

2
λ

ξ
≡
√

2κ

with κ = λ
ξ .
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• for Hc2 < Hc ⇔ κ < 1√
2

a Meissner phase with a finite ∆ appears at Hc: type 1

superconductor (and homogenous)

• for Hc2 > Hc ⇔ κ > 1√
2

superconducting order nucleates locally. Especially,

looking at the harmonic oscillator wavefunction for n = 0, kz = 0:

ψ(x, y) = eikyye
− (x−x0)

2

2ξ2

→ Shubnikov phase!

• By closer inspection one finds that the magnetic flux penetrates the superconductor
in the form of vortices each carrying a flux quantum φ = hc

e∗ . The repulsion of those
vortices leads to the Abrikosov vortex lattice (1957).

Hc(T )

H

T

Meissner phase

normal metal

Hc2(T )

Shubnikov phase

Figure 64: Phase diagram of a type II superconductor

7.4 Josephson effect

We consider a junction between two superconductors

x

barrier with

∆ = 0

∆1 ∆2

Figure 65: Two superconductors separated by a barrier
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The Josephson effect predicts that there is a supercurrent across the junction that obeys

Is = Ic sin ∆φ

d∆φ

dt
=

2e

~
V

Josephson (1962), nobel prize 1973

where ∆ϕ = ϕ2 − ϕ1 is the phase difference of the order parameters ∆1,2 = |∆|eiφ1,2 .
The critical current Ic is the maximal current that the junction can support.
In the absence of a voltage V = 0 and for a finite ∆ϕ there is a finite supercurrent Is
flowing across the junction. This is the so-called dc Josephson effect.
For a finite voltage V 6= 0 there is an oscillating supercurrent with frequency ω = 2eV

~ .
The energy ~ω = 2eV equals the energy change of a Cooper pair with charge e∗ = 2e
transferred across the junction → ac Josephson effect.

7.4.1 The Josephson cricital current for a short metallic link

Consider a short link between two superconductors of length L� ξ that can be described
by the Ginzburg-Landau equation

−ψ − ξ2∂2
xψ + |ψ|2ψ = 0

x

∆1 ∆2

0 L

j j

Figure 66: Short link between two superconductors

The two superconductors impose the boundary conditions

ψ(x = 0) = eiϕ1 and ψ(x = L) = eiϕ2

with |∆1| = |∆2|. For a short link L � ξ the GL equation for ψ is dominated in the
range of 0 ≤ x ≤ L by the gradient term:

ξ2∂2
xψ ≈ 0

with the general solution ψ(x) = a + bx. The coefficients a and b are fixed by the
boundary condition

ψ(x) =
(

1− x

L

)
eiϕ1 +

x

L
eiϕ2
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for 0 < x < L. The first term corresponds to the spread from ∆1 and vice versa.
Assuming a constant amplitude he wavefunction yields for the current (with ∆(x) =
|∆|ψ(x))

J = −i 2e~
2m∗

(∆∗∂x∆−∆∂x∆∗)

=
2e~
2m∗
|∆|2

((
−i
(

1− x

L

)
e−iϕ1 +

x

L
e−iϕ2

)(
− 1

L
eiϕ1 +

1

L
eiϕ2

)
+ h.c.

)
=

2e~
2m∗
|∆|2

(
−i
((

1− x

L

) 1

L
e−iϕ1+iϕ2 − x

L2
e−iϕ2+iϕ1

)
+ c.c.

)
=

2e~
2m∗
|∆|2

((
1− x

L

) 1

L
+

x

L2

)
2 sin ∆ϕ

=
2e~
m∗
|∆|2 1

L
sin ∆ϕ

with ∆ϕ = ϕ2 − ϕ1. The non-mixing terms vanish by usage of the complex conjugated
terms.
For a link with cross-sectional area A within the yz plane one obtains a current of the
following form

Is = Ic sin ∆ϕ with Ic =
2e~
m∗
|∆|2A

L
7.2.20

7.5 Andreev reflections

Derive Joesphson relations microscopically by solving inhomogeneous wave equation for
the Nambu spinor. The solutions will involve the concept of Andreev reflections.
Consider the one-dimensional wave equation for ~ψ = (ck↑c

†
−k↓)

T :

i∂t ~ψ =

(
ξ−i∂x −∆(x)
−∆†(x) −ξ−i∂x

)
~ψ

with ξ~k = εk − µ so that ξkF = 0.
Introduce right- and left-moving fields

~ψ(x, t) = eikF x ~ψ+(x, t) + e−ikF x ~ψ−(x, t)

where ~ψ±(x, t) depend only weakly on x:

ξ−i∂x → ξ±kF−i∂x
∼= ±vF (−i∂x)

with Fermi velocity vF > 0. This yields the effective wave equation after Fourier trans-
form (∆(x) = ∆): (

−ω + σvFk −∆
−∆† −ω − σvFk

)
~ψσ(k, ω) = 0

for σ = 1 for right-movers and σ = −1 for left -movers.
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I. Normal metal ∆ = 0

eigenfunctions ~ψσ(k, ω) = (1, 0)T with ω = σvFk

−kF kF

!

Figure 67: particle-branch

~ψσ(k, ω) = (0, 1)T with ω = −σvFk

−kF kF

!

Figure 68: hole-branch

eigenfunctions ~ψσ(k, ω) = (1, 0)T with ω = σvFk
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! = −vFk

! = −vFk

! = vFk

! = vFk

−kF +kF

hole-branch

particle branch

left-movers right-movers

Figure 69: Both branches for left- and right-movers

II Superconductor |∆| 6= 0

For energies larger than the gap |ω| ≥ |∆|:

~ψσ(k, ω) =

(
ω + σvFk
−∆∗

)
with ω =

√
(vfk)2 + |∆|2

and

~ψσ(k, ω) =

(
−∆

ω − σvFk

)
with ω = −

√
(vfk)2 + |∆|2

−kF +kF

!

j∆j

−j∆j

Figure 70: Superconductor
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For energies smaller than the gap |ω| < |∆| there exists no propagating solutions but only
solutions with imaginary wavevector k = iκ. Thus, eikx = e−κx wavefunctions decay or
grow exponentially for κ ≶ 0. Eigenvalues are then given by ω = ±

√
|∆|2 − (vFκ)2 with

(vFκ)2 ≤ |∆|2.

7.6 Normal metal-superconductor interface

Consider an interface between a normal metal, ∆ = 0 ,and a superconductor |∆| > 0
that we model with a step function

∆(x) =

{
0 x < 0

∆ x > 0

Consider a wavefunction for energies 0 < ω < |∆|. General Ansatz for right-moving field
~ψ+:

For x < 0 with ω = vFk and k > 0:

~ψ+(x, ω) = a

(
1
0

)
eikx + b

(
0
1

)
e−ikx

We consider only backscattering processes with changes of momenta |∆k| = |2k| � 2kF
ie. right- and left-moving fields do not mix.
For x > 0 with ω =

√
|∆|2 − (vFκ)2 with κ > 0

~ψ+(x, ω) =
c

|∆|

(
ω + vF iκ
−∆∗

)
e−κx

The wavefunction has to fulfill continuity at the junction x = 0:(
a
b

)
=

c

|∆|

(
ω + vF iκ
−∆∗

)
for an incoming particle a = 1. We get the Andreev reflection amplitude rA = b =
−∆∗

|∆|c = − ∆∗

ω+vF iκ
and obtain

rA = − ∆∗

ω + i
√
|∆|2 − ω2

with |rA|2 = 1. The particle can not penetrate the superconductor but gets reflected.
rA can be interpreted as a phase.

j∆j > 0incoming particle

out-going hole

rA cooper pair

Figure 71: Cooper pair at metal-superconductor interface
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The electron is fully reflected as a hole with amplitude rA and |rA|2 = 1. The total
charge 2e is transferred to the superconductor in the reflection process.
In superconductor-normal metal-superconductor (SNS) junctions the Josephson effect
can be understood as the repeated Andreev reflection at the interfaces

j∆j > 0 incoming particle

out-going hole

rA cooper pair

x

Figure 72: Cooper pair at SNS

In each cycle a charge of 2e is transferred across the junction.

7.7 Anderson-Higgs mechanism

Consider the Ginzburg-Landau theory for Delta(~r)

L =
1

2m∗
|(−i∇− e∗ ~A)∆|2 + r|∆|2 +

u

2
|∆|4

within the superconducting phase r < 0, with equilibrium solution ∆0 =
√
− r
u chosen

to be positive and real. Consider small fluctuations around the equilibrium value

∆ = ∆0 + φ1 + iφ2i

Veff

Re∆

Im∆

Re∆

Im∆

φ2

φ1

Figure 73: degenerate ground state manifold (circle)

The components φ1 and φ2 describe radial and tangential fluctuations of the order pa-
rameter. Expansion up to second order in ~A and φ1/2 gives:

δL =
1

2m∗
((∇φ1)2 +(∇φ2)2−2e∗2∆0

~A∇φ2 +e∗∇2
0
~A2)+r(φ2

1 + φ2)2 + u∆2
0φ

2
2 + 3u∆2

0φ
2
1︸ ︷︷ ︸

2u∆2
0φ

2
1
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The last three terms corresponds to a potential. This potential for the tangential field
φ2 vanishes! This reflects the degenerate ground state manifold! →Goldstone mode.
The gapless mode φ2 can be absorbed however by a gauge transformation

~A′ = ~A+∇χ and ∆′ = ∆eie
∗χ

for small χ:

∆′ ∼= ∆(1 + ie∗χ) = ∆0 + φ1 + i (φ2 + e∗∆0χ)︸ ︷︷ ︸
=φ′2

+O(φ1χ, φ2χ)

We can always find a gauge transformation χ so that φ′2 = 0. The Goldstone mode
is

”
eaten up“by the gauge transformation. The effective fluctuating part thus reads

(dropping the prime).

δL =
1

2m∗
(∇φ1)2 + 2u∆2

0φ
2
1︸ ︷︷ ︸

Higgs mode

+
e∗2

2m∗
∆2

0
~A2︸ ︷︷ ︸

photon mass

The longitudinal fluctuation field φ1 corresponds to the Higgs mode that has an excita-
tion gap (we need a finite energy for excitation). The last term corresponds to a photon
mass (Meissner effect). This generation of a photon mass is known as Anderson-Higgs
mechanism. This mechanism is not only relevant for explanation of superconductors but
is also invoked in the standard model of particle physics (nobel prize 2013, Englert &
Higgs). The photon mass prevents the B field from penetrating the superconductor.
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