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1 | Fermionic Correlation Functions
Most of the solutions for this problem follow the exact same route as the problem for
bosonic correlation functions, which were presented during last weeks Übung. However,
for completeness I shall present the full solutions with the appropriate changes (which turn
out to only correspond to differing signs at various places).

a) We may rewrite the expressions ckρ = e−β(εk−µ)ρck and c†kρ = eβ(εk−µ)ρc†k in the form

eβ(H−µN)cke
−β(H−µN) = e−β(εk−µ)ck, eβ(H−µN)c†ke

−β(H−µN) = eβ(εk−µ)c†k (1)

Comparing the left-hand side with the left-hand side of the Hadamard Lemma, we can
identify X = β(H − µN) and Y = ck or Y = c†k. Next, we compute the commutators

[X,Y ] = [β(H−µN), ck] =
∑
k′

β(εk′−µ)
[
c†k′ck′ , ck

]
=
∑
k′

β(εk′−µ)
(
a†k′ck′ck − ckc

†
k′ck′

)
(2)

and

[X,Y ] = [β(H−µN), c†k] =
∑
k′

β(εk′−µ)
[
a†k′ck′ , c

†
k

]
=
∑
k′

β(εk′−µ)
(
c†k′ck′c

†
k − c

†
kc
†
k′ck′

)
(3)

So far everything is exactly the same as for the bosonic case. The only difference comes in
the next step (though the result turns out to be the same).

The last term in the brackets of these expressions can be rewritten using the fermionic
anti-commutation relations

ckc
†
k′ck′ = δk,k′ck − c

†
k′ckck′ = δk,k′ck + c†k′ck′ck (4)

and
c†kc
†
k′ck′ = −c†k′c

†
kck′ = −δk,k′c†k + c†k′ck′c

†
k (5)

The last terms in these two expressions cancel the first term in the previous expressions so
we are left with

[H, ck] = −β(εk − µ)ck, [H, c†k] = −(εk − µ)c†k (6)

In terms of the superoperator adX we can interpret this as ck being an eigenoperator of
adX with eigenvalue −β(εk − µ). We thus have for the right-hand side of the Hadamard
Lemma

eadX ck = eβ(εk−µ)ck, eadX c†k = e−β(εk−µ)c†k (7)

Which thus proves (1).
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b) For fermionic operators we have relations similar (upto difference in sign) as with the
bosonic operators:

〈ck1
c†k2
〉 = δk1,k2

− 〈c†k2
ck1
〉 (8)

(notice sign difference compared to bosonic case) and

〈ck1
c†k2
〉 = eβ(εk2

−µ)〈c†k2
ck1
〉. (9)

The first follows directly from the anti-commutation relations ck1
c†k2

= δk1,k2 − c
†
k2
ck1

,

while the second follows from the relation c†k2
ρ = eβ(εk2

−µ)ρc†k2
together with the cyclic

property of the trace. By subtracting the left-hand side and the right-hand sides from the
two relations we obtain

(1 + eβ(εk2
−µ))〈c†k2

ck1
〉 = δk1,k2 (10)

and thus

〈c†k2
ck1
〉 =

1

1 + eβ(εk2
−µ) δk1,k2

(11)

It then follows from the second relation that

〈ck1
c†k2
〉 =

eβ(εk2
−µ)

1 + eβ(εk2
−µ) δk1,k2 (12)

Notice that 〈nk〉 = 〈c†kck〉 = nF (εk) where nF (x) is the Fermi-Dirac distribution, and

〈ckc
†
k〉 = 〈1− nk〉 = 1− nF (εk).

c) To evaluate the correlation function 〈c†k1
ck2

c†k3
ck4
〉 we shall follow a similar route as in the

calculation before. Let us write

〈c†k1
ck2

c†k3
ck4
〉 = δk1,k2

〈c†k3
ck4
〉 − 〈ck2

c†k1
c†k3

ck4
〉

= δk1,k2
〈c†k3

ck4
〉+ 〈ck2

c†k3
c†k1

ck4
〉

= δk1,k2
〈c†k3

ck4
〉+ δk1,k4

〈ck2
c†k3
〉 − 〈ck2

c†k3
ck4

c†k1
〉

(13)

(notice all the sign-differences compared to the bosonic case). The last term in
the right-hand side of the last line is simply a cyclic permutation of the expression on the
left-hand side (with an additional minus sign). Using the property c†k1

ρ = eβ(εk1
−µ)ρc†k1

together with the cyclic property of the trace we get

(1 + eβ(εk1
−µ))〈c†k1

ck2
c†k3

ck4
〉 = δk1,k2

〈a†k3
ak4
〉+ δk1,k4

〈ak2
a†k3
〉 (14)

Recalling the results from the previous problem we can now write this result in a compact
form

〈c†k1
ck2

c†k3
ck4
〉 = 〈c†k1

ck2
〉〈c†k3

ck4
〉+ 〈c†k1

ck4
〉〈ck2

c†k3
〉

= δk1,k2
δk3,k4

nF (εk1
)nF (εk3

) + δk1,k4
δk2,k3

nF (εk1
) (1− nF (εk3

))
(15)

So in the end, the only sign difference compared to the bosonic case comes from the last
term (1− nF as opposed to 1 + nB).
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2 | Density-density correlation function

a) The average of the density operator can be written in the form

〈n(r)〉 = 〈ψ†(r)ψ(r)〉 =
1

V

∑
k1,k2

e−i(k1−k2)·r〈c†k1
ck2
〉

=
1

V

∑
k1,k2

e−i(k1−k2)·rδk1,k2nF (εk1)

=
1

V

∑
k

nF (εk)

=
N

V

(16)

b) We have

〈n(r)n(r′)〉 =
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′〈c†k1
ck2

c†k3
ck4
〉

=
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′δk1,k2
δk3,k4

nF (εk1
)nF (εk3

)

+
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′δk1,k4δk2,k3nF (εk1) (1− nF (εk3))

=
1

V 2

∑
k1

nF (εk1
)
∑
k3

nF (εk3
)

+
1

V 2

∑
k1

nF (εk1)e−ik1·(r−r′)
∑
k3

(1− nF (εk3)) eik3·(r−r′)

=

(
N

V

)2

+
1

V 2

∑
k1

nF (εk1
)e−ik1·(r−r′)

∑
k3

(1− nF (εk3
)) eik3·(r−r′)

(17)

And thus the density-density correlation function is given by

〈∆n(r)∆n(r′)〉 = 〈n(r)n(r′)〉 − 〈n〉2

=
1

V

∑
k1

nF (εk1)e−ik1·(r−r′)

(
1

V

∑
k3

eik3·(r−r′) − 1

V

∑
k3

nF (εk3)eik3·(r−r′)

)
(18)

Using the identity 1
V

∑
k e

ik·(r−r′) = δ(r − r′) we get

〈∆n(r)∆n(r′)〉 = δ(r − r′)
1

V

∑
k

nF (εk)−

∣∣∣∣∣ 1

V

∑
k

nF (εk)eik·(r−r
′)

∣∣∣∣∣
2

= δ(r − r′)〈n〉 −

∣∣∣∣∣ 1

V

∑
k

nF (εk)eik·(r−r
′)

∣∣∣∣∣
2

(19)
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The first term we again recognize as the auto-correlation term and the second term is
proportional to the pair-correlation term for fermions

hF (r − r′) = − 1

〈n〉2

∣∣∣∣∣ 1

V

∑
k

nF (εk)eik·(r−r
′)

∣∣∣∣∣
2

(20)

Apart from the different distribution functions in this expression, the fermionic pair-
correlation has a negative sign, i.e. bosons have positive pair-correlations while fermions
have negative pair-correlations. This is a consequence of the Pauli-Exclusion Principle.

Let us consider the zero temperature limit when all states with energies below the Fermi-
energy (note that εF = µ(T = 0)) are occupied, i.e.

nF (εkF ) = Θ(εF − εk) (21)

(Note that we have neglected spin here, if we include spin there would be an additional
factor due to degeneracy).

Turning the sum into an integral over spherical coordinates and we have after performing
the integration over the angle-variables

1

V

∑
k

nF (εk)eik·(r−r
′) =

1

(2π)2

∫ ∞
0

dk
k sin(k|r − r′|)
|r − r′|

Θ(εF − εk) (22)

The step-function cuts the integral at a point kF : εkF = εF , i.e. the Fermi wavevector. We
are then left with performing the integral∫ kF

0

dk
k sin(k|r − r′|)
|r − r′|

=
sin(kF |r − r′|)− kF |r − r′| cos(kF |r − r′|)

|r − r′|3
(23)

Plugging this into the pair-correlation function we have

hF (r) = − 1

(2π)4

∣∣∣∣ sin(kF r)− kF r cos(kF r)

r3

∣∣∣∣2 (24)

r
h f

Figure 1: The fermionic pair correlation function at zero temperature. It diverges for small r
due to Pauli-Principle then oscillates on the length scale 1/kF but eventually decays
as ∼ k2F /r4(see dashed line).
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Additional Notes

For completeness I also provide the calculations for the bosonic case.

1 | Bosonic Correlation Functions

a) We may rewrite the expressions akρ = e−β(εk−µ)ρak and a†kρ = eβ(εk−µ)ρa†k in the form

eβ(H−µN)ake
−β(H−µN) = e−β(εk−µ)ak, eβ(H−µN)a†ke

−β(H−µN) = eβ(εk−µ)a†k (25)

Comparing the left-hand side with the left-hand side of the Hadamard Lemma, we can
identify X = β(H − µN) and Y = ak or Y = a†k. Next, we compute the commutators

[X,Y ] = [β(H−µN), ak] =
∑
k′

β(εk′−µ)
[
a†k′ak′ , ak

]
=
∑
k′

β(εk′−µ)
(
a†k′ak′ak − aka

†
k′ak′

)
(26)

and

[X,Y ] = [β(H−µN), a†k] =
∑
k′

β(εk′−µ)
[
a†k′ak′ , a

†
k

]
=
∑
k′

β(εk′−µ)
(
a†k′ak′a

†
k − a

†
ka
†
k′ak′

)
(27)

The last term in the brackets of these expressions can be rewritten using the commutation
relations

aka
†
k′ak′ = δk,k′ak + a†k′akak′ = δk,k′ak + a†k′ak′ak (28)

and
a†ka
†
k′ak′ = a†k′a

†
kak′ = −δk,k′a†k + a†k′ak′a

†
k (29)

The last terms in these two expressions cancel the first term in the previous expressions so
we are left with

[β(H − µN), ak] = −β(εk − µ)ak, [β(H − µN), a†k] = β(εk − µ)a†k (30)

For higher order commutators we have e.g.

[β(H − µN), [β(H − µN), ak]] = −β(εk − µ)[β(H − µN), ak] = (−β(εk − µ))2ak (31)

and so on. In terms of the superoperator adX we can interpret this as ak being an eigen-
operator of adX with eigenvalue −β(εk − µ):

adXak = −β(εk − µ)ak, adnXak = (−β(εk − µ))nak (32)

and similarly for a†k. We thus have for the right-hand side of the Hadamard Lemma

eadXak = e−β(εk−µ)ak, eadXa†k = eβ(εk−µ)a†k (33)

Which thus proves (25).

b) Let us first note two relationships

〈ak1
a†k2
〉 = δk1,k2

+ 〈a†k2
ak1
〉 (34)

and
〈ak1

a†k2
〉 = eβ(εk2

−µ)〈a†k2
ak1
〉. (35)
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The first follows directly from the commutation relations ak1
a†k2

= δk1,k2+a†k2
ak1

, while the

second follows from the relation a†k2
ρ = eβ(εk2

−µ)ρa†k2
together with the cyclic property of

the trace. By subtracting the left-hand side and the right-hand sides from the two relations
we obtain

(1− eβ(εk2
−µ))〈a†k2

ak1
〉 = −δk1,k2 (36)

and thus

〈a†k2
ak1
〉 =

−1

1− eβ(εk2
−µ) δk1,k2

(37)

It then follows from the second relation that

〈ak1
a†k2
〉 =

−eβ(εk2
−µ)

1− eβ(εk2
−µ) δk1,k2

(38)

Notice that 〈nk〉 = 〈a†kak〉 = nB(εk) where nB(x) is the Bose-Einstein distribution, and

〈aka
†
k〉 = 〈1 + nk〉 = 1 + nB(εk).

c) To evaluate the correlation function 〈a†k1
ak2

a†k3
ak4
〉 we shall follow a similar route as in

the calculation before. Let us write

〈a†k1
ak2

a†k3
ak4
〉 = −δk1,k2

〈a†k3
ak4
〉+ 〈ak2

a†k1
a†k3

ak4
〉

= −δk1,k2〈a
†
k3
ak4
〉+ 〈ak2

a†k3
a†k1

ak4
〉

= −δk1,k2〈a
†
k3
ak4
〉 − δk1,k4〈ak2

a†k3
〉+ 〈ak2

a†k3
ak4

a†k1
〉

(39)

The last term in the right-hand side of the last line is simply a cyclic permutation of the
expression on the left-hand side. Using the property a†k1

ρ = eβ(εk1
−µ)ρa†k1

together with
the cyclic property of the trace we get

(1− eβ(εk1
−µ))〈a†k1

ak2
a†k3

ak4
〉 = −δk1,k2〈a

†
k3
ak4
〉 − δk1,k4〈ak2

a†k3
〉 (40)

Recalling the results from the previous problem we can now write this result in a compact
form

〈a†k1
ak2

a†k3
ak4
〉 = 〈a†k1

ak2
〉〈a†k3

ak4
〉+ 〈a†k1

ak4
〉〈ak2

a†k3
〉

= δk1,k2
δk3,k4

nB(εk1
)nB(εk3

) + δk1,k4
δk2,k3

nB(εk1
) (1 + nB(εk3

))
(41)

2 | Density-density correlation functions

a) The average of the density operator can be written in the form

〈n(r)〉 = 〈ψ†(r)ψ(r)〉 =
1

V

∑
k1,k2

e−i(k1−k2)·r〈a†k1
ak2
〉

=
1

V

∑
k1,k2

e−i(k1−k2)·rδk1,k2
nB(εk1

)

=
1

V

∑
k

nB(εk)

=
N

V

(42)
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b) We have

〈n(r)n(r′)〉 =
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′〈a†k1
ak2

a†k3
ak4
〉

=
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′δk1,k2
δk3,k4

nB(εk1
)nB(εk3

)

+
1

V 2

∑
k1,k2,k3,k4

e−i(k1−k2)·re−i(k3−k4)·r′δk1,k4δk2,k3nB(εk1) (1 + nB(εk3))

=
1

V 2

∑
k1

nB(εk1
)
∑
k3

nB(εk3
)

+
1

V 2

∑
k1

nB(εk1)e−ik1·(r−r′)
∑
k3

(1 + nB(εk3)) eik3·(r−r′)

=

(
N

V

)2

+
1

V 2

∑
k1

nB(εk1
)e−ik1·(r−r′)

∑
k3

(1 + nB(εk3
)) eik3·(r−r′)

(43)

And thus the density-density correlation function is given by

〈∆n(r)∆n(r′)〉 = 〈n(r)n(r′)〉 − 〈n〉2

=
1

V

∑
k1

nB(εk1
)e−ik1·(r−r′)

(
1

V

∑
k3

eik3·(r−r′) +
1

V

∑
k3

nB(εk3
)eik3·(r−r′)

)
(44)

Using the identity 1
V

∑
k e

ik·(r−r′) = δ(r − r′) we get

〈∆n(r)∆n(r′)〉 = δ(r − r′)
1

V

∑
k

nB(εk) +

∣∣∣∣∣ 1

V

∑
k

nB(εk)eik·(r−r
′)

∣∣∣∣∣
2

= δ(r − r′)〈n〉+

∣∣∣∣∣ 1

V

∑
k

nB(εk)eik·(r−r
′)

∣∣∣∣∣
2

(45)

The first term is called the auto-correlation function and the second part is proportional
to the so called pair-correlation function for bosons:

hB(r − r′) =
1

〈n〉2

∣∣∣∣∣ 1

V

∑
k

nB(εk)eik·(r−r
′)

∣∣∣∣∣
2

(46)

Let us consider first the zero temperature limit where the all the N particles are located
in the lowest energy state k = 0:

nB(εk) = Nδk,0 (47)

In this limit we have the pair-correlation function

hB(r − r′) =
1

〈n〉2
N2

V 2
= 1 (48)

This result reflects the long-range order present in the condensate state we are considering
where all particles are in the same single particle quantum state.
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Unified Description - Wicks Theorem

Bosons and Fermions may be treated on the same footing by introducing the parameter ζ =
±1, where ζ = + corresponds to Bosons and ζ = −1 corresponds to Fermions. The (anti-
)commutation relations can then be written in the unified form

[ak, a
†
k′ ]ζ = δk,k′ (49)

where a and a† now refer to either bosons or fermions and

[A,B]ζ = AB − ζBA (50)

denotes the commutator for ζ = +1 and anti-commutator for ζ = −1. Consequently, we have for
any operators A and B whose (anti-)commutator is a scalar (this is the case for any combination

of choices for A,B between ak and a†k′) we can write

〈AB〉 = [A,B]ζ + ζ〈BA〉 (51)

The last term is just a cyclic permutation (upto factor ζ) of the term on the left hand side. For
any system at equilibrium with a Hamiltonian quadratic in creation and annihilation operators
(here A and B) we have Aρ = eηA(β−εA)ρA where ηA = +1 if A is a creation operator and
ηA = −1 if A is an annihilation operator. Thus we have

〈BA〉 = eηAβ(εA−µ)〈AB〉 (52)

Inserting this into the upper relation one we get

〈AB〉 =
[A,B]ζ

1− ζeηAβ(εA−µ)
(53)

It is instructive to check this result by entering A = a†k1
and B = ak2

or the other way around for
both fermions and bosons (ζ = ±1) and see that it leads to the same result as before. Also note
that if A and B are both creation- or annihlation operators, the fact that they (anti-)commute
means that this average is zero!

If we take higher order correlation functions

〈ABCD〉 = [A,B]ζ〈CD〉+ ζ〈BACD〉
= [A,B]ζ〈CD〉+ ζ[A,C]〈BD〉+ ζ2〈BCAD〉
= [A,B]ζ〈CD〉+ ζ[A,C]〈BD〉+ ζ2[A,D]〈BC〉+ ζ3〈BCDA〉

(54)

where the last term is again a cyclic permutation of the left hand side (upto factor ζ3 = ζ). We
then have

〈BCDA〉 = eηAβ(εA−µ)〈ABCD〉 (55)

and we get
〈ABCD〉 = 〈AB〉〈CD〉+ ζ〈AC〉〈BD〉+ 〈AD〉〈BC〉 (56)

Here I used relation (53) and the fact that any even power of ζ is unity. Again one should check
to replace A,B,C and D by the operators form the previous exercises to see that it leads to the
same result.

This method can be extended to correlation functions of any order and always reduces to sums
of products of two-operator correlation functions. This result, and the combinatorics of how the
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two-operator correlation-functions appear is commonly referred to as Wicks Theorem. This
theorem is an indispensable tool when working with high-order correlation functions and it is
usually applied in a graphical way that I will briefly describe below.

Let us define a contraction

AB = 〈AB〉 =
[A,B]ζ

1− ζeηAβ(εA−µ)
(57)

Contractions that are entangled, or not ”ordered”, can be disentangled by interchanging the
order of the operators at the cost of potential signs:

ABCD = ζACBD (58)

For every (nearest neighbour) permutation you must make in order to get the contractions
disentangled (or ordered) you put another power of ζ. Wicks theorem then states that any
correlation function can be expressed as the sum of all the different full contractions/pairings
that can be made, for example for our previous problem of the four-operator correlation function
there are three ways to make such contractions

〈ABCD〉 = ABCD +ABCD +ABCD

= ABCD + ζACBD + ζ2ADBC

= 〈AB〉〈CD〉+ ζ〈AC〉〈BD〉+ ζ2〈AD〉〈BC〉

(59)

Pair-correlations

In this section I would like to shed some light on the concept of the pair-correlation function.
Let us start by noting that the density-density correlation function can be rewritten in terms of
the pair-correlation function in the following way

〈∆n(r)∆n(r′)〉 = 〈n(r)n(r′)〉 − 〈n〉2 = δ(r − r′)〈n〉+ 〈n〉2h(r, r′) (60)

To understand why we call h(r, r′) a pair-correlation function let us consider the case of two-
particles. The wave-function of the system is given by Ψ(r1, r2) with the normalization

1 =

∫
d3r1

∫
d3r2|Ψ(r1, r2)|2 (61)

The density operator is given by1

n̂(r) = δ(r − r̂1) + δ(r − r̂2) (62)

where r̂i is the position operator of particle i = 1, 2. The average density is then given by

〈n̂(r)〉 =

∫
d3r1

∫
d3r2Ψ∗(r1, r2)n̂(r)Ψ(r1, r2) (63)

using δ(r − r̂i)Ψ(r1, r2) = δ(r − ri)Ψ(r1, r2) for i = 1, 2 we get

〈n̂(r)〉 =

∫
d3r2|Ψ(r, r2)|2 +

∫
d3r1|Ψ(r1, r)|2 (64)

1Formally this is an operator valued distribution
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If the particles are indistinguishable we have |Ψ(r1, r2)|2 = |Ψ(r2, r1)|2 and thus

〈n̂(r)〉 = 2

∫
d3r′|Ψ(r, r′)|2 (65)

From the normalization of Ψ we see that N =
∫
d3r〈n̂(r)〉 = 2, as it should.

The density-density correlation function is given by

〈n̂(r)n̂(r′)〉 =

∫
d3r1

∫
d3r2Ψ∗(r1, r2)δ(r − r1)δ(r′ − r1)Ψ(r1, r2)

+

∫
d3r1

∫
d3r2Ψ∗(r1, r2)δ(r − r1)δ(r′ − r2)Ψ(r1, r2)

+

∫
d3r1

∫
d3r2Ψ∗(r1, r2)δ(r − r2)δ(r′ − r1)Ψ(r1, r2)

+

∫
d3r1

∫
d3r2Ψ∗(r1, r2)δ(r − r2)δ(r′ − r2)Ψ(r1, r2)

(66)

The terms with the same arguments in both delta-functions measure the density of ”the same
particle” and these terms combine to a term δ(r − r′)2

∫
d3r′′|Ψ(r, r′′)|2 = δ(r − r)〈n〉, while

the other terms with mixed arguments in the delta functions combine to a term 2|Ψ(r, r′), and
thus we have

〈∆n(r)∆n(r′)〉 = δ(r − r′)〈n〉+ 2|Ψ(r, r′)|2 − 〈n〉2 (67)

and the pair-correlation function is given by

h(r, r′) =

(
2|Ψ(r, r′)|2 − 〈n〉2

)
〈n〉2

(68)

Since |Ψ(r, r′)|2 is the probability of finding the particles at r and r′ respectively, the term
2|Ψ(r, r′)|2 represents the density of pairs at r and r′, which explains why h(r, r′) is called the
pair-correlation function.

Alternatively:
We note that we may rewrite the expression

〈n(r)n(r′)〉 = 〈ψ†(r)ψ(r)ψ†(r′)ψ(r′)〉
= δ(r − r′)〈n〉+ ζ〈ψ†(r)ψ†(r′)ψ(r)ψ(r′)〉
= δ(r − r′)〈n〉+ 〈ψ†(r′)ψ†(r)ψ(r)ψ(r′)〉.

(69)

If we define the two-particle operators

Φ(r, r′) = ψ(r)ψ(r′), Φ†(r, r′) = ψ†(r′)ψ†(r) (70)

which can be thought of as creating/annihilating a pair of particles, we can write

〈n(r)n(r′)〉 = δ(r − r′)〈n〉+ 〈Φ†(r, r′)Φ(r, r′)〉 (71)

The pair-correlation function h(r, r′) defined in Eq. (60) is then given by

h(r, r′) =
1

〈n〉2
(
〈Φ†(r, r′)Φ(r, r′)〉 − 〈n〉2

)
(72)
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Zero Temperature Limit of Bose-Einstein Distribution Function

The Bose-Einstein distribution function is given by

nB(ε) =
1

eβ(ε−µ) − 1
(73)

We notice that for ε < µ the quantity eβ(ε−µ) < 1 and so nB(ε < µ) < 0 which is clearly
unphysical. If the minimum of the single particle energies is ε = ε0 we conclude that for bosons
we must have ε0 ≥ µ. Usually the lowest energy is by convention taken to be ε0 = 0 and the
chemical potential must thus be negative.

In the limit T → 0 or β →∞ we have then two possibilities

lim
β→∞

nB(ε) =

{
limβ→∞ e−β(ε−µ) = 0, (ε− µ) > 0

∞, (ε− µ) = 0
(74)

Thus for ε > µ the state is not occupied in the zero temperature limit. What about the state with
minimal energy ε0 = 0? For a non-zero negative chemical potential this state is not occupied
since we have ε0 − µ = −µ > 0. On the other hand for µ = 0 we have an infinite occupation
which also requires an infinite number of particles. The (average) number of particles N can be
held finite if we let µ→ 0 simultaneously as we let β →∞ in such a way that βµ remains finite.
In this limit we have for the Bose-Einstein distribution

lim
β→∞,µ→0

nB(ε) =
δε,0

e−βµ − 1
= δε,0nB(0) (75)

Since N =
∑

k nB(εk) we thus have nB(εk=0) = N and2

nB(εk) = Nδk,0 (76)

Interestingly, a more careful analysis shows that the chemical potential as a function of tem-
perature goes to zero already at a critical temperature Tc 6= 0, this signals the phase transition
into the Bose-Einstein Condensate state where a macroscopically large number of particles
occupy the lowest energy state.

High Temperature Limit - Thermal deBroglie Wavelength

If we take the limit eβµ � 1 then we have for the Fermi/Bose distribution function

1

eβ(ε−µ) ± 1
=

eβµ

eβε ± eβµ
≈ eβµ

eβε
= e−β(ε−µ) = nM (ε) (77)

i.e. the Maxwell-Boltzmann distribution.

Then we have nB/F (εk) ≈ e−β(εk−µ). We then have

hB/F (r − r′) ≈ ±hM (r − r′) = ±e
2βµ

〈n〉2

∣∣∣∣∣ 1

V

∑
k

e−βεkeik·(r−r
′)

∣∣∣∣∣
2

(78)

2The value of βµ can be evaluated from nB(0) = N and yields βµ = −(ln(N + 1)− ln(N)).
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In the thermodynamic limit we can replace the sum by an integral

1

V

∑
k

=
1

(2π)3

∫
d3k =

1

(2π)3

∫ 2π

0

dϕ

∫ π

0

sin θdθ

∫ ∞
0

k2dk (79)

This gives us

hM (r − r′) =
e2βµ

〈n〉2

∣∣∣∣ 1

(2π)2

∫ 1

−1
d(cos θ)

∫ ∞
0

dk k2e−βεkei cos θk|r−r
′|
∣∣∣∣2 (80)

Using the integral
∫ 1

−1 dxe
iax =

∫ 1

−1 dx cos(ax) = [sin(ax)/ax]1−1 = 2 sin(a)/a we get

hM (r − r′) =
e2βµ

〈n〉2

∣∣∣∣ 1

2π2

∫ ∞
0

dk
k sin(k|r − r′|)
|r − r′|

e−βεk
∣∣∣∣2 (81)

For a quadratic dispersion εk = ~2k2/2m we can evaluate this expression exactly: Switch integra-

tion variables to x = λk with λ =
√
β~2/2m to get an integral of the type

∫∞
0
dxx sin(bx)e−x

2

=
√
π
4 be

−b2/4. The final result is then

hM (r − r′) =
e2βµ

〈n〉2

∣∣∣∣ √
π

2π2(2λ)2
e
− |r−r′|2

(2λ)2

∣∣∣∣2 =
e2βµ

4π3

1

(2λ)4
e
− |r−r′|4

(2λ)4 (82)

The important thing to notice here is that the correlations decay on a length-scale known as the
thermal de Broglie wavelength

λ ∼ λT =
~√

2πmkBT
(83)
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