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1 | Matsubara Sums

a) Let us write

nε(z) =
1

eβz + ε
=

{
nB(z), ε = −1, Bosons

nF (z), ε = +1, Fermions
(1)

The poles (singularities) of nε(z) are found for eβz = −ε. Writing z = iω this yields

eiβω = −ε =

{
+1, Bosons
−1, Fermions

}
=⇒ ω = ωn =

{
2nπ
β , Bosons

(2n+1)π
β , Fermions

(2)

The poles are thus

zn = iωn, ωn =

{
2nπ
β , Bosons

(2n+1)π
β , Fermions

(3)

The residues are given by

Reszn [nε(z)] = lim
z→zn

(z − zn)nε(z) = lim
z→zn

(z − zn)

eβzn + ε
= lim
δ→0

δ

eβδeizn + ε
= (−ε) lim

δ→0

δ

eβδ − 1
(4)

The last limit we can evaluate by expanding the denominator to first order eβδ = 1 + βδ
and thus limδ→0

δ
eβδ−1

= 1
β . The residues are thus

Reszn [nε(z)] = (−ε) 1

β
=

{
+ 1
β , Bosons

− 1
β , Fermions

(5)

b) According to the Residue Theorem we have, for a contour C enclosing a region Ω in the
complex plane (i.e. ∂Ω = C), that∮

C
dzF (z) = 2πi

∑
zn∈Ω

Reszn [F (z)] (6)

For a product of functions F (z) = nε(z)h(z) where all the poles of nε(z), but none of the
poles of g(z) occur in Ω we have∮

C
dznε(z)h(z) = 2πi

∑
zn of nε

Reszn [nε(z)]h(zn) (7)

1



given that the poles of nε(z) are found at zn = iωn and the residues are given by (−ε)1/β
we have ∮

C

dz

2πi
nε(z)h(z) = (−ε) 1

β

∑
ωn

h(iωn) (8)

Or written the other way around

1

β

∑
ωn

h(iωn) = (−ε)
∮
C

dz

2πi
nε(z)h(z) (9)

c) We choose the contour which covers the entire complex plane in a circle, i.e. C : z =
limR→∞Reiθ. An integral over this contour gives us the poles zn from the function nε(z)
as well as the poles zj of g(z) (note that ezτ does not have any poles):∮

C

dz

2πi
nε(z)g(z)ezτ =

∑
zn

Reszn [nε(z)]g(zn)eznτ +
∑
zj

Reszj [g(z)]nε(zj)

= (−ε) 1

β

∑
ωn

g(iωn)eiωnτ +
∑
zj

Reszj [g(z)]nε(zj)

(10)

The integral over the contour cancels as the combination nε(z)e
zτ goes to zero for z =

limR→∞Reiθ. Thus we have

1

β

∑
ωn

g(iωn)eiωnτ = ε
∑
zj

Reszj [g(z)]nε(zj) (11)

d) Let us start with the first sum which is the Fourier expansion of a Green’s function
G0(k,−τ) with 0 < τ < β. We have

G0(k, z) =
1

z − ξk
(12)

which has a single pole on the real axis at zj = ξk with residue 1.

1

β

∑
n

G0(k, iωn)eiωnτ = nF (zj)e
ξkτ = nF (ξk)eξkτ (13)

Which is consistent with the definition of the thermal Green’s function G0(k,−τ) =

−〈Tτ ck(−τ)c†k(0)〉 = 〈c†kck〉eξkτ . In the next sum we have explicitly

G0(k, z)G0(k + q, z + iωm) =
1

z − ξk
1

z + iωm − ξk+q
(14)

which has two poles, one at z1 = ξk with residue 1/(iωn − ξk+q + ξk), and one at z2 =
ξk+q − iωm with residue −1/(iωm − ξk+q + ξk). Thus we have

1

β

∑
ωn

G0(k, iωn)G0(k + q, iωn + iωm) =
nF (ξk)

iωm − ξk+q + ξk
− nF (ξk+q − iωm)

iωm − ξk+q + ξk
(15)

For ωm = (2m + 1)π/β, i.e. Fermionic Matsubara frequencies, we would have nF (ξk+q −
iωm) = nB(ξk+q). However, since the sum consists of products of two Fermionic Green’s
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functions, the Fourier-transform of this (i.e. the imaginary time representation) must be
periodic in imaginary time, i.e. Bosonic (as opposed to anti-periodic for Fermionic). This
is a general feature. Thus the ωm = 2mπ/β are Bosonic Matsubara frequencies as opposed
to the ωn = (2n+1)π/β. We then have nF (ξk+q− iωm) = nF (ξk+q). Unfortunately it was
not made clear in the exercise that ωm was Bosonic as opposed to ωn which was Fermionic.
Thus any answer is acceptable.

e) For such a problem we may choose the contour as consisting of two infinite semicircles -
one in the upper complex half, C+ and the other in the lower complex half, C−. Together
enclosing all the poles of nε(z) but avoiding the real line. The sum can then be written as

S(τ) = (−ε)

(∮
C+

dz

2πi
g(z)nε(z)e

zτ +

∮
C−

dz

2πi
g(z)nε(z)e

zτ

)
(16)

The arc-pieces of the contour integral vanish due to the decay of nε(z)e
zτ for |z| → ∞.

Thus what remains of the integral are the pieces just above (for C+) and just below (for
C−) the real line going in opposite directions

S(τ) = (−ε)

(∫ −∞+iδ

∞+iδ

dz

2πi
g(z)nε(z)e

zτ +

∫ ∞−iδ
−∞−iδ

dz

2πi
g(z)nε(z)e

zτ

)
(17)

Changing variables ε = −z + iδ for the former and ε = z + iδ for the latter we get

S(τ) = (−ε)
(∫ ∞
−∞

dε

2πi
g(ε+ iδ)nε(ε+ iδ)e(ε+iδ)τ −

∫ ∞
−∞

dε

2πi
g(ε− iδ)nε(ε− iδ)e(ε−iδ)τ

)
(18)

Since nε(z)e
zτ is continuous over the branch-cut (real axis) we can write

S(τ) = (−ε)
∫ ∞
−∞

dε

2πi

(
g(ε+ iδ)− g(ε− iδ)

)
nε(ε)e

ετ (19)

If we define a(ε) = i
(
g(ε+ iδ)− g(ε− iδ)

)
then we have

S(τ) = ε

∫ ∞
−∞

dε

2π
a(ε)nε(ε)e

ετ (20)

f) We want to evaluate the sum

Sk =
1

β

∑
ωn

ln [−iωn + ξk] eiωn0+

=

∫ ∞
−∞

dε

2πi
(ln[−(ε+ iδ) + ξk]− ln[−(ε− iδ) + ξk])nF (ε)eε0

+

(21)

We now note that
∂ε ln(1 + e−βε) = −βnF (ε) (22)

we may write

Sk = − 1

β

∫ ∞
−∞

dε

2πi
(ln[−(ε+ iδ) + ξk]− ln[−(ε− iδ) + ξk]) ∂ε ln(1 + e−βε)eε0

+

(23)
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Integration by parts and noting that ln(1 + e−βε)eε0
+

go to zero for ε→ ±∞ we have

Sk =
1

β

∫ ∞
−∞

dε

2πi
∂ε (ln[−(ε+ iδ) + ξk]− ln[−(ε− iδ) + ξk]) ln(1 + e−βε)eε0

+

= − 1

β

∫ ∞
−∞

dε

2πi

(
1

ε+ iδ − ξk
− 1

ε− iδ − ξk

)
ln(1 + e−βε)eε0

+

= − 1

β

∫ ∞
−∞

dε

2πi

(
P 1

ε− ξk
− iπδ(ε− ξk)− P 1

ε− ξk
− iπδ(ε− ξk)

)
ln(1 + e−βε)eε0

+

=
1

β

∫ ∞
−∞

dεδ(ε− ξk) ln(1 + e−βε)eε0
+

=
1

β
ln(1 + e−βξk)

(24)

Where in the last equality I dropped the (no longer necessary) convergence factor eξk0+

.
Inserting this into the expression for the free energy

F = −
∑
k

Sk = − 1

β

∑
k

ln(1 + e−βξk) = −kBT ln
(
Πk(1 + e−βξk)

)
= −kBT lnZ (25)
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