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l ’ Matsubara Sums

a) Let us write

1 np(z), e=—1, Bosons
ne(z) = 5z = B . (1)
eP? +e np(z), e =+1, Fermions
The poles (singularities) of n.(z) are found for e/ = —e. Writing z = iw this yields
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The poles are thus
2nm
T o
The residues are given by
Res,, [ne(2)] = Zhﬁng (z — zn)ne(z) = lim G=zn)
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5§—0 ePdeizn 4 ¢ 5§—0efd — 1
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The last limit we can evaluate by expanding the denominator to first order e?° = 1 4 36
and thus limg_,q ﬁ = % The residues are thus

1 5 B
Reszn [n6 (Z)] (_E) — = {+ B 0sons
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According to the Residue Theorem we have, for a contour C enclosing a region € in the
complex plane (i.e. 9Q = C), that

7{ d2F(z) = 2mi 3 Res., [F(2)] (6)
¢ 2n €N

For a product of functions F(z) = n.(z)h(z) where all the poles of n.(z), but none of the
poles of ¢g(z) occur in Q we have

?({ dene(2)h(z) = 2mi Y Res, [nc(2)]h(zn) (7)
2zn of ne



d)

given that the poles of n.(z) are found at z,, = iw, and the residues are given by (—e)1/3
we have

2mi

dz 1 .
i n(2h(z) = ()5 3 i (8)

Or written the other way around

%ZMmﬁwﬂﬁﬁ%@W) (9)
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We choose the contour which covers the entire complex plane in a circle, i.e. C : z =
limp_yoo Re?. An integral over this contour gives us the poles z,, from the function n.(z)
as well as the poles z; of g(z) (note that e*” does not have any poles):
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%é dfz.ne(z)g(z)ez‘r = Z Reszn [ne(z)]g(zn)ezn‘r + Z Reszj [g(z)]n€(zj)
Zn X | zj (10)
= (—6)5 Z g(iwp)e™ " + Z Res.; [9(2)]ne(z))

Wn, Zj

The integral over the contour cancels as the combination n.(z)e*” goes to zero for z =
limp_, oo Re?. Thus we have

%Zg(iwn)eiw"T = gZRest [9(2)]ne(25) (11)

Let us start with the first sum which is the Fourier expansion of a Green’s function
Go(k,—7) with 0 < 7 < 8. We have

1
Go(k,z) = 12
olk.2) = —¢ (12
which has a single pole on the real axis at z; = § with residue 1.
1 - Wn T T T
3 Z Go(k,iw,)e"™"™ = TLF(Zj)@Ek = np(&)ett (13)

Which is consistent with the definition of the thermal Green’s function Go(k,—7) =
—(TTck(—T)cL(OD = <c};ck>eg’”. In the next sum we have explicitly

1 1
2 — &k 2+ iwm — Ektq

Go(k,z)Go(k + q,z + iwy,) = (14)

which has two poles, one at z; = & with residue 1/(iw, — &k+q + &), and one at zp =
€ktq — twi, with residue —1/(iwpm, — Ektq + &k). Thus we have

1 . ‘ ) nr (&) nF(Ektq — 1Wm)
3 2_ Golksieon)Golk + g, ion + itom) W = Corq + & dom—Curq + & (D)

Wn,

For wy,, = (2m + 1)7/B, i.e. Fermionic Matsubara frequencies, we would have ng(§x+q —
iwm) = np(&kt+q). However, since the sum consists of products of two Fermionic Green’s



f)

functions, the Fourier-transform of this (i.e. the imaginary time representation) must be
periodic in imaginary time, i.e. Bosonic (as opposed to anti-periodic for Fermionic). This
is a general feature. Thus the w,, = 2mn /8 are Bosonic Matsubara frequencies as opposed
to the w, = (2n+1)7/5. We then have np(§k1q — iwm) = np(§k1q). Unfortunately it was
not made clear in the exercise that w,, was Bosonic as opposed to w, which was Fermionic.
Thus any answer is acceptable.

For such a problem we may choose the contour as consisting of two infinite semicircles -
one in the upper complex half, C; and the other in the lower complex half, C_. Together
enclosing all the poles of n(z) but avoiding the real line. The sum can then be written as

L, 2mi c_ 2mi

S(r) = () (75 L ne2)e + f d"’ig(z)ne(z)e”) (16)

The arc-pieces of the contour integral vanish due to the decay of nc(z)e*” for |z| — oc.
Thus what remains of the integral are the pieces just above (for C;) and just below (for
C_) the real line going in opposite directions

—oco+id P co—1d »
S(r) = () ( / & e+ / d.g<z>ne<z>eﬂ> (17)

co+18 2mi —00—10 2mi

Changing variables ¢ = —z + id for the former and € = z + iJ for the latter we get

S(T) = (_6) (/ 27;9(6 + ié)ne(s + i6)6(6+z6)7- _ / T;g(&_ . ié)ne(a . ié)e(E—Zé)T)

—00 — 00

Since n.(z)e*” is continuous over the branch-cut (real axis) we can write

S(1) = (—¢) /00 de <g(5 +1i0) —g(e — i§))n6(5)e” (19)
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If we define a(e) = i(g(s +i0) — g(e — z5)> then we have
S(r) =€ / h d—ia(a)ne(e)e” (20)

We want to evaluate the sum

1 )
Sk=7 S In i + &) €m0

— / " (e +i0) + 6]~ Inl—(e — i6) + &) mp(@)e”

oo 2T

We now note that
9:In(1 + e’BE) = —pBnr(e) (22)

we may write

Se=3 [ g nl-(ei8) + 6] ~ (e - 0) + &) 21+ PN (23



Integration by parts and noting that In(1 + (3_65)6EO+ go to zero for e — +0o we have

S = %/m 28 B0 (nl—(= +18) + &) (= — i8) + &]) In(1 + ¢~ 7%)e"

_ 1T ode 1 1
B 2mi \e+id—E& e —id — &g
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= % [m ded(e — &) In(1 + eiﬁg)e€0+

1
= —1In(1 4 ¢ Pox
5 )

) In(1 + e 09)e0"

(24)

Where in the last equality I dropped the (no longer necessary) convergence factor e&r0"
Inserting this into the expression for the free energy

1
F=-) 8= -3 > In(1+e %) = —kpTn (Hg(1+ e 7*)) = ~kpTInZ  (25)
k k



