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l ’ Magnetic / Non-Magnetic Impurities

Hamiltonian
Ho = / dr [Z B~V )a (1) = A (P (F)9y(r) + hec.) (1)
:/d% > Valr)el(r + ) Vaui(r)eloiasts(r )] (2)
a=+ af=+

which we can rewrite as

o= [ & [Zw* iV )a(r) = iy sl (Ya(r >w6<r>+h.c.>] (3)

ap
= [ @ | X ke + Y Vaslr)lorasbslr) (4)
a=%+ af=%
a) Equation of motion
Orthe = —€(—iV) o — iA Z 02,050} = Vi(r)a — Y Vai(r)oiapts
i i T ’ ~ T (5)
Al = e(=iV)yl +iA Z 02,05V V(M) Wa + Y Vai(r)Gi.apt)
B B
where ¢; = 0] = —o,0,0,. If we further introduce the notation
(I)a,+ = Ya, and (ba,— = 1#& (6)
Then we can write the equation of motion as
a‘rq)a,/t = 76(7ZV) Z(TS)/LU(I)Q,V + A Z(T2)}LL/(O—2)OZ[3¢OL,D - ‘/1(7'> Z(TS)/LD¢Q7D
v B,v v
1
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More conveniently, we can define the four-component vector:

Pyt ZT

I K- B K

b = o, |~ l% (8)
o _ o]

For which the equation of motion is given by
a‘,—@ = [—6(—iV)Tg + ATQO’Q — Vl(’r‘)Tg — Vg,i(r)ai} (0] (9)

where the matrices 73, 70092 and a; have the block-structures

1 0 0 —io
T3 = (0 _1> 9 T202 = (ZO'Q 0 2) (10)

and
ai= gl a-ra = (5 ) (1)
b) It then follows that the Green’s function
Glr,r',7) = —(T,®(r,7)® (+',0)) (12)

satisfies the equation of motion

[—0; — e(—iV)T3 + ATooy — Vi(7)13 — Vai(T)ew) G(r, 7', 7) = 8(7)16(r — 7) (13)

To verify, consider the equation of motion of each component
G pw (1, 7',7) = —=(T: B0, (r, )DL (r,0))

(14)
= —O(T)(@a,pu(r, 7)®L (1", 0)) + O(=7)(®], (1, 0)®q (1, 7))

Using Equation 1) together with the anti-commutation relations {®,_,, @;’V} = 0080w
to evaluate the discontinuity from the Theta-functions, the equation of motion of the GF
follows immediatelyﬂ

c) In frequency space we have
ity — €(—iV)T3 4+ Arpoy — Vi(r)73 — Vai(r)ay]) Glr, 7' iw,) = 16(r — 1) (15)
In the absence of impurities V) = V5 ; = 0 we have
[iwn, — €(—iV )3 + Ampoa] G(r, 7' iwy,) = 16(r — 7') (16)
and it is easy to make the transition to momentum space
liwn — €T3 + AT202] Go(k, iwy,) = 1 (17)
and the Green’s function is given by

G(k,iwy,) = [iw, — €xT3 + AT209] (18)

1By writing the Eqm. for each component we avoid complications with the matrix structure, i.e. ®®T is a
(operator-valued) matrix while ®f® is a (operator valued) scalar.



d) We treat the impurities as a perturbation and define the unperturbed propagator Go (r—
L iw,) = %Ek Go(k,iw,)e™ T with

Go(k,iw,) = (iw, — exTs + ATQO’Q)_l (19)
as well as the vertices
%(’P)Tg, and Z ngi(r)ai (20)

We assume s-wave scattering of the impurities and thus write

Vi(r) = Z Uid(r — R:) =U, Zzeik-(pz{;),
n kE n

. 2 (21)
VQJ’(T) = Z Sn7iU26(7' — Ri) = U2 Z Z Sn,ieik'(TiR")
n k n

We assume that the positions of the magnetic and non-magnetic impurities are uncorrelated
and that the direction of the spins are also uncorrelated. The average over magnetic spins
is given by (S, iS,;) = $5(S + 1)8;;. We get two contributions to the self-energy

. ) R ) 1 A .
Sk, iwy) = N;|Uy|? %: TGk, iw, ) T3 + 355+ 1)Nj|Us|? ; Z Gk Viwy)a;  (22)
We make the ansatz

A . . ~ _ '~n+€kT3+A7'2O'2
G(k,iw,) = (i0, — exT3 — Ao 1_ W = 23
() = (30— s = By = Lm0 2

where @, and A are renormalized frequency and superconducting gap, respectively. From
the Dyson equation G~! = Gal — X we have

Gl =Gt = =5 = (i, — iwy) — (A - A) oy = =5 (24)
Using the approximation _,, = w [75_ de we can write
Z G’(k/,iwn) _ N(O) /Oo deiwn + €713 + A7~'20'2 _ 7N(O) /00 de Wy, + ATQ?—Q
; 2 J_w -2 —e2 — A2 2 J_x 2402+ A2
* . (25)
. _N(O) Wy, + ATo0o
2 A /“Jn2 + AQ
and the self-energy is given by
XA} o 7L Tg(l.(,:)n + ATQO’Q)Tg B L Z Oéi(l(:)n + ATQUQ)O&Z'
21 w2+ A? 675 < Vi, ? 4+ A? (26)
1 i@y —Anoy 1 i@, + Aoy
275 /‘«JnQ +A2 273 1/(’JnQ +A2
where we used 7373 = 1 and 737973 = —7» as well as
0;0; 0 2



)

and

) o ag; 0 0 —’iO’g ag; 0 . 0 Z'O'i0'25'i o
AiT2020% = (o —&,») (iag 0 )(o —&,») - (—i&iagai 0 )_72‘72 (28)

where we used 5’1 = —020;02 such that 0'7;0'251' = —0;02020;02 = —02 and 5'7;0'201' =
—090;09020; = —03. We thus have
1/1 1 W,
- el 1 on___ 29
and ~
~ 1/1 1 A
A=A+ (- =) ——— 30
+3(n %) o= 30

Renormalized gap
We define v = @, /A and write

1/1 1
Qn:wn+<+>u (31)
2\ 73 u?z +1
and L /1 . .
A:A+<—> (32)
2\7n 78 u? +1

Dividing the top line with the second one gives

u
2

11, 1) _u wnp ¢ L1 4 1 u
w"+2 (n +7'5> Vui+l A +2 (n 7'5) AvVuZ+1

“= 1(1_ 1 “1 - 1(1_ 1 1 (33)
A+§(Ti—a) T 1+§(E—5)A T
Solving for w, /A we get
w 1 U
“n _ 1+1(11))1(1+1>
A ( AT AV 1) 2\ T AV (34)

1 1
—ul- —
( T8 AvVu? + 1>
we see that the scattering rate of the non-magnetic impurities gets cancelled in this ex-
pression, and only the magnetic impurity scattering rate influences the ratio w, /A, and
for 74 — 0o we have u = @, /A = w, /A.

We consider now the gap equation

V1 Ny VN(0) 1 A
A= V;@—klckﬁ = 13 Z;Tr (nggG(k,zwn)) = — 2( )BZ ——

wn, wn A/ @2 4+ A?
(35)
Switching summation variables to w,, — @, — u we have then
VN(0) 1
A=_— 36
2 zu: Vu?+1 (36)

Now we recall that for 73 — 0o we have u = w,, /A which is independent of the impurity
scattering rate. Thus the gap equation is not changed when we introduce non-magnetic
scattering, and thus the solution is also insensitive to non-magnetic scattering. This result
is known as Anderson’s theorem.



