TKM2 Übungsblatt 9: Lösungen

July 7, 2012

1 | Homogene Lösungen der Eilenberger-Gleichung

a) Die homogene Eilenbergergleichung wird geschrieben

$$[\omega_n \tau_3 + \Delta \tau_1, g\tau_3 + f\tau_1] = 0 \tag{1}$$

Mit der Normalisierung $\hat{g}_0\hat{g}_0=1$ oder

$$1 = (g\tau_3 + f\tau_1)(g\tau_3 + f\tau_1) = g^2 + f^2 + fg\{\tau_3, \tau_1\} = g^2 + f^2$$
 (2)

Benutzen wir $[\tau_i, \tau_j] = 2i\epsilon_{ijk}\tau_k$ haben wir

$$2i(\omega_n f - \Delta g)\tau_2 = 0 \Rightarrow \omega_n f = \Delta g \tag{3}$$

Quadrieren wir auf beiden Seiten haben wir $g^2=(\omega_n/\Delta)^2f^2=(\omega_n/\Delta)^2(1-g^2)$, mit der Lösung $g^2=\omega_n^2/(\Delta^2+\omega_n^2)$. Einsetzen in der ursprünglichen Gleichung gibt

$$g = \frac{\omega_n}{\sqrt{\Delta^2 + \omega_n^2}}, \qquad f = \frac{\Delta}{\sqrt{\Delta^2 + \omega_n^2}}$$
 (4)

wobei wir die Lösung des Normalfalles $g = \text{sign}(\omega_n)$ benutzt haben um dass Vorzeichen vor der Wurzel zu fixieren.

b) Entwicklung der Selbstkonsistenzgleichung in $\Delta/\omega_n \propto \Delta/k_BT$

$$\Delta = \pi \lambda k_B T \sum_{\omega_n} f(\omega_n) = \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta}{\sqrt{\Delta^2 + \omega_n^2}} \approx \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta}{|\omega_n|} - \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta^3}{|\omega_n|^3}$$
 (5)

Vernachlässigen wir erst den zweiten Term (für $T=T_c$) und berechnen die Summe

$$\pi k_B T \sum_{\omega_n} \frac{1}{|\omega_n|} \approx 2\pi k_B T \sum_{n=0}^m \frac{1}{\pi k_B T (2n+1)} = 2 \sum_{n=0}^m \frac{1}{2n+1}$$
 (6)

wobei der Vorfaktor 2 in dem zweiten Glied durch die Beschränkung der Summe auf $n \geq 0$ erstanden ist, und $m = \operatorname{Integer}[\omega_D/2\pi k_BT]$ der obere Cut-Off der Summe darstellt. Die Summe kann durch den folgenden Trick berechnet werden

$$\sum_{n=0}^{m} \frac{1}{2n+1} = \sum_{n=1}^{2m+1} \frac{1}{n} - \sum_{n=1}^{m} \frac{1}{2n}$$
 (7)

Die Euler-Mascheroni konstante γ ist definiert durch

$$\gamma = \lim_{m \to \infty} \left[\sum_{n=1}^{m} \frac{1}{n} - \ln(m) \right]$$
 (8)

Also können wir für sehr grosse m schreiben $\sum_{n=1}^{m} \frac{1}{n} \approx \gamma + \ln(m)$ und wir haben zusammen mit $\ln(2m+1) \approx \ln(2m) = \ln 2 + \ln(m)$

$$\sum_{n=0}^{m} \frac{1}{2n+1} = \sum_{n=1}^{2m+1} \frac{1}{n} - \sum_{n=1}^{m} \frac{1}{2n} \approx \frac{1}{2} \left[\gamma + 2\ln(2) + \ln(m) \right] = \frac{1}{2} \left[\gamma + \ln(4m) \right]$$
(9)

Somit haben wir dann schliesslich

$$\Delta \approx \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta}{|\omega_n|} \approx \lambda \Delta \left(\gamma + \ln \left(\frac{2\omega_D}{\pi k_B T_c} \right) \right)$$
 (10)

Die Δ 's nehmen sich gegenseitig aus und wir haben

$$\ln\left(\frac{2\omega_D}{\pi k_B T_c}\right) = \frac{1}{\lambda} - \gamma \Rightarrow \frac{k_B T_c}{\omega_D} = Ce^{-\frac{1}{\lambda}}$$
 (11)

mit $C = \frac{2}{\pi}e^{\gamma}$.

Nehmen wir nun $T=T_c+\delta T$ und behalten auch den nächsten Term haben wir

$$\Delta \approx \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta}{|\omega_n|} - \pi \lambda k_B T \sum_{\omega_n} \frac{\Delta^3}{|\omega_n|^3}$$

$$= \lambda \Delta \left(\gamma + \ln \left(\frac{2\omega_D}{\pi k_B T} \right) \right) - 2\pi \lambda k_B T \Delta^3 \sum_{n=0}^{\infty} \frac{1}{(\pi k_B T)^3 (2n+1)^3}$$
(12)

Entwickeln wir erst

$$\ln\left(\frac{2\omega_D}{\pi k_B (T_c + \delta T)}\right) = \ln\left(\frac{2\omega_D}{\pi k_B T_c (1 + \frac{\delta T}{T_c})}\right) = \ln\left(\frac{2\omega_D}{\pi k_B T_c}\right) - \ln(1 + \frac{\delta T}{T_c})$$

$$\approx \ln\left(\frac{\omega_D}{2\pi k_B T_c}\right) - \frac{\delta T}{T_c}$$
(13)

und berechnen die Summe aus Gl. (12)

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^3} - \sum_{n=1} \frac{1}{(2n)^3} = \sum_{n=1}^{\infty} \frac{1}{n^3} - \frac{1}{2^3} \sum_{n=1} \frac{1}{n^3} = \left(1 - \frac{1}{2^3}\right) \sum_{n=1}^{\infty} \frac{1}{n^3}$$

$$= \frac{7}{8} \zeta(3)$$
(14)

haben wir

$$\Delta \approx \lambda \Delta \left(\gamma + \ln \left(\frac{2\omega_D}{\pi k_B T_c} \right) \right) - \lambda \frac{\delta T}{T_c} \Delta - \lambda \frac{7\zeta(3)}{8(\pi k_B T)^2} \Delta^3$$
 (15)

Benutzen wir dann Gl. (10) finden wir

$$0 = \left(\frac{T - T_c}{T_c}\right) \Delta + \frac{7\zeta(3)}{8(\pi k_B T)^2} \Delta^3 = \alpha \Delta + \beta \Delta^3$$
 (16)

2 | Lösung der Usadel-Gleichung mit räumblichen Variationen

a) In Matrixform haben wir

$$\hat{g} = \begin{pmatrix} g & fe^{i\theta} \\ fe^{-i\theta} & -g \end{pmatrix} = \begin{pmatrix} g & \tilde{f} \\ \tilde{f}^* & -g \end{pmatrix} \tag{17}$$

wobe
i $\tilde{f}=fe^{i\theta}.$ Die Normalisierungsbedingung lautet dann

$$\hat{g}\hat{g} = \begin{pmatrix} g^2 + \tilde{f}\tilde{f}^* & g\tilde{f} - \tilde{f}g\\ \tilde{f}^*g - g\tilde{f}^* & \tilde{f}\tilde{f}^* + g^2 \end{pmatrix} = \begin{pmatrix} g^2 + \tilde{f}\tilde{f}^* & 0\\ 0 & \tilde{f}\tilde{f}^* + g^2 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
(18)

oder einfach $g^2 + \tilde{f}\tilde{f}^* = g^2 + f^2 = 1$. Die Bewegungsgleichung lautet

$$[\omega_n \tau_3 + \hat{\Delta}, \hat{g}] = D \nabla (\hat{g} \nabla \hat{g}) \tag{19}$$

Die linke Seite hat die Matrixform

$$[\omega_{n}\tau_{3} + \hat{\Delta}, \hat{g}] = \begin{pmatrix} \omega_{n} & \Delta \\ \Delta^{*} & -\omega_{n} \end{pmatrix} \begin{pmatrix} g & \tilde{f} \\ \tilde{f}^{*} & -g \end{pmatrix} - \begin{pmatrix} g & \tilde{f} \\ \tilde{f}^{*} & -g \end{pmatrix} \begin{pmatrix} \omega_{n} & \Delta \\ \Delta^{*} & -\omega_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \omega_{n}g + \Delta\tilde{f}^{*} & \omega_{n}\tilde{f} - \Delta g \\ \Delta^{*}g - \omega_{n}\tilde{f}^{*} & \Delta^{*}\tilde{f} + \omega_{n}g \end{pmatrix} - \begin{pmatrix} g\omega_{n} - \tilde{f}\Delta^{*} & g\Delta - \tilde{f}\omega_{n} \\ \tilde{f}^{*}\omega_{N} - g\Delta^{*} & \tilde{f}^{*}\Delta + g\omega_{n} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 2(\omega_{n}\tilde{f} - \Delta g) \\ 2(\Delta^{*}g - \omega_{n}\tilde{f}^{*}) & 0 \end{pmatrix}$$

$$(20)$$

Auf der rechten Seite haben wir

$$\nabla(\hat{g}\nabla\hat{g}) = \nabla\left(\begin{pmatrix} g & \tilde{f} \\ \tilde{f}^* & -g \end{pmatrix}\begin{pmatrix} \nabla g & \nabla \tilde{f} \\ \nabla \tilde{f}^* & -\nabla g \end{pmatrix}\right)$$

$$= \begin{pmatrix} \nabla\left(g\nabla g + \tilde{f}\nabla \tilde{f}^*\right) & \nabla\left(g\nabla \tilde{f} - \tilde{f}\nabla g\right) \\ \nabla\left(\tilde{f}^*\nabla g - g\nabla \tilde{f}^*\right) & \nabla\left(\tilde{f}^*\nabla \tilde{f} + g\nabla g\right) \end{pmatrix}$$
(21)

Benutzen wir dass

$$g^2 + \tilde{f}^* \tilde{f} = 1 \Rightarrow \nabla (g^2 + \tilde{f}^* \tilde{f}) = 2g \nabla g + \tilde{f} \nabla \tilde{f}^* + \tilde{f}^* \nabla \tilde{f} = 0$$

haben wir dann

$$\nabla(\hat{g}\nabla\hat{g}) = \begin{pmatrix} \frac{1}{2}\nabla\left(\tilde{f}\nabla\tilde{f}^* - \tilde{f}^*\nabla\tilde{f}\right) & \nabla\left(g\nabla\tilde{f} - \tilde{f}\nabla g\right) \\ \nabla\left(\tilde{f}^*\nabla g - g\nabla\tilde{f}^*\right) & \frac{1}{2}\nabla\left(\tilde{f}^*\nabla\tilde{f} - \tilde{f}\nabla\tilde{f}^*\right) \end{pmatrix}$$
(22)

Vergleichen wir die beiden Seiten bekommen wir zwei unabhängige Gleichungen (die anderen zwei sind einfach die Komplexkonjugierten der unten angegeben Gleichungen)

$$\nabla \left(\tilde{f} \nabla \tilde{f}^* - \tilde{f}^* \nabla \tilde{f} \right) = i \nabla \left[(\nabla \theta) f^2 \right] = 0 \quad \Rightarrow \quad (\nabla \theta) f^2 = \text{const}$$
 (23)

und

$$(\omega_n \tilde{f} - \Delta g)e^{i\theta} = \frac{D}{2} \nabla \left(g \nabla \tilde{f} - \tilde{f} \nabla g \right)$$
 (24)

Die letzte Gleichung kann, mit Hilfe von Gl. (23) geschrieben werden als

$$\omega_n f - |\Delta|g = \frac{D}{2} \left[-(\nabla \theta)^2 g f + g \nabla^2 f - f \nabla^2 g \right]$$
 (25)

b) Wenn die räumlichen Variationen extreem langsam sind, können wir die rechte Seite von (24) vernachlässigen und haben

$$\omega_n \tilde{f}_0 - \Delta g_0 = 0 \Rightarrow \begin{cases} \tilde{f} = \frac{\Delta(\mathbf{r})}{\sqrt{|\Delta(\mathbf{r})|^2 + \omega_n^2}} \\ g = \frac{\omega_n}{\sqrt{|\Delta(\mathbf{r})|^2 + \omega_n^2}} \end{cases}$$
(26)

Wir schreiben nun

$$\tilde{f} = \tilde{f}_0 + \delta \tilde{f}, \qquad g = g_0 \tag{27}$$

(Anmerkung: Da $g = g_0 + \delta g$ eine ebene Funktion von Δ ist, hat diese in einer Entwicklung in Δ/T erst für $(\Delta/T)^2$ einen Beitrag mit räumlichen Variationen. Entwickeln wir dann noch in räumlichen Variationen bekommen wir dann Terme dritter ordnung. D.h. wir können δg vernachlässigen.) und setzen dies in der Gl. (24) ein

$$\omega_n \delta \tilde{f} = \frac{D}{2} \nabla \left(g_0 \nabla \tilde{f}_0 - \tilde{f}_0 \nabla g_0 \right)$$

$$+ \frac{D}{2} \nabla \left(g_0 \nabla \delta \tilde{f} - \delta \tilde{f} \nabla g_0 \right)$$
(28)

Da wir annehmen, dass die räumlichen Variationen klein sind, sind auch $\delta \tilde{f}$, sowie alle Gradienten, klein. D.h. die Terme in der zweiten Klammer auf der rechten Seite können vernachlässigt werden. Wir haben dann

$$\delta \tilde{f} = \frac{D}{2\omega_n} \nabla \left(g_0 \nabla \tilde{f}_0 - \tilde{f}_0 \nabla g_0 \right) \tag{29}$$

Notieren wir, dass

$$g_{0}\nabla\tilde{f}_{0} - \tilde{f}_{0}\nabla g_{0} = \frac{\omega_{n}}{\sqrt{\Delta^{2} + \omega_{n}^{2}}}\nabla\left(\frac{\Delta}{\sqrt{\Delta^{2} + \omega_{n}^{2}}}\right) - \frac{\Delta}{\sqrt{\Delta^{2} + \omega_{n}^{2}}}\nabla\left(\frac{\omega_{n}}{\sqrt{\Delta^{2} + \omega_{n}^{2}}}\right) = \frac{\omega_{n}\nabla\Delta}{\Delta^{2} + \omega_{n}^{2}}$$

$$\approx \frac{\nabla\Delta}{\omega_{n}}$$
(30)

und somit $\nabla \left(g_0 \nabla \delta \tilde{f} - \delta \tilde{f} \nabla g_0\right) \approx \frac{\nabla^2 \Delta}{\omega_z^2}$ und

$$\delta \tilde{f} \approx \frac{D}{2} \frac{\nabla^2 \Delta}{\omega_n^2} \Rightarrow \tilde{f} \approx \frac{\Delta}{\sqrt{\Delta^2 + \omega_n^2}} + \frac{D}{2} \frac{\nabla^2 \Delta}{\omega_n^2}$$
 (31)

Einsetzen in der Selbstkonsistenzgleichung gibt (mit den selben näherungen wie vorhin)

$$\Delta = \Delta - \lambda \alpha \Delta - \lambda \beta \Delta^3 + \lambda \frac{D}{2} \pi k_B T \sum_{\alpha} \frac{1}{\omega_n^2} \nabla^2 \Delta$$
 (32)

Mit
$$\sum_{\omega_n} \frac{1}{\omega_n^2} = \frac{2}{(\pi k_B T)^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$
 und $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = (1 - \frac{1}{2^2}) \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{3}{4} \zeta(2)$ haben wir dann

$$0 = \alpha \Delta + \beta \Delta - \xi^2 \nabla^2 \Delta \tag{33}$$

wobei¹
$$\xi^2 = 3\zeta(2)D/4\pi k_B T = 3\pi^2 D/(4 \cdot 6 \cdot \pi k_B T) = \pi D/8k_B T.$$

 $^{^{1}\}zeta(2) = \pi^{2}/6$

Alternative berechnung

Hier berechnen wir die Matsubara Summe $\frac{1}{\beta}\sum_{\omega_n}\frac{\Delta}{\sqrt{\omega_n^2+\Delta^2}}$ durch ein Konturintegral. Diese Summe konvergiert zwar nicht, aber man sollte darauf Rücksicht nehmen dass die Selbstkonsistenzgleichung eigentlich die Form $\Delta=\lambda f(\tau=0^-)$ hat, und es dadurch auch ein Konvergenzfaktor $e^{-\omega_n 0^-}$ in der Summe geben sollte. Die Matsubara Summe kann dann geschrieben werden als

$$\frac{1}{\beta} \sum_{\omega_n} \frac{\Delta}{\sqrt{\omega_n^2 + \Delta^2}} = \Delta \int d\xi \frac{\tanh(\sqrt{\xi^2 + \Delta^2}/2k_B T)}{\sqrt{\xi^2 + \Delta^2}}$$
(34)

Die Selbstkonsistenzgleichung nimmt dann die Form

$$\Delta = \lambda \Delta \int_0^{\omega_D} d\xi \frac{\tanh(\sqrt{\xi^2 + \Delta^2}/2k_B T)}{\sqrt{\xi^2 + \Delta^2}}$$
 (35)

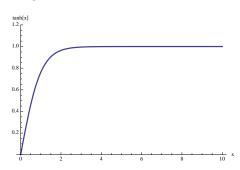
oder

$$\frac{1}{\lambda} = \int_0^{\omega_D} d\xi \frac{\tanh(\sqrt{\xi^2 + \Delta^2}/2k_B T)}{\sqrt{\xi^2 + \Delta^2}}$$
 (36)

Setzen wir erst $T=T_c$ und $\Delta=0$ auf der rechten Seite und definieren $x=\xi/2k_BT_c$ haben wir

$$\frac{1}{\lambda} = \int_0^{\frac{\omega_D}{2k_B T_c}} dx \frac{\tanh(x)}{x} \tag{37}$$

Der grösste Beitrag zu dem Integral kommt von dem bereich x > 1 wo $\tanh(x) \approx 1$. Also haben



wir

$$\frac{1}{\lambda} = \int_0^{\frac{\omega_D}{2k_B T_c}} dx \frac{\tanh(x)}{x} \approx \int_1^{\frac{\omega_D}{2k_B T_c}} dx \frac{1}{x} + g = \ln\left(\frac{\omega_D}{2k_B T_c}\right) + g \tag{38}$$

Die konstante $g \approx \int_0^1 dx \tanh(x)$ ist von der selben grössenordnung wie γ und wir haben dann wieder das Resultat aus Aufgabe 1.

Für $T=T_c+\delta T$ können wir die Selbstkonsistenzgleichung auf die Form

$$\frac{1}{\lambda} = \int_0^{\frac{\omega_D}{2k_B T_c}} dx \left[\frac{\tanh(\sqrt{x^2 + \kappa^2})}{\sqrt{x^2 + \kappa^2}} - \frac{\tanh x}{x} \right] + \int_0^{\frac{\omega_D}{2k_B T_c}} dx \frac{\tanh x}{x}$$
(39)

wobei $\kappa = \Delta/2k_BT$. Den letzten Term können wir wieder als

$$\ln\left(\frac{\omega_D}{2k_BT}\right) + g \approx \ln\left(\frac{\omega_D}{2k_BT_c}\right) + g - \frac{\delta T}{T_c} = \frac{1}{\lambda} - \frac{\delta T}{T_c}$$

ausdrücken. Wir haben dann

$$-\frac{\delta T}{T_c} \approx \int_0^{\frac{\omega_D}{2k_B T_c}} dx \left[\frac{\tanh(\sqrt{x^2 + \kappa^2})}{\sqrt{x^2 + \kappa^2}} - \frac{\tanh x}{x} \right]$$
 (40)

Entwicklung in dem Paramater κ gibt

$$-\frac{\delta T}{T_c} \approx \int_0^{\frac{\omega_D}{2k_B T_c}} dx \left(\frac{x^2 - x \tanh(x) - x^2 \tanh(x^2)}{2x^4} \right) \kappa^2 \tag{41}$$

In der region x>1 haben wir $\tanh(x)\approx \tanh(x^2)\approx 1$ und der Integrand ist einfach nur $-1/2x^3$ und das Integral konvergiert (d.h. wir brauchen den Cut-Off nicht mehr) zu dem wert -1/4. In der Region 0< x<1 können wir die Funktion $\tanh(x)\approx x-x^3/3$ um x=0 entwickeln und bekommen

$$\int_0^1 dx \left(\frac{x^2 - x^2 + x^4 - x^4}{2x^4} \right) \kappa^2 \approx 0 \tag{42}$$

Wir haben dann

$$\frac{\delta T}{T_c} = \frac{1}{4}\kappa^2 = \frac{\Delta^2}{8(k_B T)^2}$$
 (43)

Multiplizieren wir mit Δ und führen alles auf die rechte Seite haben wir

$$0 = \frac{\delta T}{T_c} \Delta + \frac{1}{8(k_B T)^2} \Delta^2 \tag{44}$$

Da $7\zeta(3)/\pi^2=0.85..\approx 1$ und deshalb $\beta=7\zeta(3)/8(\pi k_BT)^2\approx \frac{1}{8(k_BT)^2}$ haben wir also wieder die Form

$$0 = \alpha \Delta + \beta \Delta^3 \tag{45}$$