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1. Peierls Instability:

Consider electron-phonon interaction, described by the Frölich Hamiltonian

Ĥint = g

∫
ddrψ̂†(~r)ψ̂(~r)φ̂(~r).

The free phonon Green’s function is given by

D0(ω,~k) =
ω2
0(~k)

ω2 − ω2
0(~k) + i0

.

Here ω0(~k) is the phonon spectrum (in the absence of any interactions). Consider the

simplest case of a single acoustic branch with ω0(~k) = ck, k < kD, where c is the speed
of sound and kD is the Debye wave-vector.

Electron-phonon interaction results in a modification of the phonon spectrum. Similarly
to the case of electrons, we describe this effect by means of the Dyson’s equation

D = D0 +D0ΠD.

The role of the phonon self-energy Π is played by the electronic “density-density” cor-
relator also known as the “polarization operator”:

Π = 〈T n̂(~r, t)n̂(~r′, t′).

In the presense of electron-phonon interaction the polarization operator is given by a
series of diagrams shown in the Figure, as follows from the Frölich Hamiltonian.

In the simplest case we consider only the first term in the series, corresponding to the
polarization operator of free fermions

Π(ω, q) = −2i

∫
ddk

(2π)d
dε

2π
G0(ε,~k)G0(ε+ ω,~k + ~q),



where the free-fermion Green’s finction is

G0(ε,~k) =
1

ε− ξ~k + i0signξ~k
.

(a) Calculate the polarization operator of free fermions (the so-called Lindhardt func-
tion) in three dimensions d = 3.

(b) Use the Lindhard function and the phonon Dyson equation to calculate the change
(often called the “renormalization”) of the speed of sound due to electron-phonon
interaction

c2 = c20(1− 2ζ), ζ = g2ν0,

where g is the electron-phonon coupling constant and ν0 is the electronic density of
states (ζ is the dimensionless coupling constant in the problem).

Hint: Recall that the speed of sound is much smaller than the Fermi velocity and
focus on the limit ω � kvF .

(c) Consider now the polarization operator in one dimension, d = 1. For large momenta
q ≈ 2kF , the polarization operator exhibits a logarithmic singularity. Show that this
leads to the phonon frequency becoming imaginary.

What does it mean? What happens to the system?

(d) In order to clarify the physics of the previous question, consider the one-dimensional
model of electrons subjected to a periodic potential

H = H0 + V, V (x) = V (x+ a),

where H0 describes non-interacting electrons with the usual kinetic energy p2/2m.
Overall we assume the system to contain N ions, i.e. to have the length L = Na.
We also assume periodic boundary conditions. Arrive at the same instability as in
the previous question by making the following steps:

1. Consider fermions without the potential: find the normalized wave functions and
the energy spectrum.

2. Consider the situation where there are exactly 2N particles in the system. Find
the allowed values of electronic momenta and the values of the Fermi momentum
(do not forget the electronic spin).

3. Find the Fourier components of the periodic potential. Determine the allowed
values of the wave vector (i.e. those values of q for which Vq 6= 0). Justify, why one
can disregard the q = 0 term.

4. Consider only the matrix elements Vq with the smallest values of |q|. Find the
second-order perturbation theory correction to the fermionic spectrum.

5. Show that the result might contain a singularity.

6. Attempt to rectify the problem by focusing on the subspace of the electronic states
that involves the two states giving the singularity. These two states have almost
identical energy. Use the degenerate perturbation theory to find the spectrum in
this subspace.

What is the relation between the two calculations? What is the resulting ground
state of the system?


