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1. Jordan-Wigner Transformation:

(a)

Consider the set of Pauli matrices 0% satisfying the usual SU(2) commutation rela-
tions for each n, but commuting for different n.

Show that the following transformation:
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maps the above set of Pauli matrices into a set of fermionic operators.

Show that the operators a,, defined by the transformation obey the fermionic com-
mutation relations for each n and anticommute for different n.

Consider the one-dimensional spin chain, described by the generic Hamiltonian
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where o are the Pauli matrices.

Use the above Jordan-Wigner transformation to express H in terms of fermions.

2. Bogolyubov transformation:

Consider now the simper case of the “quantum Ising model”, described by the above
Hamiltonian H with J, = J, = 0. Observe that this Hamiltonian is quadratic in
fermionic operators.

(a)
(b)

()

Find a unitary transformation diagonalizing the quantum Ising model.

Discuss the spectrum of the model. Find the dependence of the spectral gap on the
applied field. Is there a point, where the spectrum is gapless (the so-called “quantum
critical point”)?

What changes in your analysis for J, # 07



